周珊珊,湯巧智
杭州灣底泥得克隆污染狀況及來(lái)源的初步研究
周珊珊,湯巧智
(浙江工業(yè)大學(xué)生物與環(huán)境工程學(xué)院環(huán)境科學(xué)研究中心,浙江杭州 310014)
隨著含溴阻燃劑的進(jìn)一步限用或禁用,氯代阻燃劑得克?。―echlorane Plus,DP)以其良好的熱穩(wěn)定性和電化學(xué)性能成為推薦的替代品之一。作為添加型氯代阻燃劑,DP很容易從產(chǎn)品中脫落而成為環(huán)境中廣泛存在的污染物,但相關(guān)的研究仍十分匱乏。本研究測(cè)定了杭州灣海域4個(gè)底泥柱狀樣品中DP的殘留及異構(gòu)體特征,并對(duì)DP在該海域底泥中的時(shí)空分布和可能來(lái)源進(jìn)行了初步分析。結(jié)果表明,syn-DP和anti-DP在底泥樣品中的含量分別為BDL~17.7 pg/g干質(zhì)量(平均為2.9±3.2 pg/g干質(zhì)量)和1.4~38.1 pg/g干質(zhì)量(平均為8.0±8.5 pg/g干質(zhì)量),其污染程度相對(duì)全球范圍處于較低水平??臻g分布表明金山工業(yè)區(qū)可能對(duì)杭州灣DP的污染有一定貢獻(xiàn),DP在柱狀底泥中的垂直分布未發(fā)現(xiàn)明顯變化趨勢(shì)。本研究中DP的fsyn平均值為0.25~0.28,表明研究海域底泥中的DP可能來(lái)自于遠(yuǎn)距離傳輸。
得克??;杭州灣;底泥
阻燃劑是賦予易燃聚合物難燃性的功能性助劑,在全球的需求量超過(guò)175萬(wàn)t/a[1]。但是,部分阻燃劑,如目前市場(chǎng)規(guī)模最大的溴代阻燃劑,由于具有持久性有機(jī)污染物(Persistent Organic Pollutants,POPs)的全部特征,特別是明顯的三致作用,神經(jīng)、發(fā)育毒性以及內(nèi)分泌干擾效應(yīng)[2],將面臨進(jìn)一步的限用甚至禁用[3]。因此,一些未發(fā)現(xiàn)明顯毒性而被允許繼續(xù)使用的氯代阻燃劑,如得克?。―echlorane Plus,DP),成為了推薦的替代品[4]。
DP的生產(chǎn)始于20世紀(jì)70年代,累積產(chǎn)量超過(guò)20萬(wàn)t[5-6],目前有美國(guó)Oxychem公司和中國(guó)淮安安邦電化公司兩大生產(chǎn)廠家。從2006年開(kāi)始,DP在世界多個(gè)地區(qū)的大氣[5,7-9]、水體[7-8,10-11]、底泥[12-14]、土壤[15-17]、生物[18-21]和其他介質(zhì)如室內(nèi)灰塵[22-23]、人的頭發(fā)[24-25]和血漿[26-27]中檢出,這表明DP具有遠(yuǎn)距離遷移能力,且可以在生物體內(nèi)積累,并通過(guò)食物鏈最終蓄積到人體內(nèi)。已有的研究表明,DP的暴露對(duì)生物具有一定的危害作用,可引起老鼠肝臟的氧化性損傷,并會(huì)導(dǎo)致老鼠的基因表達(dá)發(fā)生改變[28-29]。因此,環(huán)境中的DP殘留可能對(duì)生物體及人體健康存在潛在危害。
進(jìn)入環(huán)境的DP可通過(guò)大氣傳輸,干、濕沉降和地表徑流等過(guò)程到達(dá)海洋。由于DP的疏水性很高,在水體中很容易吸附于懸浮顆粒物并最終沉積在底泥中,所以海底沉積物是DP在環(huán)境中的最后歸宿和儲(chǔ)藏庫(kù)之一。因此,DP在海洋沉積物中的分布、遷移轉(zhuǎn)化及環(huán)境安全是探究其全球分配行為、總體污染水平和生態(tài)風(fēng)險(xiǎn)的重要組成部分。目前研究已證實(shí)DP在海洋環(huán)境中的普遍存在[8,11-12,30-32],但有關(guān)DP在海洋底泥中的研究尚僅限于黃渤海海域[12,30-31]。
杭州灣位于浙江省和上海市之間,是中國(guó)經(jīng)濟(jì)最發(fā)達(dá)、人口密度最大的地區(qū)之一。已有研究表明,杭州灣是我國(guó)沿海地區(qū)POPs[33]和重金屬[34]等較嚴(yán)重的污染區(qū)之一。本研究以杭州灣為研究對(duì)象,對(duì)4個(gè)底泥柱樣中的DP含量進(jìn)行檢測(cè),評(píng)價(jià)其污染程度,分析異構(gòu)特征并追溯該區(qū)域DP可能的源。
1.1 溶劑與標(biāo)準(zhǔn)樣
本研究所用的色譜純,如二氯甲烷和正己烷,購(gòu)自美國(guó)TEDIA和Sigma公司,目標(biāo)物標(biāo)準(zhǔn)樣品syn-DP(99.8%)和anti-DP(97.5%)以及內(nèi)標(biāo)物OCN購(gòu)自美國(guó)AccuStandard公司,示蹤標(biāo)13C-PCB 202購(gòu)買自美國(guó)惠靈頓實(shí)驗(yàn)室(Wellington laboratories)。
1.2 樣品采集
本研究所用樣品為2011年6月于杭州灣海域采集的4個(gè)底泥柱樣,地理位置見(jiàn)圖1,具體經(jīng)緯度為:1:30°41'46”N,121°26'13”E;2:30°23'34”N,121°20' 46”E;3:30°38'44”N,121°56'54”E;4:30°10'58”N,121°48'37”E。柱狀樣品用直徑6 cm的重力采樣器采集,柱長(zhǎng)分別為32,38,48和40 cm。樣品采集后以2 cm間距分樣,封裝后置于-20℃條件下冷凍保存。
1.3 樣品預(yù)處理
本研究參考JIA et al[31]的實(shí)驗(yàn)方法,并進(jìn)行了一定的修改。樣品采用冷凍干燥機(jī)凍干,搗碎勻質(zhì)后過(guò)60目篩;稱取10 g底泥樣品,加入示蹤標(biāo)13C-PCB 202及無(wú)水硫酸鈉(5 g)和銅粉(2 g),用120 m L二氯甲烷作為提取劑索氏抽提24 h。將提取液用旋轉(zhuǎn)蒸發(fā)儀濃縮,以正己烷溶劑替換至1~2 m L。濃縮液用氧化鋁-硅膠復(fù)合柱(內(nèi)徑15 mm,填料自下而上為2 g無(wú)水硫酸鈉,5 g活化硅膠,2 g氧化鋁和2 g無(wú)水硫酸鈉)進(jìn)一步凈化,洗脫液為60 m L體積比為2∶1的正己烷和二氯甲烷混合液。將提取液濃縮后轉(zhuǎn)相至0.5 m L正己烷,加入八氯萘(OCN)作為內(nèi)標(biāo)物,待儀器分析檢測(cè)。
1.4 儀器分析條件
樣品的儀器分析采用Agilent 7890氣相色譜-5973N質(zhì)譜儀。
色譜條件:進(jìn)樣口的溫度設(shè)定為280℃,進(jìn)樣方式為不分流,載氣為高純氦氣,載氣流量為1.0 m L/ min,進(jìn)樣量為1μL;色譜柱為HT-5MS毛細(xì)管柱(15 m×0.25 mm,0.25μm);程序升溫:以100℃為初始溫度,以20℃/min升至280℃并保持10 min,后以10℃/min升至300℃并保持10 min。
質(zhì)譜條件:離子源為負(fù)離子化學(xué)電離源,能量為70 eV;離子源、四級(jí)桿和傳輸線溫度分別為150,106和280℃;反應(yīng)氣為甲烷,采用選擇離子模式(SIM)進(jìn)行定性定量分析;DP兩個(gè)同分異構(gòu)體syn-DP和anti-DP的檢測(cè)離子均為653.8/651.8/ 655.8,示蹤標(biāo)13C-PCB 202的檢測(cè)離子為441.8/ 439.8/443.8,內(nèi)標(biāo)物OCN的檢測(cè)離子為403.8/ 405.8/401.8。
1.5 質(zhì)量控制和保證
syn-DP和anti-DP的定量采用內(nèi)標(biāo)法和5點(diǎn)標(biāo)準(zhǔn)曲線法。以質(zhì)譜響應(yīng)為10倍信噪比所對(duì)應(yīng)的目標(biāo)物含量作為實(shí)驗(yàn)的方法檢出限,為0.5 pg/g干質(zhì)量。進(jìn)樣過(guò)程中,每進(jìn)12個(gè)樣品用標(biāo)準(zhǔn)溶液(1 ng/m L)對(duì)標(biāo)準(zhǔn)曲線進(jìn)行校正,以確定儀器的穩(wěn)定性和可靠性。本研究的方法實(shí)驗(yàn)中DP的加標(biāo)回收率為74%~96%,空白實(shí)驗(yàn)中沒(méi)有DP檢出,檢測(cè)實(shí)驗(yàn)中示蹤標(biāo)13C-PCB 202的回收率為76%~102%。本研究對(duì)每個(gè)樣品平行測(cè)定2次,以算術(shù)平均值作為檢測(cè)結(jié)果,相對(duì)偏差均小于10%,實(shí)驗(yàn)過(guò)程中所用到的溶劑均為色譜純。
2.1 底泥中DP的殘留水平
所有樣品均可檢出anti-DP,syn-DP則在柱4的2個(gè)樣品中低于檢出限。底泥總DP的含量范圍為1.9~50.4 pg/g干質(zhì)量(平均為10.9±11.4 pg/g干質(zhì)量),其中柱1~柱4的含量分別為15.2~50.4 pg/ g干質(zhì)量(平均為26.3±9.5 pg/g干質(zhì)量)、2.0~12.8 pg/g干質(zhì)量(平均為6.8±4.1 pg/g干質(zhì)量)、2.8~6.6 pg/g干質(zhì)量(平均為4.1±0.9 pg/g干質(zhì)量)和1.9~18.6 pg/g干質(zhì)量(平均為6.9±5.1 pg/ g干質(zhì)量)(表1)。
與國(guó)內(nèi)其他沿海地區(qū)或河口(表2)相比,杭州灣海域底泥中DP的含量明顯低于黃、渤海海域[31]和珠江口地區(qū)[35],這可能與長(zhǎng)江口高水沙通量的稀釋作用有關(guān)[36]。在有機(jī)氯農(nóng)藥等POPs類化合物的研究中也發(fā)現(xiàn)類似現(xiàn)象,比如,六六六(HCHs)在東海底泥中的含量為0.2~1.6 ng/g干質(zhì)量(平均為0.58± 0.27 ng/g干質(zhì)量)[37],明顯低于渤海海域底泥中HCHs的污染水平(2.05~3.63 ng/g干質(zhì)量,平均為3.13 ng/g干質(zhì)量)[38]。本研究結(jié)果與膠州灣底泥DP的殘留水平相當(dāng),略低于套子灣和四十里灣[12]。與我國(guó)不同河流底泥中的DP殘留相比,本研究含量與大沽河和松花江[10]底泥中所測(cè)的含量相當(dāng),但比長(zhǎng)江水系[39]和珠江水系[35]所測(cè)含量低2~3個(gè)數(shù)量級(jí)。而部分的污染區(qū),如電子垃圾拆解地[40]底泥中DP的殘留則比杭州灣底泥的DP殘留高至少3個(gè)數(shù)量級(jí)。國(guó)外有關(guān)底泥中DP分布的研究主要集中于美國(guó)五大湖地區(qū)。QIU et al[14]的研究發(fā)現(xiàn),臨近Oxychem公司的安大略湖表層底泥中DP的含量高達(dá)150 ng/g干質(zhì)量。SVERKO et al[13]亦發(fā)現(xiàn)安大略湖底泥中DP水平為2.32~586 ng/g干質(zhì)量,但其下游地區(qū)的伊利湖底泥中DP含量?jī)H為0.061~8.62 ng/g干質(zhì)量。總體而言,杭州灣底泥中DP的污染程度相對(duì)全球范圍處于較低水平。
2.2 底泥中DP的分布特征
從水平分布來(lái)看,柱2~柱4中DP的平均含量無(wú)明顯差異(表1),但柱1中DP的平均含量是柱2~柱4的4~6倍(表1),可能與柱1附近金山工業(yè)園區(qū)對(duì)DP的貢獻(xiàn)相關(guān)。
污染物在底泥柱樣中的垂直分布研究,有利于追溯目標(biāo)物的歷史通量并推測(cè)其污染趨勢(shì)。YANG et al[41]對(duì)五大湖流域的16個(gè)底泥柱樣的研究發(fā)現(xiàn),蘇必利爾湖對(duì)DP的積累仍在增加,而安大略湖在1990年對(duì)DP的積累到達(dá)峰值后已經(jīng)呈現(xiàn)出下降的趨勢(shì)。本研究結(jié)果(圖2)顯示,柱1中DP的含量由底層向表層呈波動(dòng)性的略微增長(zhǎng),表明DP在該位點(diǎn)的積累有增長(zhǎng)的趨勢(shì);柱2則表現(xiàn)為,除6 cm處1個(gè)點(diǎn)外,DP的含量在下層柱樣(共16 cm)和上層柱樣(共22 cm)中各自比較穩(wěn)定,而在下層中的含量約為上層的2倍,其有可能是外來(lái)的泥沙流入造成上層含量被稀釋;靠近長(zhǎng)江口的柱3中有80%以上的樣品DP含量低于10 pg/g,且呈現(xiàn)出由底層向表層略微增長(zhǎng)的趨勢(shì),但在該趨勢(shì)中間接有含量較高的點(diǎn)出現(xiàn);而位于更南部被陸地半包圍的柱4中DP含量則相對(duì)比較穩(wěn)定,整個(gè)柱樣的DP含量無(wú)明顯變化,結(jié)合2個(gè)柱樣的位點(diǎn),本研究認(rèn)為可能是地理因素導(dǎo)致兩者的差異性。然而總體來(lái)說(shuō),杭州灣底泥中DP含量隨采樣深度的增加未發(fā)生數(shù)量級(jí)以上的變化。這可能與2個(gè)因素有關(guān):第一,DP的生產(chǎn)、釋放時(shí)間較短,目前主要處于從污染源向陸地環(huán)境擴(kuò)散的階段,仍未發(fā)生明顯的陸海轉(zhuǎn)移。而對(duì)于早期大量釋放的POPs,如有機(jī)氯農(nóng)藥來(lái)說(shuō),由于發(fā)生明顯的陸海遷移,海洋底泥中該類化合物的含量在近年中已有持續(xù)上升[42]。此外,人為或生物等對(duì)底泥的擾動(dòng)作用混合了上下層底泥,致使柱樣無(wú)法體現(xiàn)歷史污染特征。
2.3 DP來(lái)源分析
已有研究表明,商用DP fsyn約為0.40[15,17],而DP在環(huán)境中的遷移轉(zhuǎn)化將使其fsyn偏離商用產(chǎn)品,如syn-DP在光照條件下更加穩(wěn)定[13],使得空氣中的fsyn隨著位點(diǎn)偏離污染源而逐漸升高[9]。本研究中DP的fsyn值為0.15~0.49,4個(gè)柱樣的fsyn平均值在0.25~0.28之間,明顯小于商用產(chǎn)品,說(shuō)明研究海域底泥中的DP可能來(lái)自于遠(yuǎn)距離傳輸。首先,位于江蘇淮安中國(guó)唯一的DP制造廠離東海僅140 km。目前的研究表明,DP的制造已造成該物質(zhì)向周圍環(huán)境的擴(kuò)散[43-44],也有研究證實(shí)DP具有可長(zhǎng)距離傳輸?shù)奶匦裕?-9],因此制造工廠所排放的DP可能經(jīng)由大氣傳輸?shù)冗^(guò)程進(jìn)入研究海域,但研究海域的高沙通量使得大氣沉降對(duì)其影響較小,所以本研究不視其為主要來(lái)源。其次,臺(tái)州電子垃圾拆解區(qū)對(duì)其也有一定影響。電子垃圾拆解作為DP的污染源之一已被證實(shí)[16,18,23-26]。另有研究發(fā)現(xiàn),由電子垃圾拆解造成的POPs排放可明顯提高臨近海域該類物質(zhì)的污染水平[45-46]。所以很難避免臺(tái)州地區(qū)的DP污染向毗鄰海域遷移。再次,作為已知的第3種DP污染源[47],長(zhǎng)三角地區(qū)高強(qiáng)度的城市及工業(yè)活動(dòng)也將對(duì)其毗鄰海域環(huán)境質(zhì)量造成壓力。
(1)DP在杭州灣海域4個(gè)柱狀底泥中的含量為1.9~50.4 pg/g干質(zhì)量,與國(guó)內(nèi)外已有研究相比,本研究區(qū)域的DP含量處于較低水平,污染程度較輕。
(2)4個(gè)柱狀沉積物中,柱1的DP含量明顯高于其他位點(diǎn),這可能與該位點(diǎn)沿岸的金山工業(yè)區(qū)對(duì)DP污染的貢獻(xiàn)有關(guān)。研究海域DP在底泥中的垂直分布沒(méi)有明顯變化趨勢(shì),說(shuō)明DP在國(guó)內(nèi)生產(chǎn)使用時(shí)間較短,其遷移仍主要停留在污染源向陸地環(huán)境擴(kuò)散的階段。
(3)杭州灣底泥中DP的fsyn平均值為0.25~0.28,明顯有異于商用產(chǎn)品,說(shuō)明該海域底泥中的DP殘留可能主要來(lái)自于遠(yuǎn)距離傳輸,而非來(lái)源于當(dāng)?shù)谼P從產(chǎn)品中脫落而導(dǎo)致的直接排放。
(References):
[1]ZHANG Xiao-yan,LU Qi-yong.Production status and developing prospects of flame retardants[J].China Plastics Industry,2011,39(4):1-5.張小燕,盧其勇.阻燃劑的生產(chǎn)狀況及發(fā)展前景[J].塑料工業(yè),2011,39(4):1-5.
[2]MIKULA P,SVOBODOVA Z.Brominated flame retardants in the environment:Their sources and effects[J].Acta Veterinaria Brno,2006,75(4):587-599.
[3]HU Jian-xin,LIAO Hong-yun,HAN Wen-ya,et al.Newly added POPs and its related control measures[J].Environmental Protection,2010,23:16-18.胡建信,廖虹云,韓文亞,等.新增POPs及其控制對(duì)策[J].環(huán)境保護(hù),2010,23:16-18.
[4]OXYCHEM.Dechlorane Plus manual[R/OL].http://www.ilyacorp.co.kr/product/pdf/formulation.pdf.
[5]REN N Q,SVERKO E,LI Yi-fan,et al.Levels and isomer profiles of dechlorane plus in Chinese air[J].Environmental Science &Technology,2008,42(17):6 476-6 480.
[6]安邦“2000噸/年阻燃劑”項(xiàng)目通過(guò)驗(yàn)收[EB/OL](2006-06-27). http://www.xfnj.cn/news/HTML/20060627091859.html.
[7]HOH E,ZHU Ling-yan,HITES R A.Dechlorane Plus,a chlorinated flame retardant,in the Great Lakes[J].Environmental Science&Technology,2006,40(4):1 184-1 189.
[8]MOLLER A,XIEZhi-yong,STURM R.Large-scale distribution of Dechlorane Plus in air and seawater from the Arctic to Antarctica[J].Environmental Science&Technology,2010,44(23):8 977-8 982.
[9]VENIER M,HITES R A.Flame retardants in the atmosphere near the Great Lakes[J].Environmental Science&Technology,2008,42(13):4 745-4 751.
[10]QI Hong,LIU Li-yan,JIA Hong-liang,et al.Dechlorane Plus in surficial water and sediment in a northeastern Chinese river[J].Environmental Science&Technology,2010,44(7):2 305-2 308.
[11]MOLLER A,XIE Zhi-yong,CABA A,et al.Occurrence and air-seawater exchange of brominated flame retardants and Dechlorane Plus in the North Sea[J].Atmospheric Environment,2012,46:346-353.
[12]ZHAO Zhen,ZHONG Guang-cai,MOLLER A,et al.Levels and distribution of Dechlorane Plus in coastal sediments of the Yellow Sea,North China[J].Chemosphere,2011,83(7):984-990.
[13]SVERKO E,TOMY G T,MARVIN C H,et al.Dechlorane plus levels in sediment of the lower Great Lakes[J].Environmental Science&Technology,2008,42(2):361-366.
[14]QIU Xing-hua,MARVIN C H,HITES R A.Dechlorane plus and other flame retardants in a sediment core from Lake Ontario[J].Environmental Science&Technology,2007,41(17):6 014-6 019.
[15]WANG Bin,LINO F,HUANG Jun,et al.Dechlorane Plus pollution and inventory in soil of Huai'an City,China[J].Chemosphere,2010,80(11):1 285-1 290.
[16]YU Zhi-qiang,LU Shao-you,GAO Shu-tao,et al.Levels and isomer profiles of Dechlorane Plus in the surface soils from ewaste recycling areas and industrial areas in South China[J].Environmental Pollution,2010,158(9):2 920-2 925.
[17]WANG De-Gao,YANG Meng,QI Hong,et al.An Asia-specific source of Dechlorane Plus:Concentration,isomer profiles,and other related compounds[J].Environmental Science&Technology,2010,44(17):6 608-6 613.
[18]CHEN She-jun,TIAN Mi,WANG Jing,et al.Dechlorane Plus(DP)in air and plants at an electronic waste(e-waste)site in South China[J].Environmental Pollution,2011,159(5):1 290-1 296.
[19]XIAO Ke,WANG Pu,ZHANG Hai-dong,et al.Levels and profiles of Dechlorane Plus in a major E-waste dismantling area in China[J].Environmental Geochemistry and Health,2013,35(5):625-631.
[20]MO Ling,WU Jiang-ping,LUO Xiao-jun,et al.Dechlorane Plus flame retardant in kingfishers(Alcedo atthis)from an electronic waste recycling site and a reference site,South China:Influence of residue levels on the isomeric composition[J].Environmental Pollution,2013,174:57-62.
[21]KAKIMOTO K,NAGAYOSHI H,YOSHIDA J,et al.Detection of Dechlorane Plus and brominated flame retardants in marketed fish in Japan[J].Chemosphere,2012,89(4):416-419.
[22]ZHU Ji-ping,F(xiàn)ENG Yong-tai,SHOEIB M.Detection of Dechlorane Plus in residential indoor dust in the city of Ottawa,Canada[J].Environmental Science&Technology,2007,41(22):7 694-7 698.
[23]WANG Jing,TIAN Mi,CHEN She-jun,et al.Dechlorane Plus in house dust from e-waste recycling and urban areas in South China:Sources,degradation,and human exposure[J].Environmental Toxicology and Chemistry,2011,30(9):1 965-1 972.
[24]ZHENG Jing,WANG Jing,LUO Xiao-jun,et al.Dechlorane Plus in human hair from an e-waste recycling area in South China:comparison with dust[J].Environmental Science&Technology,2010,44(24):9 298-9 303.
[25]ZHENG Jun,LUO Xiao-jun,YUAN Jian-gang,et al.Levels and sources of brominated flame retardants in human hair from urban,e-waste,and rural areas in South China[J].Environmental Pollution,2011,159(12):3 706-3 713.
[26]REN Guo-fa,YU Zhi-qiang,MA Sheng-tao,et al.Determination of Dechlorane Plus in serum from electronics dismantling workers in South China[J].Environmental Science&Technology,2009,43(24):9 453-9 457.
[27]YAN Xiao,ZHENG Jing,CHEN Ke-hui,et al.Dechlorane Plus in serum from e-waste recycling workers:Influence of gender and potential isomer-specific metabolism[J].Environment International,2012,49:31-37.
[28]LI Yan,YU Le-huan,WANG Jian-she,et al.Accumulation pattern of Dechlorane Plus and associated biological effects on rats after 90 d of exposure[J].Chemosphere,2013,90(7):2 149-2 156.
[29]WU Bing,LIU Su,GUO Xue-chao,et al.Responses of mouse liver to Dechlorane Plus exposure by integrative Transcriptomic and Metabonomic Studies[J].Environmental Science&Technology,2012,46(19):10 758-10 764.
[30]WANG De-gao,ALAEE M,SVERKO E,et al.Analysis and occurrence of emerging chlorinated and brominated flame retardants in surficial sediment of the Dalian costal area in China[J].J Environ Monit,2011,13(11):3 104-3 110.
[31]JIA Hong-liang,SUN Ye-qing,LIU Xian-jie,et al.Concentration and bioaccumulation of Dechlorane compounds in coastal environment of Northern China[J].Environ Sci Technol,2011,45(7):2 613-2 618.
[32]MOLLER A,XIE Zhi-yong,CAI Ming-hong,et al.Polybrominated diphenyl ethers vs alternate brominated flame retardants and Dechloranes from East Asia to the Arctic[J].Environ Sci Technol,2011,45(16):6 793-6 799.
[33]LIU M,YANG Y,XU S.Persistent organic pollutants(POPS)in intertidal surface sediments from the Yangtze Estuarine and coastal areas,China[J].Journal of Coastal Research,2004,43:162-170.
[34]AN Qiang,WU Yan-qing,WANG Jin-hui,et al.Assessment of dissolved heavy metal in the Yangtze River estuary and its adjacent sea,China[J].Environmental Monitoring and Assessment,2010,164(1-4):173-187.
[35]CHEN She-jun,F(xiàn)ENG An-hong,HE Ming-jing,et al.Current levels and composition profiles of PBDEs and alternative flame retardants in surface sediments from the Pearl River Delta,southern China:Comparison with historical data[J].Science of the Total Environment,2013,444:205-211.
[36]LIU J P,XU K H,LI A C,et al.Flux and fate of Yangtze River sediment delivered to the East China Sea[J].Geomorphology,2007,85(3-4):208-224.
[37]LIN Tian,HU Li-min,SHI Xue-fa,et al.Distribution and sources of organochlorine pesticides in sediments of the coastal East China Sea[J].Marine Pollution Bulletin,2012,64(8):1 549-1 555.
[38]LIU Yu,SONG Cheng-wen,LI Ying,et al.The distribution of organochlorine pesticides(OCPs)in surface sediments of Bohai Sea Bay,China[J].Marine Pollution Bulletin,2012,184(4):1 921-1 927.
[39]ZHU Bing-qing,LAM J C W,YANG Shou-ye,et al.Conventional and emerging halogenated flame retardants(HFRs)in sediment of Yangtze River Delta(YRD)region,East China[J]. Chemosphere,2013,93(3):555-560.
[40]WU Jiang-ping,ZHANG Ying,LUO Xiao-jun,et al.Isomerspecific bioaccumulation and trophic transfer of Dechlorane Plus in the freshwater food web from a highly contaminated site, South China[J].Environmental Science&Technology,2010,44(2):606-611.
[41]YANG Rui-qiang,WEI Hua,GUO Jie-hong,et al.Historically and currently used Dechloranes in the sediments of the Great Lakes[J].Environmental Science&Technology,2011,45(12):5 156-5 163.
[42]ZHANG Gan,PARKER A,HOUSE A,et al.Sedimentary records of DDT and HCH in the Pearl River Delta,South China[J].Environ Sci Technol,2002,36(17):3 671-3 677.
[43]SVERKO E D,GREGG T T,REINER E J,et al.Dechlorane Plus and related compounds in the environment:A review[J]. Environ Sci Technol,2011,45(12):5 088-5 098.
[44]XIAN Qi-ming,SIDDIQUE S,LI Ting,et al.Sources and environmental behavior of dechlorane plus:A review[J].Environmental International,2011,37(7):1 273-1 284.
[45]CHAU K W.Persistent organic pollution characterization of sediments in Pearl River estuary[J].Chemosphere,2006,64(9):1 545-1 549.
[46]GUAN Yu-feng,SOJINU O S S,LI Shao-meng,et al.Fate of polybrominated diphenyl ethers in the environment of the Pearl River Estuary,South China[J].Environmental Pollution,2009,157(7):2 166-2 172.
[47]WANG Jie.The source,emission and human exposures of Dechlorane Plus[D].Dalian:Dalian Marine University,2010.王潔.得克隆的源、排放以及人體暴露評(píng)價(jià)研究[D].大連:大連海事大學(xué),2010.
Residues and sources of chlorinated flame retardant Dechlorane Plus in sediment from Hangzhou Bay,China
ZHOU Shan-shan,TANG Qiao-zhi
(Research Center for Environmental Science,College of Biological and Environmental Engineering,Zhejiang University of Technology,Hangzhou 310014,China)
Due to the bans or restrictions of brominated flame retardants all over the world,Dechlorane Plus(DP)has been considered as one of the recommended substitutes.However,as an additive,DP has a tendency to escape from the products and become an environmental contaminant,while limited information relevant to DP pollution in the environment has been reported.Residues and isomeric compositions of DP in four sediment cores from Hangzhou Bay,China were tested in the present study.The results show that the content levels of syn-DP and anti-DP,the two isomers of DP,vary from BDL~17.7 pg/g.dw(mean 2.9±3.2 pg/g.dw)and 1.4~38.1 pg/g.dw(mean 8.0±8.5 pg/g.dw),respectively,which are within the low level globally.Obvious differences exist between the DP levels of core 1 and the other 3 sediment cores,implying an additional contribution of DP pollution from the Jinshan Industrial Zone.However,the contents of DP vary little with depth.Moreover,the average fsynvalues of DP are in the range of 0.25~0.28,suggesting that DP in Hangzhou Bay primarily originates from the long-distance transportation.
Dechlorane Plus;Hangzhou Bay;sediment
X55;TQ314.24+8
A
1001-909X(2014)02-0053-06
10.3969/j.issn.1001-909X.2014.02.007
周珊珊,湯巧智.杭州灣底泥得克隆污染狀況及來(lái)源的初步研究[J].海洋學(xué)研究,2014,32(2):53-58,
10.3969/j.issn.1001-909X.2014.02.007.
ZHOU Shan-shan,TANG Qiao-zhi.Residues and sources of chlorinated flame retardant Dechlorane Plus in sediment from Hangzhou Bay,China[J].Journal of Marine Sciences,2014,32(2):53-58,doi:10.3969/j.issn.1001-909X.2014.02.007.
2014-03-07…………
2014-04-03
國(guó)家自然科學(xué)基金面上項(xiàng)目資助(21377117);浙江省自然科學(xué)基金一般項(xiàng)目資助(Y13B070029)
周珊珊(1982-),女,浙江慈溪市人,副教授,主要從事環(huán)境有機(jī)化學(xué)方面的研究。E-mail:sszhou@zjut.edu.cn