王順民,胡志超,韓永斌,顧振新,*
微波干燥均勻性研究進(jìn)展
王順民1,2,胡志超3,韓永斌2,顧振新2,*
(1.安徽工程大學(xué)生物與化學(xué)工程學(xué)院,安徽 蕪湖 241000;2.南京農(nóng)業(yè)大學(xué)食品科技學(xué)院,江蘇 南京 210095;3.農(nóng)業(yè)部南京農(nóng)業(yè)機(jī)械化研究所,江蘇 南京 210014)
微波干燥技術(shù)及其設(shè)備已在輕化工業(yè)、食品與農(nóng)產(chǎn)品加工業(yè)等行業(yè)得到廣泛應(yīng)用。然而微波加熱不均勻性已成為微波干燥技術(shù)在生產(chǎn)實(shí)際應(yīng)用過(guò)程中的瓶頸。本文就目前國(guó)內(nèi)外關(guān)于微波干燥均勻性的研究現(xiàn)狀進(jìn)行較全面的分析和歸納,并對(duì)這一問(wèn)題進(jìn)行展望。
微波;干燥;均勻性;進(jìn)展
微波干燥具有干燥速度快、熱效率高、清潔生產(chǎn)、易實(shí)現(xiàn)自動(dòng)化控制、能保持食品營(yíng)養(yǎng)成分和兼有殺菌作用等特點(diǎn),故而微波干燥技術(shù)及其設(shè)備已在輕化工、食品與農(nóng)產(chǎn)品加工等行業(yè)得到廣泛應(yīng)用。目前,開(kāi)發(fā)的微波干燥設(shè)備主要有微波干燥、微波真空干燥、微波冷凍干燥、微波噴動(dòng)床干燥及其微波聯(lián)合干燥等相關(guān)設(shè)備。但微波干燥存在一個(gè)很大的缺點(diǎn)——加熱不均勻[1-2],其已大大限制了微波加熱技術(shù)的廣泛應(yīng)用[3-5]。因此,如何改善微波加熱的不均勻性是目前微波急需解決的問(wèn)題。
微波是一種頻率在0.3~300 GHz之間、波長(zhǎng)0.001~1.0 m的電磁波。微波干燥是干燥技術(shù)研究的熱點(diǎn)之一[1,2,5]。干燥是利用物料中具有極性的水分子吸收微波后被加熱蒸發(fā),而達(dá)到干燥[6]。微波干燥起源于20世紀(jì)40年代,60年代后國(guó)外開(kāi)始應(yīng)用于生產(chǎn)實(shí)際。干燥技術(shù)被廣泛應(yīng)用于工業(yè)生產(chǎn)和日常生活,物料中的水分或溶劑經(jīng)干燥而除去,以利于加工、使用和貯運(yùn)等。我國(guó)干燥設(shè)備行業(yè)從形成、發(fā)展到逐步走向成熟經(jīng)歷了20多年,目前已初具規(guī)模。在干燥設(shè)備類型上,主要以熱風(fēng)干燥、真空干燥設(shè)備為主,而微波、遠(yuǎn)紅外和熱泵干燥等技術(shù)的應(yīng)用面逐步擴(kuò)大。其中,微波干燥已用于菠菜[7]、香芹[8]、芒果[9]、獼猴桃[10]、胡蘿卜[11]、南瓜[12]、辣椒[13]、紫薯[14]、蘋果[15]、萵筍[16]、蘑菇[17]和蘆筍[18]等食品和農(nóng)產(chǎn)品脫水。
微波干燥時(shí),在磁控管饋能口位置固定后,往往會(huì)因材料的幾何形狀不同而在其不同區(qū)域產(chǎn)生“熱點(diǎn)”[4-5,19],導(dǎo)致微波加熱具有不均勻性[1-2],過(guò)熱導(dǎo)致食品焦糊和風(fēng)味惡化[6,20],甚至危害健康[21]。微波加熱不均勻性是微波干燥技術(shù)在生產(chǎn)實(shí)際應(yīng)用過(guò)程中的瓶頸[3-5]。改變微波加熱饋能口的設(shè)計(jì),調(diào)控磁控管匹配參數(shù)和控制干燥過(guò)程從而可改善微波干燥的不均勻性。
目前,改善微波干燥不均勻性的措施主要是通過(guò)改變微波腔內(nèi)電磁場(chǎng)的模式來(lái)提高電磁場(chǎng)分布的均勻性以改善微波干燥的不均勻性。微波爐加熱腔中電磁場(chǎng)的模式依賴于微波反饋系統(tǒng)的設(shè)計(jì)。因此微波腔內(nèi)電磁場(chǎng)分布的均勻性可通過(guò)合適的反饋系統(tǒng)的設(shè)計(jì)來(lái)改善[22]。模式的改變可以改善電磁場(chǎng)的分布,故而微波干燥的不均勻性被改善[5,21]。如:改變功率[23-24]、控制功率輸入[25-27]、改變反饋系統(tǒng)[22,28]和模式攪拌[21],尤其是磁控管位置(饋能口)的設(shè)計(jì)均可有效改善微波加熱的不均勻性。
2.1 微波設(shè)備設(shè)計(jì)
2.1.1 諧振腔結(jié)構(gòu)設(shè)計(jì)
微波加熱器諧振腔具有多諧性,其設(shè)計(jì)原則是設(shè)計(jì)的諧振腔應(yīng)具有盡可能多的振蕩模式,使它們疊加后能夠獲得更加均勻的能量分布狀態(tài)[29-30]。對(duì)諧振腔進(jìn)行結(jié)構(gòu)尺寸設(shè)計(jì),可以改變微波諧振模式數(shù)。微波諧振模式數(shù)直接表征了不同頻率的微波類型的數(shù)量,模式數(shù)越大,諧振波型數(shù)量越多,則微波場(chǎng)越均勻。在特定的諧振頻率范圍內(nèi),諧振模式數(shù)可以通過(guò)微波諧振腔的設(shè)計(jì)而達(dá)到最大。只要對(duì)諧振腔的結(jié)構(gòu)尺寸進(jìn)行合理設(shè)計(jì)就可以獲得比較均勻的微波場(chǎng),其成本低,操作簡(jiǎn)便,因此得到了廣泛的應(yīng)用[31]。
2.1.2 物料隨機(jī)運(yùn)動(dòng)裝置設(shè)計(jì)
保持物料“運(yùn)動(dòng)”的方式有兩種,其中常見(jiàn)方式是在微波爐加熱腔中安裝轉(zhuǎn)盤[32-35]。采用自動(dòng)控制的轉(zhuǎn)盤帶著物料在諧振腔內(nèi)轉(zhuǎn)動(dòng)或平動(dòng)。這是目前最簡(jiǎn)單也是應(yīng)用最多的方法,家用微波爐即采用了此設(shè)計(jì)。
保持物料“運(yùn)動(dòng)”的另一種方式是借助氣流讓物料在微波場(chǎng)中真“動(dòng)”起來(lái)[18,36]。物料在腔體內(nèi)循環(huán)“運(yùn)動(dòng)”,使整個(gè)物料更好地吸收微波。該方式則是近年來(lái)開(kāi)始出現(xiàn)并被運(yùn)用的新方法。顏偉強(qiáng)[36]研究了胡蘿卜在微波噴動(dòng)床干燥中的溫度、水分和色澤等變化,結(jié)果表明胡蘿卜在微波噴動(dòng)床干燥中可以實(shí)現(xiàn)均勻干燥。通過(guò)紅外成像溫度分析,胡蘿卜在干燥過(guò)程中溫度均勻分布。噴動(dòng)床干燥可以保證物料充分混和與有序的循環(huán)[37],使物料在微波場(chǎng)中各個(gè)位置的出現(xiàn)機(jī)率相同,從而實(shí)現(xiàn)物料對(duì)微波能的均勻吸收。對(duì)微波場(chǎng)中不同時(shí)間和空間位置的溫度變化的研究結(jié)果表明,微波噴動(dòng)床的微波場(chǎng)溫度分布特點(diǎn)是水平方向溫度均勻而垂直方向的溫度相差10 ℃[36]。Wang Yuchuan等[18]研究證實(shí),蘆筍在脈沖式噴動(dòng)微波干燥場(chǎng)中能獲得好的干燥均勻性。因此,干燥物料在微波場(chǎng)中保持隨機(jī)運(yùn)動(dòng),是微波噴動(dòng)實(shí)現(xiàn)均勻干燥主要原因。
2.1.3 微波饋能口位置設(shè)計(jì)
微波磁控管在諧振腔中會(huì)產(chǎn)生多種電磁模式,每一個(gè)模式其沿坐標(biāo)軸方向上功率變化都具有波函數(shù)的波動(dòng)性,因此,在多模腔內(nèi)功率的空間分布是不均勻的[36,38-39]。而采用波導(dǎo)[40]和增加饋能口的數(shù)量[22,41]、改變饋能口的分布[35,42],均能改善微波加熱的均勻性。增加饋能口數(shù)量和改變饋能口位置[22]可增加電磁場(chǎng)的模式數(shù),以保證爐內(nèi)微波場(chǎng)強(qiáng)分布的均勻性。研究結(jié)果證實(shí)不同位置的3 個(gè)磁控管分別進(jìn)行加熱時(shí),微波加熱均勻性不同且效果均較差。微波加熱均勻性隨物料在加熱腔中空間位置的改變而變化[43]。
加熱器內(nèi)的模式多少與加熱的均勻性是密切相關(guān)的。模式越多電磁場(chǎng)分布結(jié)構(gòu)就越多,被加熱物得到的能量也就越均勻,因此模式越多越好。通過(guò)控制微波功率輸入的方式和大小來(lái)改善微波干燥的均勻性是切實(shí)可行的[6]。增加磁控管的數(shù)目和改變饋能口的位置改變了波導(dǎo)的輸出模式[44],故可以改善微波加熱的均勻性。Jeni等[41]證實(shí)饋能口不對(duì)稱分布比對(duì)稱分布時(shí),加熱更加均勻。另外,微波加熱箱體內(nèi)可能存在多種模式,各種模式能否被激發(fā),還要考慮微波源與箱體耦合口的位置。如耦合口附近的激勵(lì)場(chǎng)和箱體內(nèi)模式場(chǎng)的性質(zhì)相一致時(shí)就能激發(fā),反之,則不能激發(fā)或場(chǎng)強(qiáng)很弱。改變微波源與箱體耦合口的位置,使之能保證更多的模式被激發(fā)。在多磁控管工作下,干燥腔體中總場(chǎng)強(qiáng)分布為各耦合口輻射場(chǎng)強(qiáng)分布的迭加,因此其合成場(chǎng)強(qiáng)分布均勻性得到了提高[45]。顏偉強(qiáng)等[36]研究證實(shí),增加微波饋能口可提高微波干燥的均勻性。而Duan Xu等[46]在微波冷凍真空干燥裝置中采用3個(gè)磁控管將微波輸入諧振腔,從而獲得分布均勻的微波場(chǎng)。
在諧振腔周圍不同方位上增加饋能口數(shù)量,合理設(shè)計(jì)饋能口位置或增加微波能的饋入量雖然可以增加腔體內(nèi)微波場(chǎng)的強(qiáng)度,加快干燥速度。但是微波饋能口位置設(shè)計(jì)如果不合理則會(huì)導(dǎo)致微波能量集中,使物料的邊緣部出現(xiàn)焦糊、硬殼。另外,增加微波能的輸入則需要更多的微波源,其成本必然會(huì)增加[31]。
2.2 微波電磁場(chǎng)模式控制
安裝模式攪拌器[47-50]、采用不同頻率的微波源[51]、優(yōu)化模式[44]和安裝運(yùn)動(dòng)的微波輻射器[52]等方法均能夠直接改變微波電磁場(chǎng)模式,以上措施均已被廣泛用于改善微波加熱的均勻性。通過(guò)增加諧振腔長(zhǎng)度可增加等寬高矩形諧振腔的諧振頻率模式數(shù)目,也可提高微波場(chǎng)均勻性[42]。
2.3 微波干燥過(guò)程控制
控制干燥過(guò)程如調(diào)控加熱時(shí)間[23,53]或在干燥后期降低微波功率可改善微波加熱均勻性。微波加熱后期物料含水量降低,若一直保持原有的功率水平則導(dǎo)致加熱腔內(nèi)功率密度過(guò)高,造成過(guò)大的內(nèi)應(yīng)力而使加熱物料被損壞甚至焦糊[27]。為了避免物料被燒焦,前人研究采用固定功率-開(kāi)關(guān)間歇操作[25]和脈動(dòng)微波加熱[54]的方式控制微波功率輸入以改善微波加熱的均勻性。Sunjka等[55]證實(shí)通過(guò)功率開(kāi)-關(guān)脈沖模式控制越橘的微波加熱,加熱均勻性好,產(chǎn)品復(fù)水性好。Li Zhengfu等[28]采用三步控制功率的間歇干燥方法降低蘋果的干燥速率[56],避免功率過(guò)大導(dǎo)致物料溫度過(guò)高而焦化。
2.4 微波施加方式控制
采用多口饋入、饋入口交錯(cuò)排列和不對(duì)稱布置可改變微波加熱腔中的諧振模式數(shù),同樣能夠改善微波加熱的不均勻性。王海鷗等[57]研究表明,微波源采用多口饋入和饋入口交錯(cuò)排列均能夠改善微波真空冷凍干燥的均勻性。微波源雙反饋設(shè)置要比單反饋設(shè)置具有更好的均勻性[41]。增加饋能口數(shù)目也能夠改善微波加熱的均勻性[33]。研究證實(shí)不同位置的任意兩個(gè)磁控管組合加熱,均勻性要優(yōu)于單個(gè)磁控管的,而3 個(gè)磁控管功率匹配后加熱均勻性明顯優(yōu)于兩個(gè)磁控管的[43]。說(shuō)明饋能口位置影響微波加熱均勻性,饋能口數(shù)量的增加可改善微波加熱的均勻性。多饋能口的磁控管功率匹配是改善微波加熱均勻性的一種有效途徑。
2.5 其他控制方法
微波加熱過(guò)程中物料干燥是否均勻除受微波腔中電磁場(chǎng)(微波場(chǎng))分布的影響外,還受物料本身的性質(zhì)[58]、形狀[59]、大小[4]和介電特性等因素的影響[4,60]。微波加熱時(shí),電場(chǎng)強(qiáng)度的不均勻度會(huì)隨介電常數(shù)增大而增大[61]。而加熱過(guò)程中物料介電常數(shù)的變化卻能實(shí)現(xiàn)微波能量的自動(dòng)平衡分配[62]。在頻率和電場(chǎng)強(qiáng)度一定的條件下,物料干燥過(guò)程中吸收微波能的多少主要取決于物料的介質(zhì)損耗因子。對(duì)干燥過(guò)程中胡蘿卜在不同溫度與含水率下的介電常數(shù)與介電損耗因子的變化的研究結(jié)果表明,胡蘿卜的介電損耗因子隨其溫度升高與含水率降低而降低[36]。在微波干燥過(guò)程中,物料由于自身介電常數(shù)變化存在一種自動(dòng)平衡能量現(xiàn)象,這是微波加熱干燥物料所固有的特點(diǎn),因此微波加熱的自平衡性同樣也能提高微波干燥的均勻性。另外不同形狀的加熱腔,均勻性也不同。但是,微波場(chǎng)的分布隨著物料的放入與干燥過(guò)程的進(jìn)行不斷發(fā)生變化。因此,僅改變微波場(chǎng)的均勻性并不足以改善微波干燥的均勻性。
微波加熱具有不均勻性,由此影響微波干燥技術(shù)在食品及農(nóng)產(chǎn)品加工領(lǐng)域中規(guī)?;瘧?yīng)用。目前微波加熱均勻性的研究中,大都是采用傳統(tǒng)的物料在微波場(chǎng)中旋轉(zhuǎn)或移動(dòng)的方式,這些物料在微波場(chǎng)中二維式的運(yùn)動(dòng)無(wú)法從根本上克服微波加熱的不均勻性問(wèn)題。
目前,已有許多研究者采用計(jì)算機(jī)模擬技術(shù)對(duì)微波干燥進(jìn)行模擬和過(guò)程優(yōu)化,為微波干燥不均勻性的改善尋找新的途徑。該問(wèn)題是否能在多饋能口的基礎(chǔ)上,結(jié)合計(jì)算機(jī)系統(tǒng)建模技術(shù)來(lái)進(jìn)行控制和實(shí)現(xiàn),尚需研究者們繼續(xù)去探索和實(shí)踐。
[1] ZHANG Min, TANG Jian, MUJUMDAR A S, et al. Trends in microwave-related drying of fruits and vegetables[J]. Trends in Food Science & Technology, 2006, 17(10): 524-534.
[2] VADIVAMBAL R, JAYAS D. Non-uniform temperature distribution during microwave heating of food materials: a review[J]. Food and Bioprocess Technology, 2010, 3(2): 161-171.
[3] HUANG Luelue, ZHANG Min. Trends in development of dried vegetable products as snacks[J]. Drying Technology, 2012, 30(5): 448-461.
[4] HOSSAN M R, BYUN D, DUTTA P. Analysis of microwave heating for cylindrical shaped objects[J]. International Journal of Heat and Mass Transfer, 2010, 53(23/24): 5129-5138.
[5] LI Zhanyong, WANG Ruifang, KUDRA T. Uniformity issue in microwave drying[J]. Drying Technology, 2011, 29(6): 652-660.
[6] NIJHUIS H H, TORRINGA H M, MURESAN S, et al. Approaches to improving the quality of dried fruit and vegetables[J]. Trends in Food Science & Technology, 1998, 9(1): 13-20.
[7] DADALI G, DEMIRHAN E, OZBEK B. Effect of drying conditions on rehydration kinetics of microwave dried spinach[J]. Food and Bioproducts Processing, 2008, 86(C4): 235-241.
[8] SOYSAL Y. Microwave drying characteristics of parsley[J]. Biosystems Engineering, 2004, 89(2): 167-173.
[9] VILLALPANDO-GUZMAN J, HERRERA-LOPEZ E J, AMAYADELGADO L, et al. Effect of complementary microwave drying on three shapes of mango slices[J]. Revista Mexicana de Ingenieria Quimica, 2011, 10(2): 281-290.
[10] MASKAN M. Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying[J]. Journal of Food Engineering, 2001, 48(2): 177-182.
[11] WANG Jun, XIONG Yongsen. Drying characteristics and drying quality of carrot using a two-stage microwave process[J]. Journal of Food Engineering, 2005, 68(4): 505-511.
[12] ALIBAS I. Microwave, air and combined microwave-air-drying parameters of pumpkin slices[J]. LWT-Food Science and Technology, 2007, 40(8): 1445-1451.
[13] ARSLAN D, OZCAN M M. Dehydration of red bell-pepper (Capsicum annuum L.): Change in drying behavior, colour and antioxidant content[J]. Food and Bioproducts Processing, 2011, 89(C4): 504-513.
[14] LIU Peng, ZHANG Min, MUJUMDAR A S. Comparison of three microwave-assisted drying methods on the physiochemical, nutritional and sensory qualities of re-structured purple-fleshed sweet potato granules[J]. International Journal of Food Science and Technology, 2012, 47(1): 141-147.
[15] HUANG Luelue, ZHANG Min, WANG Liping, et al. Influence of combination drying methods on composition, texture, aroma and microstructure of apple slices[J]. LWT-Food Science and Technology, 2012, 47(1): 183-188.
[16] FENG Yufei, ZHANG Min, JIANG Hao, et al. Microwave-assisted spouted bed drying of lettuce cubes[J]. Drying Technology, 2012, 30(13): 1482-1490.
[17] MOTEVALI A, MINAEI S, KHOSHTAGHAZA M H, et al. Comparison of energy consumption and specific energy requirements of different methods for drying mushroom slices[J]. Energy, 2011, 36(11): 6433-6441.
[18] WANG Yuchuan, ZHANG Min, MUJUMDAR A S, et al. Study of drying uniformity in pulsed spouted microwave-vacuum drying of stem lettuce slices with regard to product quality[J]. Drying Technology, 2013, 31(1): 91-101.
[19] KNOERZER K, REGIER M, SCHUBERT H. A computational model for calculating temperature distributions in microwave food applications[J]. Innovative Food Science & Emerging Technologies, 2008, 9(3): 374-384.
[20] CLARK D E, SUTTON W H. Microwave processing of materials[J]. Annual Review of Materials Science, 1996, 26: 299-331.
[21] SEBERA V, NASSWETTROVA A, NIKL K. Finite element analysis of mode stirrer impact on electric field uniformity in a microwave applicator[J]. Drying Technology, 2012, 30(13): 1388-1396.
[22] DOMINGUEZ-TORTAJADA E, PLAZA-GONZALEZ P, DIAZMORCILLO A, et al. Optimisation of electric field uniformity in microwave heating systems by means of multi-feeding and genetic algorithms[J]. International Journal of Materials and Product Technology, 2007, 29(1): 149-162.
[23] CORDES B, YAKOVLEV V. Computational tools for synthesis of a microwave heating process resulting in the uniform temperature field[C]//11thInternational Conference on Microwave and High Frequency Heating. Germany, Bayreuth, 2007: 71-74.
[24] WPPLING-RAAHOLT B, RISMAN P, OHLSSON T. Microwave heating of ready meals-FDTD simulation tools for improving the heating uniformity[C]//8thInternational Conference on Microwave and High Frequency Heating, Germany, Bayreuth, 2001: 243-255.
[25] LI Zhengfu, RAGHAVAN G S V, ORSAT V. Temperature and power control in microwave drying[J]. Journal of Food Engineering, 2010, 97(4): 478-483.
[26] CHENG W M, RAGHAVAN G S V, NGADI M, et al. Microwave power control strategies on the drying process I. Development and evaluation of new microwave drying system[J]. Journal of Food Engineering, 2006, 76(2): 188-194.
[27] LI Zhengfu, RAGHAVAN G S V, ORSAT V. Optimal power control strategies in microwave drying[J]. Journal of Food Engineering, 2010, 99(3): 263-268.
[28] ANFINOGENTOV V, GARAYEV T, MOROZOV G. Optimization of dielectric microwave heating by moving radiator[C]//Proceedings of the 12thInternational Conference Microwave & Telecommunication Technology Conference Proceedings. Ukraine: Crimico, 2002, Septemper, 9-13.
[29] SCHUBERT H, REGIER M. The microwave processing of foods[M]. Cambridge: Woodhead Publishing in Food Science and Technology, 2005.
[30] 陳家權(quán), 廖子夙, 穆星宇. 箱形多模式微波加熱器諧振腔的設(shè)計(jì)及電磁場(chǎng)分布研究[J]. 機(jī)械設(shè)計(jì)與制造, 2009(10): 21-23.
[31] 談浩. 微波場(chǎng)均勻性設(shè)計(jì)及干燥過(guò)程數(shù)值模擬[D]. 昆明: 昆明理工大學(xué), 2009.
[32] GEEDIPALLI S S R, RAKESH V, DATTA A K. Modeling the heating uniformity contributed by a rotating turntable in microwave ovens[J]. Journal of Food Engineering, 2007, 82(3): 359-368.
[33] WANG Ruifang, LI Zhanyong, SU W G, et al. Comparison of microwave drying of soybean in static and rotary conditions[J]. International Journal of Food Engineering, 2010, 6(2): doi: 10.2202/1556-3758.1836.
[34] 蘇偉光, 王瑞芳, 曹斌, 等. 靜置及水平轉(zhuǎn)動(dòng)條件下黃豆微波干燥實(shí)驗(yàn)研究[J]. 干燥技術(shù)與設(shè)備, 2007, 5(5): 236-240.
[35] 王瑞芳, 李占勇. 水平轉(zhuǎn)盤與轉(zhuǎn)鼓微波干燥均勻性的實(shí)驗(yàn)研究[J].天津科技大學(xué)學(xué)報(bào), 2009, 24(4): 58-61.
[36] 顏偉強(qiáng). 顆粒狀切割塊莖類蔬菜微波噴動(dòng)均勻干燥特性及模型研究[D]. 無(wú)錫: 江南大學(xué), 2011.
[37] 徐圣言. 噴動(dòng)床干燥機(jī)物料運(yùn)動(dòng)規(guī)律的研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào), 1996, 12(4): 70-74.
[38] TAO Zhi, WU Hongwei, CHEN Guohua, et al. Numerical simulation of conjugate heat and mass transfer process within cylindrical porous media with cylindrical dielectric cores in microwave freeze-drying[J]. International Journal of Heat and Mass Transfer, 2005, 48(3/4): 561-572.
[39] WEN Jialu, ISLAM M R, MUJUMDAR A S. A simulation study on convection and microwave drying of different food products[J]. Drying Technology, 2003, 21(8): 1549-1574.
[40] COHEN J S, YANG T C S. Progress in food dehydration[J]. Trends in Food Science & Technology, 1995, 6(1): 20-25.
[41] JENI K, YAPA M, RATTANADECHO P. Design and analysis of the commercialized drier processing using a combined unsymmetrical double-feed microwave and vacuum system (case study: tea leaves) [J]. Chemical Engineering and Processing, 2010, 49(4): 389-395.
[42] 安鳳平, 黃建立, 宋洪波, 等. 微波真空干燥機(jī)干燥系統(tǒng)的設(shè)計(jì)及干燥均勻性的改善[J]. 福建農(nóng)林大學(xué)學(xué)報(bào): 自然科學(xué)版, 2011, 40(1): 85-90.
[43] WANG Shunmin, HU Zhichao, HAN Yongbin, et al. Effects of magnetron arrangement and power combination of microwave on drying uniformity of carrot[J]. Drying Technology, 2013, 31(11): 1206-1211.
[44] DOMINGUEZ-TORTAJADA E, PLAZA-GONZALEZ P, DIAZMORCILLO A, et al. Optimisation of electric field uniformity in microwave heating systems by means of multi-feeding and genetic algorithms[J]. International Journal of Materials & Product Technology, 2007, 29(1/4): 149-162.
[45] 王瑞芳, 李占勇. 基于加熱均勻性的微波干燥研究進(jìn)展[J]. 化工進(jìn)展, 2009, 28(10): 1707-1711.
[46] DUAN Xu, ZHANG Min, LI Xinlin, et al. Microwave freeze drying of sea cucumber coated with nanoscale silver[J]. Drying Technology, 2008, 26(4): 413-419.
[47] PLAZA-GONZ LEZ P, MONZ-CABRERA J, CATAL-CIVERA J M, et al. New approach for the prediction of the electric field distribution in multimode microwave-heating applicators with mode stirrers[J]. IEEE Transactions on Magnetics, 2004, 40(3): 1672-1678.
[48] PLAZA-GONZ LEZ P, MONZ-CABRERA J, CATAL-CIVERA J M, et al. Effect of mode-stirrer configurations on dielectric heating performance in multimode microwave applicators[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(5): 1699-1706.
[49] GEORGE J, BERGMAN R. Selective re-meshing: a new approach to include mode stirring effects in the steady state FDTD simulation of microwave heating cavities[J]. Microwave and Optical Technology Letters, 2006, 48(6): 1179-1182.
[50] KELEN A, RESS S, NAGY T, et al. “3D layered thermography”method to map the temperature distribution of a free flowing bulk in case of microwave drying[J]. International Journal of Heat and Mass Transfer, 2006, 49(5/6): 1015-1021.
[51] BOWS J. Variable frequency microwave heating of food[J]. Journal of Microwave Power and Electromagnetic Energy, 1999, 34(4): 227-238.
[52] ANFINOGENTOV V I, GARAYEV T K, MOROZOV G A, et al. Optimization of dielectric microwave heating by moving radiator[M]. Sevastopol: Weber Publishing Co., 2002.
[53] WAPPLING-RAAHOLT B, RISMAN P O, OHLSSON T. Microwave heating of ready meals - FDTD simulation tools for improving the heating uniformity[M]. Berlin: Springer-Verlag Berlin, 2006.
[54] YANG H W, GUNASEKARAN S. Comparison of temperature distribution in model food cylinders based on Maxwell’s equations and Lambert's law during pulsed microwave heating [J]. Journal of Food Engineering, 2004, 64(4): 445-453.
[55] SUNJKA P S, ORSAT V, RAGHAVAN G S V. Microwave-vacuum drying of cranberries (Vacccinium macrocarpon)[J]. American Journal of Food Technology, 2008, 3(2): 100-108.
[56] LI Zhengfu, RAGHAVAN G S V, WANG Ning, et al. Drying rate control in the middle stage of microwave drying[J]. Journal of Food Engineering, 2011, 104(2): 234-238.
[57] 王海鷗, 胡志超, 屠康, 等. 微波施加方式對(duì)微波冷凍干燥均勻性的影響試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2011,42(5): 131-135; 170.
[58] SONG Chisung, NAM J H, KIM C J, et al. Temperature distribution in a vial during freeze-drying of skim milk[J]. Journal of Food Engineering, 2005, 67(4): 467-475.
[59] ARASZKIEWICZ M, KOZIOL A, LUPINSKA A, et al. Temperature distribution in a single sphere dried with microwaves and hot air[J]. Drying Technology, 2006, 24(11): 1381-1386.
[60] ROMANO V R, MARRA F, TAMMARO U. Modelling of microwave heating of foodstuff: study on the influence of sample dimensions with a FEM approach[J]. Journal of Food Engineering, 2005, 71(3): 233-241.
[61] 宋燎原. 微波加熱系統(tǒng)設(shè)計(jì)及諧振腔內(nèi)電磁場(chǎng)分布研究[D]. 北京:中國(guó)石油大學(xué), 2007.
[62] 李素云, 賀藝, 董鐵有, 等. 微波真空冷凍干燥中的典型問(wèn)題研究[J].河南科技大學(xué)學(xué)報(bào): 農(nóng)學(xué)版, 2004, 24(3): 68-71.
A Review of the Application of Microwave Drying: Improvement of Heating Uniformity
WANG Shun-min1,2, HU Zhi-chao3, HAN Yong-bin2, GU Zhen-xin2,*
(1. College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, China; 2. College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; 3. Nanjing Research Institute of Agricultural Mechanization, Ministry of Agriculture, Nanjing 210014, China)
Microwave drying technology and related equipment have been widely applied in light industries such as food and agricultural product processing. However, the non-uniformity of microwave heating has become one of the bottlenecks for the application of microwave drying technology. This paper provides a comprehensive review of the current status of studies on microwave drying uniformity in China and abroad. Furthermore, future research directions on this topic are discussed.
microwave; drying; uniformity; application
TQ051.5
A
1002-6630(2014)17-0297-04
10.7506/spkx1002-6630-201417056
2013-09-12
國(guó)家高技術(shù)研究發(fā)展計(jì)劃(863計(jì)劃)項(xiàng)目(2011AA100802)
王順民(1975—),男,副教授,博士,研究方向?yàn)檗r(nóng)產(chǎn)品加工與利用。E-mail:Wangshunmin@126.com
*通信作者:顧振新(1956—),男,教授,博士,研究方向?yàn)檗r(nóng)產(chǎn)品貯藏加工及原料品質(zhì)。E-mail:guzx@njau.edu.cn