韓 松,李 筠,李俊發(fā)
(首都醫(yī)科大學(xué) 神經(jīng)生物學(xué)系 北京市神經(jīng)再生修復(fù)研究重點(diǎn)實(shí)驗(yàn)室 北京腦重大疾病研究院, 北京 100069)
短篇綜述
青光眼發(fā)病機(jī)制研究揭示了神經(jīng)系統(tǒng)疾病認(rèn)識(shí)和診治中的整體觀念
韓 松,李 筠,李俊發(fā)*
(首都醫(yī)科大學(xué) 神經(jīng)生物學(xué)系 北京市神經(jīng)再生修復(fù)研究重點(diǎn)實(shí)驗(yàn)室 北京腦重大疾病研究院, 北京 100069)
青光眼一直被認(rèn)為眼睛局部病變。最新研究表明,跨突觸變性和跨感覺(jué)重塑同時(shí)在青光眼腦損傷中起作用,并提出了“視神經(jīng)-后段視路-視神經(jīng)”損傷環(huán)路假說(shuō)。青光眼神經(jīng)損傷不局限于視網(wǎng)膜,同時(shí)累及整個(gè)視路。該成果揭示的神經(jīng)系統(tǒng)疾病認(rèn)識(shí)和診治中的整體觀念,為從全新角度認(rèn)識(shí)疾病,開(kāi)發(fā)有效的臨床診治方法具有重要意義。
視神經(jīng)損傷;青光眼;跨突觸變性;跨感覺(jué)重塑;神經(jīng)系統(tǒng)疾病整體觀
神經(jīng)系統(tǒng)由中樞神經(jīng)系統(tǒng)和外周神經(jīng)系統(tǒng)兩部分構(gòu)成。中樞神經(jīng)系統(tǒng)包括腦和脊髓,外周神經(jīng)系統(tǒng)則由腦和脊髓之外的神經(jīng)和神經(jīng)細(xì)胞組成。各級(jí)神經(jīng)元之間通過(guò)突觸相互聯(lián)系并和周圍膠質(zhì)細(xì)胞進(jìn)行著密切的信息和物質(zhì)傳遞,組成一個(gè)復(fù)雜的神經(jīng)網(wǎng)絡(luò),對(duì)于維持生命的活動(dòng)起到重要作用。腦、脊髓、周圍神經(jīng)損傷及修復(fù)一直是神經(jīng)系統(tǒng)疾病研究的重要課題。目前研究發(fā)現(xiàn),無(wú)論周圍神經(jīng)損傷或是中樞的病變,都并非單純局限于局部,而是可以通過(guò)突觸聯(lián)系引起原發(fā)病灶以外, 遠(yuǎn)區(qū)域的病理生理改變,即跨突觸變性(trans-synaptic degeneration)[1- 2];同時(shí),某個(gè)感覺(jué)系統(tǒng)活性的改變,亦可以引起其他感覺(jué)系統(tǒng)皮質(zhì)和皮質(zhì)下結(jié)構(gòu)及神經(jīng)纖維聯(lián)系的重塑,即跨感覺(jué)重塑(cross-modal plasticity)[3- 4],從而建立了神經(jīng)系統(tǒng)疾病認(rèn)識(shí)的整體觀念。這一觀念對(duì)于以全新的角度深入和正確認(rèn)識(shí)神經(jīng)系統(tǒng)疾病,以及開(kāi)發(fā)新的有效的臨床治療方法起到至關(guān)重要的影響。本綜述將以青光眼發(fā)病機(jī)制研究為例,揭示神經(jīng)系統(tǒng)疾病認(rèn)識(shí)和診治中的整體觀念。
視神經(jīng)由特殊軀體感覺(jué)纖維組成,傳導(dǎo)視覺(jué)沖動(dòng),是中樞神經(jīng)系統(tǒng)的一部分,也是唯一可以在體觀察到的中樞神經(jīng),因而成為研究中樞神經(jīng)系統(tǒng)疾病的重要模型。視網(wǎng)膜神經(jīng)節(jié)細(xì)胞的軸突在視乳頭處會(huì)聚,穿過(guò)鞏膜篩板構(gòu)成視神經(jīng)。兩側(cè)視神經(jīng)在眶內(nèi)行向后內(nèi)穿視神經(jīng)管入顱窩,在蝶鞍上方匯合形成視交叉,經(jīng)視束到達(dá)外側(cè)膝狀體(lateral geniculate nucleus, LGN),換神經(jīng)元后進(jìn)入視放射,止于枕葉視皮質(zhì)。視神經(jīng)是胚胎發(fā)生時(shí),間腦向外突出形成視器過(guò)程中的一部分,故其外面包有由3層腦膜延續(xù)而來(lái)的3層被膜,腦蛛網(wǎng)膜下腔也隨之延續(xù)到視神經(jīng)周圍。視神經(jīng)損傷的修復(fù)及神經(jīng)再生是目前神經(jīng)科學(xué)領(lǐng)域面臨的一個(gè)重大課題,其研究結(jié)果將可能為其他中樞神經(jīng)損傷性疾病的認(rèn)識(shí)帶來(lái)新的思路。
青光眼是視神經(jīng)損傷疾病的典型代表之一,其主要病理特征是進(jìn)行性、特異性的視網(wǎng)膜神經(jīng)節(jié)細(xì)胞丟失及由此引起的視野缺損。病理性的眼壓升高對(duì)視神經(jīng)的機(jī)械性壓迫學(xué)說(shuō),以及視網(wǎng)膜和視神經(jīng)血流灌注異常的缺血學(xué)說(shuō),在青光眼的發(fā)病機(jī)制中占據(jù)重要地位。一直以來(lái),青光眼都被單純的看作是眼睛局部的病變。但隨著眼科學(xué)、神經(jīng)科學(xué)和影像學(xué)的發(fā)展,越來(lái)越多的證據(jù)顯示,青光眼的神經(jīng)損害不僅局限于視網(wǎng)膜,同時(shí)還累及包括視神經(jīng)、視交叉、視束、外側(cè)膝狀體和視放射,以及枕葉視皮質(zhì)在內(nèi)的整個(gè)視路。這一理念是對(duì)經(jīng)典認(rèn)知的挑戰(zhàn)和革新。
在嚙齒類和靈長(zhǎng)類青光眼動(dòng)物模型中,持續(xù)的高眼壓不僅可以導(dǎo)致視網(wǎng)膜神經(jīng)節(jié)細(xì)胞的丟失,還可以引起接受損傷眼纖維投射的LGN相應(yīng)層面的神經(jīng)元發(fā)生萎縮和丟失,神經(jīng)元的樹(shù)突縮短、變粗和結(jié)構(gòu)紊亂,以及樹(shù)突的復(fù)雜性和樹(shù)突野的范圍顯著降低[5- 8]。在相同區(qū)域還觀察到彌漫的膠質(zhì)細(xì)胞增生反應(yīng)[9- 10]。接受損傷眼視覺(jué)信息輸入的LGN層面和視皮質(zhì)眼優(yōu)勢(shì)柱細(xì)胞色素氧化酶活性、膽堿水平[11- 12],以及其他代謝物質(zhì)的含量下降[13], 與突觸可塑性相關(guān)的蛋白,如生長(zhǎng)錐相關(guān)蛋白43(GAP43)的表達(dá)和分布發(fā)生明顯改變[14]。
青光眼患者大腦標(biāo)本的病理學(xué)研究發(fā)現(xiàn),其LGN和視皮質(zhì)的厚度較正常人明顯變薄,神經(jīng)元橫截面積變小[15]。磁共振(MRI)在體研究結(jié)果顯示,青光眼患者雙側(cè)LGN的高度較正常對(duì)照顯著降低,體積明顯減小[16]。利用彌散張量磁共振成像(diffusion tensor-MRI, DT-MRI)技術(shù)發(fā)現(xiàn),青光眼患者的視神經(jīng)、視束和視放射的平均彌散度(mean diffusivity, MD)較正常對(duì)照顯著增高,而分?jǐn)?shù)各向異性(fractional anisotropy, FA)則明顯降低,這些改變與青光眼的疾病分期、視網(wǎng)膜神經(jīng)纖維層厚度、視盤結(jié)構(gòu)參數(shù)之間存在線性相關(guān)關(guān)系,提示青光眼患者視神經(jīng)、視束以及視放射內(nèi)神經(jīng)元軸突的正常結(jié)構(gòu)及走行發(fā)生與疾病嚴(yán)重程度相一致的破壞[17- 21]。
國(guó)內(nèi)學(xué)者在青光眼視覺(jué)中樞損傷方面進(jìn)行了更為深入的研究。孫興懷教授等發(fā)現(xiàn),大鼠慢性高眼壓模型LGN神經(jīng)元發(fā)生退行性改變,而在恒河猴青光眼模型中也觀察到LGN膠質(zhì)細(xì)胞的激活,以及膠質(zhì)源性神經(jīng)營(yíng)養(yǎng)因子表達(dá)增加[8]。張虹教授等通過(guò)DTI的研究發(fā)現(xiàn),青光眼患者的視束和視放射神經(jīng)纖維發(fā)生了退行性改變[18]。王寧利教授的研究團(tuán)隊(duì)對(duì)青光眼中樞損傷進(jìn)行的系列研究結(jié)果顯示,大鼠單側(cè)視神經(jīng)損傷后第1天,即可觀察到對(duì)側(cè)外側(cè)膝狀體神經(jīng)元表達(dá)熱休克蛋白70明顯增加,并于損傷后第3天達(dá)峰值,提示LGN神經(jīng)元可能在視神經(jīng)損傷中起神經(jīng)保護(hù)作用[22]。另一方面,急性、一過(guò)性的眼壓升高,在損傷早期即引起大鼠視網(wǎng)膜神經(jīng)節(jié)細(xì)胞的丟失和膠質(zhì)細(xì)胞的增生性反應(yīng),同時(shí)導(dǎo)致與之有突觸聯(lián)系的上丘和外側(cè)膝狀體神經(jīng)元萎縮和膠質(zhì)細(xì)胞激活,即視網(wǎng)膜與中樞神經(jīng)元的損傷具有時(shí)間上的一致性[4]。利用功能磁共振(functional magnetic resonance imaging, fMRI)對(duì)臨床青光眼患者進(jìn)行觀察發(fā)現(xiàn),與中心殘留“正?!币曇跋鄬?duì)應(yīng)的視皮質(zhì)神經(jīng)元,也對(duì)視覺(jué)刺激的反應(yīng)下降,提示青光眼患者視皮質(zhì)神經(jīng)元的損傷早于可檢測(cè)到的視野改變[23]。這些研究結(jié)果不僅為“視神經(jīng)損傷可以導(dǎo)致廣泛的視路神經(jīng)元及膠質(zhì)細(xì)胞改變”這一理論提供了堅(jiān)實(shí)的證據(jù),同時(shí)更著重于突出視網(wǎng)膜后視路改變的早期性,進(jìn)而推斷視覺(jué)中樞的反應(yīng)可能不僅作為視神經(jīng)損傷的繼發(fā)性改變,更可能主動(dòng)參與了疾病的發(fā)生發(fā)展過(guò)程,從而建立了一個(gè)“視神經(jīng)-后段視路-視神經(jīng)”的損傷環(huán)路假說(shuō)。在進(jìn)一步的研究中,王寧利教授等人利用MRI對(duì)青光眼患者和正常人大腦不同區(qū)域的灰質(zhì)體積進(jìn)行了對(duì)比分析,發(fā)現(xiàn)青光眼患者雙側(cè)舌回、距狀回、中央后回、額上回、額下回、右側(cè)楔葉,右側(cè)枕下回,左側(cè)中央旁小葉和右側(cè)緣上回的灰質(zhì)體積較正常對(duì)照組受試者顯著減小,而雙側(cè)顳中回、頂下回和角回,以及左側(cè)頂上回、楔前葉和枕中回的灰質(zhì)體積則顯著大于正常對(duì)照[24]。這些結(jié)果提示,青光眼患者視覺(jué)中樞存在著神經(jīng)退行性改變,同時(shí)引起了廣泛大腦皮質(zhì)結(jié)構(gòu)和功能的重塑??缤挥|變性和跨感覺(jué)重塑可能同時(shí)在青光眼的大腦損傷中起作用。
除了對(duì)神經(jīng)元和膠質(zhì)細(xì)胞反應(yīng)的研究,基于中樞神經(jīng)系統(tǒng)血管-神經(jīng)偶聯(lián)這一特殊結(jié)構(gòu),王寧利教授等人首次利用經(jīng)顱多普勒的方法,對(duì)供應(yīng)枕葉視皮質(zhì)的主要血管-大腦后動(dòng)脈(posterior cerebral artery, PCA)的血管反應(yīng)性進(jìn)行了觀察,結(jié)果顯示,靜息狀態(tài)下青光眼患者雙側(cè)PCA的血流阻力明顯高于正常對(duì)照。在青光眼患者中央殘留“正?!币曇胺秶鷥?nèi),給予視覺(jué)刺激后其雙側(cè)PCA血流增加的幅度明顯低于正常對(duì)照。而利用2 Hz的深快呼吸刺激增加血流阻力后,青光眼患者雙側(cè)PCA血流降低的幅度明顯低于對(duì)照組[25]。研究成果首次揭示了青光眼患者供應(yīng)后段視路的血管的血流動(dòng)力學(xué)和血管反應(yīng)性存在異常,這種異常既可能是繼發(fā)于后段視路神經(jīng)元和膠質(zhì)細(xì)胞的改變,同時(shí)也可能是患者全身血管自身調(diào)節(jié)功能下降的局部表現(xiàn)。由于TCD檢查的無(wú)創(chuàng)性,同時(shí)PCA血流動(dòng)力學(xué)的改變?cè)缬谇喙庋垡曇叭睋p,因此有可能將其作為青光眼患者視覺(jué)中樞損傷的敏感指標(biāo)應(yīng)用于臨床。大腦血流灌注異常為以青光眼為代表的視神經(jīng)損傷疾病的中樞改變研究,再次尋找到了新的思路和方向,具有重要的意義。
以青光眼為代表的視神經(jīng)損傷疾病,為認(rèn)識(shí)神經(jīng)系統(tǒng)疾病的大腦改變,提供了比較理想的模型。然而,值得注意的是,跨突觸變性并非局限于視覺(jué)系統(tǒng)。如Anders JJ等(1990年)報(bào)道,成年大鼠嗅神經(jīng)切斷,可以在損傷后第1天即引起梨狀視皮質(zhì)膠質(zhì)細(xì)胞的增生;張文捷和周躍于2001年發(fā)現(xiàn),背根和坐骨神經(jīng)損傷,同樣可以引起脊髓背角膠質(zhì)纖維酸性蛋白(glial fibrillary acidic protein,GFAP)表達(dá)的顯著增加。由此可見(jiàn),因跨突觸變性等機(jī)制導(dǎo)致的廣泛神經(jīng)系統(tǒng)損傷,在神經(jīng)系統(tǒng)疾病的發(fā)生和發(fā)展過(guò)程中起到普遍性作用。秉持整體觀念,對(duì)于認(rèn)識(shí)和了解神經(jīng)系統(tǒng)疾病,開(kāi)發(fā)新的臨床治療方法意義深遠(yuǎn)。
[1] Gabilondo I, Martinez-Lapiscina EH, Martinez-Heras E,etal. Trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis [J]. Ann Neurol, 2014, 75: 98- 107.
[2] Jindahra P, Petrie A, Plant GT. The time course of retrograde trans-synaptic degeneration following occipital lobe damage in humans [J]. Brain, 2012, 135: 534- 541.
[3] Bavelier D, Neville HJ. Cross-modal plasticity: where and how? [J]. Nature Rev, 2002, 3: 443- 452.
[4] Newton JR, Sikes RW, Skavenski AA. Cross-modal plasticity after monocular enucleation of the adult rabbit [J]. Exp Brain Res, 2002, 144: 423- 429.
[5] Yucel Y, Gupta N. Glaucoma of the brain: a disease model for the study of transsynaptic neural degeneration [J]. Prog Brain Res, 2008, 173: 465- 478.
[6] Yucel YH, Gupta N, Zhang Q,etal. Memantine protects neurons from shrinkage in the lateral geniculate nucleus in experimental glaucoma [J]. Arch Ophthalmol, 2006, 124: 217- 225.
[7] Yucel YH, Zhang Q, Weinreb RN,etal. Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma [J]. Prog Retinal Eye Res, 2003, 22: 465- 481.
[8] 孫剛, 王竫華, 騪雪靜, 王大博. 慢性高眼壓大鼠外側(cè)膝狀體神經(jīng)元的損傷 [J]. 眼科新進(jìn)展, 2005, 6: 522- 524.
[9] Sasaoka M, Nakamura K, Shimazawa M,etal. Changes in visual fields and lateral geniculate nucleus in monkey laser-induced high intraocular pressure model [J]. Exp Eye Res, 2008, 86: 770- 782.
[10] Zhang S, Wang H, Lu Q,etal. Detection of early neuron degeneration and accompanying glial responses in the visual pathway in a rat model of acute intraocular hypertension [J]. Brain Res, 2009, 1303: 131- 143.
[11] Crawford ML, Harwerth RS, Smith EL,etal. Experimental glaucoma in primates: changes in cytochrome oxidase blobs in V1 cortex [J]. Invest Ophthalmol & Visual Science, 2001, 42: 358- 364.
[12] Vickers JC, Hof PR, Schumer RA,etal. Magnocellular and parvocellular visual pathways are both affected in a macaque monkey model of glaucoma [J]. Aust N Z J Ophthalmol, 1997, 25: 239- 243.
[13] Chan KC, So KF, Wu EX. Proton magnetic resonance spectroscopy revealed choline reduction in the visual cortex in an experimental model of chronic glaucoma [J]. Exp Eye Res, 2009, 88: 65- 70.
[14] Lam DY, Kaufman PL, Gabelt BT,etal. Neurochemical correlates of cortical plasticity after unilateral elevated intraocular pressure in a primate model of glaucoma [J]. Invest Ophthalmol Vis Sci, 2003, 44: 2573- 2581.
[15] Gupta N, Ang LC, Noel de Tilly L,etal. Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex [J]. Br J Ophthalmol, 2006, 90: 674- 678.
[16] Dai H, Mu KT, Qi JP,etal. Assessment of lateral geniculate nucleus atrophy with 3T MR imaging and correlation with clinical stage of glaucoma [J]. Am J Neuroradiol, 2011, 32: 1347- 1353.
[17] Garaci FG, Bolacchi F, Cerulli A,etal. Optic nerve and optic radiation neurodegeneration in patients with glaucoma:invivoanalysis with 3-T diffusion-tensor MR imaging [J]. Radiology, 2009, 252: 496- 501.
[18] Chen Z, Lin F, Wang J,etal. Diffusion tensor magnetic resonance imaging reveals visual pathway damage that correlates with clinical severity in glaucoma [J]. Clini Exp Ophthalmol, 2013, 41: 43- 49.
[19] El-Rafei A, Engelhorn T, W?rntges S,etal. Glaucoma classification based on visual pathway analysis using diffusion tensor imaging [J]. Magn Reson Imaging, 2013, 31: 1081- 1091.
[20] Murai H, Suzuki Y, Kiyosawa M,etal. Positive correlation between the degree of visual field defect and optic radiation damage in glaucoma patients [J]. Japanese J Ophthalmol, 2013, 57: 257- 262.
[21] Dai H, Yin D, Hu C,etal. Whole-brain voxel-based analysis of diffusion tensor MRI parameters in patients with primary open angle glaucoma and correlation with clinical glaucoma stage [J]. Neuroradiology, 2013, 55: 233- 243.
[22] Zhao L, Wang N, Jiang L,etal. Unilateral optic nerve transection up-regulate Hsp70 protein expression in lateral geniculate nucleus of rats [J]. Neurosci Lett, 2006, 404: 44- 49.
[23] Qing G, Zhang S, Wang B,etal. Functional MRI signal changes in primary visual cortex corresponding to the central normal visual field of patients with primary open-angle glaucoma [J]. Invest Ophthalmol Vis Sci, 2010, 51: 4627- 4634.
[24] Chen WW, Wang N, Cai S,etal. Structural brain abnormalities in patients with primary open-angle glaucoma: a study with 3T MR imaging [J]. Invest Ophthalmol Vis Sci, 2013, 54: 545- 554.
[25] Zhang S, Xie Y, Yang J,etal. Reduced Cerebrovascular Reactivity in Posterior Cerebral Arteries in Patients with Primary Open-Angle Glaucoma [J]. Ophthalmol, 2013, 120: 2501- 2507.
The pathogenesis of glaucoma providesa holistic view on diagnosis and treatment in diseases of the nervous system
HAN Song, LI Yun, LI Jun-fa*
(Dept. of Neurobiology, Beijing Key Laboratory for Neural Regeneration and Repairing, Beijing Institute forBrain Disorders, Capital Medical University, Beijing 100069, China)
Glaucoma was believed as local lesions of eyes. Recent studies demonstrated that the trans-synaptic degeneration and cross-modal plasticity were involved in glaucoma-induced pathophysiological changes of brain, and the hypothesis of “optic nerve-posterior visual pathway-optic nerve” injury circuit was proposed. Glaucoma-induced neural injuries was not limited to the eyes, but also caused pathophysiological changes to the whole visual pathways. The achievement provides a new and holistic view on diagnosis and treatment in diseases of the nervous system, and this new concept gives us a brand new horizon when looking at diseases, presenting inspiration for development of diagnosis and treatment methods.
optic nerve injury; glaucoma; trans-synaptic degeneration; cross-modal plasticity; holistic view on diseases of the nervous system
2014- 05- 26
2014- 06- 16
*通信作者(correspondingauthor):junfali@cmu.edu.cn
1001-6325(2014)08-1113-04
R 339.5
A