夏金嬋 張小莉
摘要
植物的抗鹽反應是一個復雜的過程,受許多基因的調控,外界的高Na+通過IP3誘導胞內Ca2+的升高,SOS3接收Ca2+信號,激活SOS2的激酶活性,SOS2通過調節(jié)位于質膜和液泡膜上的Na+/H+反向轉運體把Na+運到體外或液泡中,ABA、ROS、AtHK1、MAPK級聯(lián)反應和LEA也參與鹽脅迫造成的滲透脅迫和損傷的反應過程,但是要通過生物學手段利用鹽信號傳遞過程中一些成分提高作物的抗鹽能力,還需要對植物鹽脅迫相關信號轉導機制進行更加深入的研究。
關鍵詞 植物;鹽脅迫;SOS;轉運體
中圖分類號 S432.3+1 ?文獻標識碼 A ?文章編號 0517-6611(2014)34-12023-05
Study on Signal Transduction Mechanism of Plant Salt Tolerance
XIA Jinchan, ZHANG Xiaoli*
(School of Basic Medicine, Henan College of Traditional Chinese Medicine, Zhengzhou, Henan 450008)
Abstract Salt related gene regulation network is a complex process, which includes many genes. Plant cells can sense high Na+ concentration, then increase cytosolic IP3 and Ca2. Ca2 signal was perceived by SOS3, which in turn activates the SOS2 kinase. The activated SOS2 kinase regulates sodium efflux and sequesters sodium into the vacuole by Na+/H+ antiporter, which express in plasma membrane and tonoplast. ABA, ROS, AtHK1, MAPK cascades and LEA are also involved in osmotic homeostasis and stress damage by salt stress. The signaling pathway component will be required to further understand to use in crop improvement.
Key words Plant; Salt stress; SOS; Transcripter
目前,土壤鹽堿化是農業(yè)生產面臨的一個嚴重問題,限制著全球農作物的產量,其中20%的灌溉區(qū)域和30%的干旱區(qū)域都受到土壤鹽堿化的威脅[1],并且由于不恰當?shù)墓喔群臀鬯娜我馀欧?,鹽堿化面積還在不斷的擴大,臨海的耕種土地由于暴雨和風的影響鹽堿化速度更快,因此剖析植物對高鹽的應答機制、提高其抗鹽能力在農業(yè)生產上有重要理論和現(xiàn)實意義。植物的抗鹽反應受許多基因的調控,是一個復雜的過程。在過去10年間,通過各種篩選和克隆的方法已得到一系列與鹽脅迫信號途徑相關的基因,例如SOS1、HKT1或NHX1基因等。對這些基因功能的分析研究可為人們繪制出植物鹽脅迫信號通路的大致輪廓。
1 第二信使Ca2+及其受體
在鹽脅迫下,Ca2+不僅能夠通過拮抗作用減少對Na+的吸收,改善植物的生長狀況[2],而且Ca2+作為一個胞內第二信使參與植物抗鹽的信號傳導過程。植物在鹽脅迫的情況下通過調控位于質膜、內質網(wǎng)和液泡上的機械感應或配體門控的Ca2+通道調控細胞質中的鈣振蕩。胞外的高鈉狀態(tài)不僅能夠通過誘導膜的去極化激活機械感應門控的Ca2+通道[3-5],而且可通過IP3激活Ca2+通道,從而在胞內產生Ca2+信號。在擬南芥中FRY1基因編碼一個肌醇多磷酸-1-磷酸酶,能夠降解IP3。ABA不能誘導fry1缺失突變體中IP3含量的瞬間升高。fry1缺失突變體中不僅IP3含量很高,而且對ABA、低溫和鹽脅迫敏感。因此,在ABA、低溫和鹽脅迫的信號傳導過程中IP3對維持胞內鈣離子振蕩過程中起著重要的作用[6]。鹽脅迫不僅能夠使植物中ABA含量升高,而且誘導ROS的產生[7-9]。Ca2+和H2O2可以作為第二信使啟動有非生物脅迫所誘導產生的ABA引起的氣孔關閉和基因的表達過程[10]。試驗證明,ABA能夠激ADPR(活腺苷核糖)環(huán)化酶,合成cADPR[11],在非生物脅迫下IP3和cADPR(環(huán)腺苷核糖)門控的鈣通道都參與ABA誘導的胞內Ca2+振蕩[12]。因為異源三聚體G(GTP結合)蛋白參與保衛(wèi)細胞中ABA的信號傳導過程[13],植物對高鹽的反應可通過G蛋白相關受體誘導Ca2+信號產生,因此ABA參與植物在高鹽條件下胞內Ca2+的升高過程。另一方面,胞內的Ca2+信號可被一些鈣受體蛋白例如SOS3、類似SOS3鈣結合蛋白(SCaBPs)、鈣依賴的蛋白激酶(CDPKs)和鈣調蛋白(CaMs)感受并向下傳遞信息。在擬南芥中,高鹽和干旱能夠誘導AtCDPK1和AtCDPK2基因的表達[14]。在水稻中,高鹽、干旱和冷也能夠誘導OsCDPK7基因的表達,CDPKs調控LEA類型基因的表達[15-16]。CaMs是高鹽誘導Ca2+信號傳導過程中的一個負調控因子。在擬南芥中過表達CaM3基因能夠抑制Ca2+誘導的COR基因的表達[17-18]。CaATP酶介導Ca2+從胞質的外流,因此能夠控制胞質Ca2+振蕩的幅度。研究證明,CaM能夠激活內質網(wǎng)上的CaATP酶(ACA2),而CDPK抑制其活性[19]。擬南芥中的一個CaM結合蛋白AtCaMBP25能夠與CaM結合,是植物抗鹽過程中的一個負調控因子[20]。因此,在鹽脅迫下,這些因子共同調節(jié)LEA/COR基因的表達。
2 鹽脅迫下SOS調控的信號通路
研究證明,SOS信號傳遞途經(jīng)參與擬南芥的抗鹽反應過程。SOS1基因編碼一個Na+/H+反向轉運體,定位在質膜上,不僅在細胞水平參與Na+外排,而且參與Na+從根向地上部分的轉運過程[21-22],過表達SOS1基因能夠增強擬南芥對高鹽脅迫的抗性[23]。SOS2基因編碼一個ser/thr蛋白激酶,在N末端含有一個催化區(qū)域,在C末端含有一個調控區(qū)域[24]。SOS3基因編碼一個Ca2+結合蛋白,參與鹽脅迫反應過程[25],SOS3蛋白能與SOS2蛋白C末端的調控區(qū)域相互作用,激活SOS2激酶的活性[26-27]。激活的SOS2蛋白磷酸化SOS1,增強SOS1的轉運活性[28]。因此,SOS信號傳導模式為:外界的高Na+誘導胞內Ca2+的升高,Ca2+與SOS3的結合,使其能夠與SOS2結合,并且通過解除SOS2的自我抑制激活SOS2激酶的活性,SOS3與SOS2的復合物磷酸化位于質膜上的SOS1轉運體,增強其向胞外轉運Na+的能力。植物的抗鹽能力與植物控制對Na+的吸收、Na+從木質部和根的外排、Na+在液泡的儲存等有關。
表1 鹽脅迫相關基因及其他基因的縮寫
縮寫全稱縮寫全稱
FRYFIERY, inositol polyphosphate 1phosphataseMAPKMitogeneactivated protein kinase
IP3Inositol1,4,5triphosphateMKPMAPK phosphatase
SOS1Salt overly sensitive 1, Na+/H+ antiporterNDPKNucleoside diphosphate kinase
SOS2Salt overly sensitive 2, the protein kinaseABI1Protein phosphatase 1C
SOS3Salt overly sensitive 3, Ca2+binding proteinABI2Protein phosphatase 2C
SOS4Salt overly sensitive 4, a pyridoxal kinaseABAAbscisic acid
SCaBPsSOS3like Ca2+ binding proteinCDPKCa2+dependent protein kinase
HKT1Sodium transporterLEALateembryogenesisabundant
NHX1Tonoplast Na+/H+ antiporter
2.1 植物對Na+的吸收
植物抗鹽的重要途徑是阻止根細胞對Na+的吸收,減少高Na+對地上部分的毒害。被植物吸收的97%Na+都要排出體外。在大多數(shù)植物中,Na+可以通過Na+或非特異性的陽離子轉運體或通道經(jīng)共質體途徑從根的表皮進入到木質部。維持Na+/ K+平衡對植物正常生長是至關重要的。在鹽脅迫條件下,植物會限制Na+的吸收,保持K+的吸收。目前為止,人們對于吸收Na+的轉運體或通道了解很少。但是,一些K+通道(HKT、HAK、KUP)參與根細胞對Na+的吸收過程,Na+能夠競爭K+的結合位點,抑制對K+的吸收過程[29]。植物中HKT轉運體包含2個家族。擬南芥、水稻和小麥中的大多數(shù)HKT轉運體屬于第一大類,對Na+的轉運表現(xiàn)出高度的專一性;第二類HKT轉運體可被低K+誘導,水稻中的HKT轉運體,OsHKT2;1,在K+缺失的情況下轉運Na+維持植物的生長過程[30]。HKT介導Na+的吸收,但在鹽脅迫下其表達量下調限制過多Na+的吸收進入[31]。酵母中HAL1和HAL3調控P類型的ATP酶、Na+的外排和K+的吸收過程[32]。過表達擬南芥的HAL3a基因能夠提高對鹽的抗性[33]。過表達大麥的HvHKT2;1基因的轉基因植株在50 μmol/L或100 μmol/L NaCl的處理下能夠增強植株對Na+的吸收,提高木質部汁液中Na+的濃度,促進Na+向葉片的運輸,但是這些過程能夠提高大麥的抗鹽能力[34]。試驗證明,cAMP和cGMP能夠抑制植物在高鹽條件下對Na+的吸收[35]。在擬南芥中SOS4編碼一個吡哆醛激酶,其突變能夠增加植物對Na+的吸收,并降低K+的吸收,因此它可能作為一些離子通道的調控因子而起作用[36]。
植物還可以通過非質體吸收Na+[37] ,但該過程受到許多因素的調控,凱氏帶在阻止Na+進入中柱的過程中起著重要的作用,例如玉米在200 mmol/L NaCl處理下,凱氏帶的寬度增加47%[38]。水稻中Ca2+調控Na+通過非質體途徑進入中柱的過程[39]。另外,水稻還通過合成木栓素沉淀在非質體途徑中抑制Na+的進入[40]。硅的沉積是植物抗鹽的另外一個機制。硅在根部的沉積能夠抑制Na+通過非質體途徑的吸收,降低植物中Na+/ K+的比例,提高植物的抗性[41]。硅的兩個轉運體Lsi1和Lsi2參與硅的吸收和沉積過程[42]。
2.2 植物對Na+的外排
Na+的外排是植物抗鹽的重要手段。在擬南芥中,SOS1蛋白介導了Na+的外排過程,SOS1基因編碼一個Na+/H+反向轉運體。該過程需要消耗H+離子梯度所提供的能量,在根尖的表皮細胞和木質部的薄壁細胞中表達量較高,定位在細胞的質膜上[43]。在擬南芥中SOS1屬于一個推測的Na+/H+反向轉運體家族,含有27個基因。SOS1蛋白有一個推測環(huán)核苷酸結合序列(從764氨基酸殘基到849氨基酸殘基)和一個自我抑制區(qū)域(從998氨基酸殘基到1146氨基酸殘基),對SOS1活性至關重要[21,44],在靜息狀態(tài)這2個區(qū)域相互結合。SOS2可使SOS1自我抑制區(qū)域磷酸化,其轉運活性大幅提高[28]。AtNHX8是一個推測的Na+/H+反向轉運體,與SOS1序列高度同源,但是AtNHX8可能參與Li+的轉運過程而非Na+,極有可能是由于C末端的不同[45]。SOS1蛋白除了參與植物的鹽脅迫過程,還參與氧化脅迫反應過程[46]。水稻的OsSOS1能夠抑制擬南芥sos1突變體對鹽的敏感表型[47]。番茄的S1SOS1能進行Na+的長距離運輸[48]等。這些都證明了在植物中SOS1類型的Na+/H+反向轉運體參與植物的抗鹽反應過程。在水稻的質膜上鑒定到一個Na+/H+反向轉運體OsSOS1,與AtSOS1的功能類似[49]。在小麥根的表皮細胞上也鑒定到類似SOS1的轉運體介導Na+的外排過程[50]。另外,SOS1在植物中或許參與根對K+的吸收和維持胞內pH的穩(wěn)態(tài)過程[51]。盡管人們對Na+的外排在植物抗鹽過程中的功能還存在爭議,但是對SOS1類型的Na+/H+反向轉運體的深入研究或許能夠解開這個問題。
2.3 ?Na+向液泡的轉運
在植物中把過多的Na+儲存在液泡中是植物抗鹽的重要機制。成熟的植物細胞含有一個大液泡,為胞質中過多的Na+儲存提供場所。NHX1是定位在液泡膜上的一個Na+/H+轉運體,能夠互補酵母液泡膜上Na+/H+反向轉運體ScNHX1的功能[52-56]。AtNHX1在擬南芥中有6個同源基因。該家族的轉運體利用質子梯度不僅能夠把Na+轉運到液泡,也轉運K+,除了參與鹽脅迫過程,還調控泡內pH、細胞K+濃度、囊泡轉運和蛋白定位[57]。AtNHX1基因能夠被ABA和滲透脅迫誘導,在鹽脅迫下不僅能夠把Na+轉運到液泡,而且能夠維持細胞的膨壓,防止水分的流失[58],因此在鹽脅迫下把過多的Na+儲存在液泡中是植物抵抗Na+毒害和滲透脅迫的有效手段,當然還需要其他機制的參與,例如減少液泡中Na+的吸收,增加外排,從而降低胞質中Na+含量。AtNHX1蛋白上有一個ABA反應元件(ABRE),所以ABA能夠調節(jié)其活性。因為ABA的缺失突變體中abi11對鹽的反應下調,ABI1可通過ABA信號途徑調節(jié)AtNHX1基因的表達[58]。AtNHX1蛋白的C末端有一個鈣調蛋白的結合位點,能夠與AtCaM15結合抑制AtNHX1的轉運活性[59]。試驗證明,SOS2能夠激活液泡膜上Na+/H+反向轉運體的活性,但是sos3突變體液泡膜上Na+/H+反向轉運體的活性并沒有受到影響,所以SOS2激活液泡膜上Na+/H+反向轉運體的活性是不依賴于SOS3的,可能是通過SCaBPs[60]。VCX1是液泡上的一個H+ / Ca2+反向轉運體,對調節(jié)胞質鈣振蕩有重要作用。SOS2還可以通過不依賴于SOS3的途徑調控VCX1的活性[61]。由于Na+/H+轉運體NHX在轉運Na+的同時需要H+梯度提供能量,在液泡膜上過表達H+ATP酶和H+焦磷酸酶能夠促進Na+通過NHX的回收[62-67]。由于H+ATP酶含有多個亞基,過表達H+焦磷酸酶更加方便。過表達擬南芥中的H+焦磷酸酶AVP1能夠提高植物的抗鹽能力[68-69]。研究證明,AVP1參與植物的萌發(fā)后生長過程[70]。
2.4 植物中Na+從地上部分向根的運輸
許多淡土植物把Na+運輸?shù)揭号莸哪芰τ邢?,但是它們可以把從地上部分運輸?shù)礁浚瑴p少對植物的毒害作用。在擬南芥中SOS1和HKT1參與Na+的運輸過程。在100 mmol/L NaCl處理下,sos1突變體的地上部分積累了較多的Na+,并且SOS1基因在木質部周圍的細胞中表達。這些都暗示SOS1參與Na+從地上部分向根的長距離運輸過程[22]。AtHKT1是擬南芥中的一個轉運體,其突變能夠抑制sos1、sos2和sos3突變體對鹽脅迫的敏感表型[71]。正向遺傳學得到突變位點在AtHKT1基因的2個突變體sas21和sas22,都表現(xiàn)出Na+敏感的表型,Na+在地上部分大量積累[72]。AtHKT1定位在質膜上,在木質部薄壁細胞中的表達量高,athkt1突變體木質部的汁液中含有高濃度的Na+。大量的研究證明,AtHKT1參與Na+在植物中的轉運過程[73-74],AtHKT1把Na+轉運到地上部分的韌皮部,再運送到根部,減少Na+在地上部分的積累。鹽脅迫或許還可以通過ABI2蛋白磷酸酶2C調控SOS信號通路,ABI2能與SOS2相互作用,抑制其活性,或抑制其調控的離子通道的活性,例如HKT1、SOS1和NHX1(286)。在水稻中SKC1是一個HKT類的轉運體,即OsHKT5;1,其介導Na+從木質部向木質部薄壁細胞的轉運,進而被運回皮層、表皮,外排到土壤,另外一個HKT類的轉運體OsHKT1;4把Na+轉運到葉鞘組織[75]。在小麥中Nax1和Nax2是HKT類的轉運體,Nax1能夠促進Na+在葉鞘的積累而降低葉片中Na+的含量,在根部Nax2負責Na+從木質部的外運[76]。在番茄中,SOS1的同源基因S1SOS1在鹽脅迫下能夠把Na+從木質部運出,降低葉片中Na+的含量[48]。
植物鹽脅迫信號傳遞途徑見圖1。高鹽脅迫誘導胞內Ca2+的升高,Ca2+作為信號分子,通過SOS3激活SOS2激酶,SOS2激酶使SOS1蛋白發(fā)生磷酸化而被激活把Na+從胞內轉到胞外,還可激活Na+的轉運體HKT1。SOS2激酶能夠激活NHX1。該過程是不依賴SOS3的,有可能通過SCaBPs。MAPK信號通路也參與植物的抗鹽反應過程。
注:虛線表示可能調控;箭頭表示誘導;終止線表示抑制。
圖1 植物鹽脅迫信號傳遞途徑
42卷34期
夏金嬋等 植物鹽脅迫相關信號轉導機制的研究
3 ?植物鹽脅迫下其他信號通路
鹽脅迫能夠誘導植物產生ROS,提高ROS去毒酶的活性。在煙草中過表達擬南芥的抗壞血酸氧化酶(AtAPX)能夠提高對鹽和氧化脅迫的抗性[77]。擬南芥pst1突變體中由于高活性的超氧化物歧化酶(SOD)和APX表現(xiàn)出對高鹽脅迫的抗性[78]。因此,ROS去毒酶能夠提高植物的抗鹽能力。鹽脅迫能夠誘導ABA和H2O2的產生,或許作為第二信使誘導抗氧化基因的表達。
分裂原活化蛋白激酶(MAPK)信號途徑參與脅迫下植物中ROS信號的傳遞過程,對擬南芥mkk2突變體的研究發(fā)現(xiàn)一條MAPK信號通路參與鹽脅迫過程(AtMEKK1,AtMEK1/AtMKK2 和AtMPK4/ AtMPK6),在擬南芥中過表達AtMKK2能夠提高AtMPK4和AtMPK6的活性,提高對鹽的抗性[79]。H2O2也能夠通過ANP1(MAPKKK)激活AtMPK3和AtMPK6[80]。過表達ANP1的同源基因NPK1能夠提高煙草對鹽的抗性[81]。擬南芥的MAPK磷酸酶1(mkp1)的缺失突變體是抗鹽脅迫的。試驗證明,MKP1能與AtMPK3、AtMPK4和AtMPK6相互作用,負調控一個Na+/H+反向轉運體AT4G23700[82]。過表達核苷酸二磷酸激酶2(AtNDPK2)能夠提高擬南芥對鹽的抗性,點突變實驗證明AtNDPK2與AtMPK3和AtMPK6相互作用。這些暗示AtNDPK2作為一個正調控因子通過MAPK信號途徑參與鹽脅迫信號的傳遞[83]。擬南芥的MAPK級聯(lián)途徑包括AtMEKK1/ANP1(MAPKKK)、AtMKK2/AtMEK1(MAPKK)和MAPKs(AtMPK3,AtMPK4,AtMPK6),能夠傳遞鹽的脅迫信號途徑。AtMKP1 是一個負調控因子,AtNDPK2是一個正調控因子。鹽脅迫能夠誘導滲透保護相關的蛋白的合成。AtHK1是擬南芥中的一個組氨酸激酶,一個推測的感受滲透脅迫的受體,能夠被鹽脅迫誘導。鹽脅迫能夠抑制AtHK1的活性,使一些調節(jié)子不能發(fā)生磷酸化而具有活性,通過MAPK通路誘導與調節(jié)滲透相關的物質合成[84]。
ABA調節(jié)氣孔的運動、蒸騰作用影響Na+向地上部分的運輸,因此ABA在植物的抗逆過程中扮演著重要的角色。鹽脅迫能夠通過依賴或不依賴ABA途徑調控LEA基因的表達。LEA(Lateembryogenesisabundant) 蛋白包括RD(Responsive to dehydration)、ERD(Early responsive to dehydration)、KIN(Cold inducible)、COR(Cold regulated)、RAB(Responsive to ABA),具有保護功能。鹽和ABA能夠誘導LEA基因的表達[85]。
4 研究展望
目前人們對植物抗鹽反應的分子機制越來越清晰,但是大多數(shù)轉運蛋白需要與其他分子相互作用或轉錄后修飾才有活性,而人們對此了解還很少。這也是限制人們通過過表達轉運蛋白提高植物抗鹽能力的一個限制因素。這些轉運蛋白是否參與其他離子的轉運過程也需要進一步的研究。
參考文獻
[1]
MUNNS R.Comparative physiology of salt and water stress[J].Plant Cell Environ,2002,25(2):239-250.
[2] SCHROEDER J I,HAGIWARA S.Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells[J].Nature,1989,338:427-430.
[3] ?ZHU J K.Salt and drought stress signal transduction in plants[J].Annu Rev Plant Bol,2002,53:247-273.
[4] TESTER M ,DAVENPORT R A.Na+ tolerance and Na+ transport in higher plants[J].Ann Bot,2003,91(5):503-527.
[5] ZHU J K.Regulation of ion homeotasis under salt stress[J].Curr Opin Plant Biol,2003,6:441-445.
[6] XIONG L,LEE B H,ISHITANI M,et al.FIERY1 encoding an inositol polyphosphate 1phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis[J].Genes Dev,2001 15(15):1971-1984.
[7] XIONG L,SCHUMAKER K S,ZHU J K.Cell signaling during cold,drought,and salt stress[J].Plant Cell,2002,14:165-183.
[8] ?XIONG L,ZHU J K.Regulation of abscisic acid biosynthesis[J].Plant Physiol,2003,133(1):29-36.
[9] HERNANDEZ J A,F(xiàn)ERRER M A,JIMENEZ A,et al.Antioxidant systems and O2-/H2O2 production in the apoplast of pea leaves.Its relation with saltinduced necrotic lesions in minor veins[J].Plant Physiol,2001,127(3):817-831.
[10] SCHROEDER J I,ALLEN G J,HUGOUVIEUX V,et al.Guard cell signal transduction[J].Rev Plant Physiol Plant Mol Biol Annu,2001,52:627-658.
[11] SANCHEZ J P,DUQUE P,CHUA N H.ABA activates ADPR cyclase and cADPR induces a subset of ABAresponsive genes in Arabidopsis[J].Plant J,2004,38(3):381-395.
[12] WU Y,KUZMA J,MARECHAL E,et al.Abscisic acid signaling through cyclic ADPribose in plants[J].Science,1997,278(5346):2126-2130.
[13] WANG X Q,ULLAH H,JONES A,et al.G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells[J].Science,2001,292(5524):2070-2072.
[14] ?URAO T,KATAGIRI T,MIZOGUCHI T,et al.Two genes that encode Ca2+dependent protein kinases are indeced by drought and highsalt stresses in Arabidopsis thaliana[J].Mol Gen Genet,1994,244:331-340.
[15] SAIJO Y,HATA S,KYOZUKA J,et al.Overexpression of a single Ca2+dependent protein kinase confers both cold and salt/drought tolerance on rice plants[J].Plant J,2000,23(3):319-327.
[16] SHEEN J.Ca2+Dependent protein kinases and stress signal transduction in plants[J].Science,1996,274:1900-1902.
[17] TOWNLEY H E,KNIGHT M R.Calmodulin as a potential negative regulator of arabidopsis cor gene expression1[J].Plant Physiol,2002,128(4):1169-1172.
[18] VISWANATHAN C,ZHU J K.Molecular genetic analysis of coldregulated gene transcription[J].Philos Trans R Soc London B,2002,357(1423):877-886.
[19] ?HWANG I,SZE H,HARPER J F.A calciumdependent protein kinase can inhibit a calmodulinstimulated Ca2+ pump (ACA2) located in the endoplasmic reticulum of Arabidopsis[J].Proc Natl Acad Sci USA,2000,97(11):6224-6229.
[20] PERRUC E,CHARPENTEAU M,RAMIREZ B C,et al.A novel calmodulinbinding protein functions as a negative regulator of osmotic stress tolerance in Arabidopsis thaliana seedlings[J].Plant J,2004,38(3):410-420.
[21] SHI H,ISHITANI M,KIM C,et al.The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter[J].Proc Natl Acad Sci USA,2000,97(12):6896-6901.
[22] SHI H,QUINTERO F J,PARDO J M,et al.The putative plasmamembrane Na+/H+ antiporter SOS1 controls longdistance Na+ transport in plants[J].Plant Cell,2002,14(2):465-477.
[23] SHI H,LEE B H,WU S J,et al.Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana[J].Nat Biotechnol,2003,21(1):81-85.
[24] LIU J,ISHITANI M,HALFTER U,et al.The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance[J].Proc Natl Acad Sci,2000,97(7):3730-3734.
[25] ISHITANI M,LIU J,HALFTER U,et al.SOS3 function in plant salt tolerance requires Nmyristoylation and calcium binding[J].Plant Cell,2000,12(9):1667-1678.
[26] HALFTER U,ISHITANI M,ZHU J K.The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calciumbinding protein SOS3[J].Proc Natl Acad Sci,2000,97(7):3735-3740.
[27] GUO Y,QIU Q S,QUINTERO F J,et al.Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and Cterminal regulatory domain for salt tolerance in Arabidopsis thaliana[J].Plant Cell,2004,16(2):435-449.
[28] QUINTERO F J,OHTA M,SHI H,et al.Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis[J].Proc Natl Acad Sci,2002,99(13):9061-9066.
[29] ZHU J K.Regulation of ion homeostasis under salt stress[J].Curr Opin Plant Biol,2003,6(5):441-445.
[30] HORIE T,COSTA A,KIM T H,et al.Rice OsHKT2;1 transporter mediates large Na+ influx component into K+ starved roots for growth[J].EMBO J,2007,26(12):3003-3014.
[31] LAURIE S,F(xiàn)EENEY K A,MAATHUIS F J M,et al.A role for HKT1 in sodium uptake by wheat roots[J].Plant J,2002,32(2):139-149.
[32] RUS A M,ESTAN M T,GISBERT C,et al.Expressing the yeast HAL1 gene in tomato increases fruit yield and enhances K+/Na+ selectivity under salt stress[J].Plant Cell Environ,2001,24:875-880.
[33] ESPINOSARUIZ A,BELLES J M,SERRANO R.and CulianezMacla FA.Arabidopsis thaliana AtHAL3:a flavoprotein related to salt and osmotic tolerance and plant growth[J].Plant J,1999,20(5):529-539.
[34] MIAN A,OOMEN R J,ISAYENKOV S,et al.Overexpression of an Na+ and K+ permeable HKT transporter in barley improves salt tolerance[J].Plant J,2011,68(3):468-479.
[35] DONALDSON L,LUDIDI N,KNIGHT M R,et al.Salt and osmotic stress cause rapid increases in Arabidopsis thaliana cGMP level[J].FEBS Lett,2004,569(1):317-320.
[36] ZHU J K.Salt and drought stress signal transduction in plants[J].Annu Rev Plant Bol,2002,53:247-273.
[37] ?KRISHNAMURTHY P,RANATHUNGE K,NAYAK S,et al.Root apoplastic barriers block Na+ transport to shoots in rice(Oryzasativa L.)[J].J Exp Bot,2011,62(12):4215-4228.
[38] JIA W,WANG Y,ZHANG S,et al.Saltstressinduced ABA accumulation is more sensitively triggered in roots than in shoots[J].J Exp Bot,2002,53(378):2201-2206.
[39] ?ANIL VS,KRISHNAMURTHY P,KURUVILLA S,et al.Regulation of the uptake and distribution of Na+ in shoots of rice(Oryzasativa) variety Pokkali:role of Ca2+ in salt tolerance response[J].Physiol Plantarum,2005,124(4):451-464.
[40] LUX A,MARTINKA M,VACULIK M,et al.Root responses to cadmium in the rhizosphere:a review[J].J Exp Bot,2011,62(1):21-37.
[41] MIAO B H,HAN X G,ZHANG W H.The ameliorative effect of silicon on soybean seedlings grown in potassiumdeficient medium[J].Ann Bot,2010,105:967-973.
[42] MA J F,YAMAJI N,MITANI N,et al.An effux transporter of silicon in rice[J].Nature,2007,448:209-212.
[43] ?QIU Q S,BARKLA B J,VERAESTRELLA R,et al.Na+/H+ exchange activity in the plasma membrane of Arabidopsis[J].Plant Physiol,2003,132(2):1041-1052.
[44] FEKI K,QUINTERO F,PARDO J et al.Regulation of durum wheat Na+/H+ exchanger TdSOS1 by phosphorylation[J].Plant Mol Biol,2011,76(6):545-556.
[45] AN R,CHEN Q J,CHAI M F,et al.AtNHX8,a member of the monovalent cation:proton antiporter1 family in ?Arabidopsis thaliana,encodes a putative Li/H antiporter[J].Plant J,2007,49(4):718-728.
[46] KATIYARAGARWAL S,ZHU J,KIM K,et al.The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis[J].Proc Natl Acad Sci,2006,103(49):18816-1882.
[47] MATSUSHITA ?N,MATOH T.Function of the shoot base of salttolerant reed(Phragmitescommunis Trinius) Plants for Na+ exclusion from the shoots[J].Soil Sci Plant Nutr,1992,38(3):565-571.
[48] OLIAS R,ELJAKAOUI Z,LI J,et al.The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs[J].Plant Cell Environ,2009,32(7):904-916.
[49] MARTINEZATIENZA J,JIANG X,GARCIADEBLAS B,et al.Conservation of the salt overly sensitive pathway in rice[J].Plant Physiol,2007,143(2):1001-1012.
[50] CUIN T A,BOSE J,STEFANO G,et al.Assessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat:in plant aquantification methods[J].Plant Cell Environ,2009,34(6):947-961.
[51] OH D H,LEE S Y,BRESSAN R A,et al.Intracellular consequences of SOS1 deficiency during salt stress[J].J Exp Bot,2010,61(4):1205-1213.
[52] GAXIOLA R A,RAO R,SHERMAN A,et al.The Arabidopsis thaliana proton transporters,AtNhx1 and Avp1,can function in cation detoxification in yeast[J].Proc Natl Acad Sci,1999,96(4):1480-1485.
[53] BANJARA M,ZHU L,SHEN G,et al.Expression of an Arabidopsis odium/proton antiporter gene (AtNHX1) in peanut to improve salt tolerance[J].Plant Biotechnol Rep,2012,6(1):59-67.
[54] KOBAYASHI S,ABE N,YOSHIDA K,et al.Molecular cloning and characterization of plasma membraneand vacuolartype Na+/H+ antiporters of an alkalinesalttolerant monocot,Puccinellia tenuiflora[J].J Plant Res,2012,125(4):587-594.
[55] LIU L,ZENG Y,PAN X,et al.Isolation,molecular characterization,and functional analysis of the vacuolar Na+/H+ antiporter genes from the halophyte Karelinia caspica[J].Mol Biol Rep.2012,39(6):7193-7202.
[56] WU G Q,XI J J,WANG Q,et al.The ZxNHX gene encoding tonoplast Na+/H+ antiporter from the xerophyte Zygophyllum xanthoxylum plays important roles in response to salt and drought[J].J Plant Physiol,2011,168(8):758-767.
[57] SOTTOSANTO J B,GELLI A,BLUMWALD E.DNA array analyses of Arabidopsis thaliana lacking a vacuolar Na+/H+ antiporter:impact of AtNHX1 on gene expression[J].Plant J,2004,40(5):752-771.
[58] SHI H,ZHU J K.Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid[J].Plant Mol Biol,2002,50(3):543-550.
[59] YAMAGUCHI T,AHARON G S,SOTTOSANTO J B,et al.Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+and pH dependentmanner manner[J].Proc Natl Acad Sci,2005,102(44):16107-16112.
[60] ?QIU Q S,GUO Y,QUINTERO F J,et al.Regulation of vacuolar Na+/H+exchange in Arabidopsis thaliana by the saltoverly sensitive (SOS) pathway[J].J Biol Chem,2004,279(1):207-215.
[61] CHENG N H,PITTMAN J K,ZHU J K,et al.The protein kinase SOS2 activates the Arabidopsis H+/Ca2+ antiporter CAX1 to integrate calcium transport and salt tolerance[J].J Biol Chem,2004,279(4):2922-2926.
[62] ?GAXIOLA R A,PALMGREN M G,SCHUMACHER K.Plant proton pumps[J].FEBS Lett,2007,581(12):2204-2214.
[63] BHASKARAN S,SAVITHRAMMA D L.Coexpression of Pennisetum glaucum vacuolar Na+/H+ antiporter and Arabidopsis H+pyrophosphatase enhances salt tolerance in transgenic tomato[J].J Exp Bot,2011,62(15):5561-5570.
[64] CHEN J,XIAO Q,WU F,et al.Nitric oxide enhances salt secretion and Na+ sequestration in a mangrove plant,Avicennia marina,through increasing the expression of H+ATPase and Na+/H+ antiporter under high salinity[J].Tree Physiol,2010,30(12):1570-1585.
[65] FERJANI A,SEGAMI S,HORIGUCHI G,et al.Keep an eye on PPi:the vacuolartype H+pyrophosphatase regulates postgerminative development in Arabidopsis[J].Plant Cell,2011,23(8):2895-2908.
[66] GOUIAA S,KHOUDI H,LEIDI EO,et al.Expression of wheat Na+/H+ antiporter TNHXS1 and H+pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance[J].Plant Mol Biol,2012,79(1/2):137-155.
[67] KHOUDI H,MAATAR Y,GOUIAA S,et al.Transgenic tobacco plants expressing ectopically wheat H+pyrophosphatase (H+PPase) gene TaVP1 show enhanced accumulation and tolerance to cadmium[J].J Plant Physiol,2012,169(1):98-103.
[68] PARK S,LI J,PITTMAN J K,et al.Upregulation of a H+pyrophosphatase (H+PPase) as a strategy to engineer droughtresistant crop plants[J].Proc Natl Acad Sci,2005,102(52):18830-18835.
[69] ?LI Z G,BALDWIN M,HU Q,et al.Heterologous expression of Arabidopsis H+pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass (Agrostis stolonifera L.)[J].Plant Cell Environ,2010,33(2):272-289.
[70] FERJANI A,SEGAMI S,HORIGUCHI G,et al.Keep an eye on PPi:the vacuolartype H+pyrophosphatase regulates postgerminative development in Arabidopsis[J].Plant Cell,2011,23(8):2895-2908.
[71] RUS A,LEE B H,MUNOZMAYOR A,et al.AtHKT1 facilitates Na+ homeostasis and K nutrition in planta[J].Plant Physiol,2004,136(1):2500-2511.
[72] BERTHOMIEU P,CONEJERO G,NUBLAT A,et al.Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance[J].EMBO J,2003,122(9):2004-2014.
[73] HORIE T,HAUSER F,SCHROEDER J I.HKT transportermediated salinity resistance mechanisms in Arabidopsis and monocot crop plants[J].Trends Plant Sci,2009,14(12):660-668.
[74] BAEK D,JIANG J,CHUNG J S,et al.Regulated AtHKT1 gene expression by a distal enhancer element and DNA methylation in the promoter plays an important role in salt tolerance[J].Plant Cell Physiol,2011,52(1):149-161.
[75] CAO Y,JIN X,HUANG H,et al.Crystal structure of a potassium ion transporter,TrkH[J].Nature,2011,471(7338):336-340.
[76] ?JAMES R A,BLAKE C,BYRT C S,et al.Major genes for Na+ exclusion,Nax1 and Nax2 (wheat HKT1;4 and HKT1;5),decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions[J].J Exp Bot,2011,62(8):2939-2947.
[77]
BADAWI G H,KAWANO N,YAMAUCHI Y,et al.Overexpression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit[J].Physiol Plant,2004,121(2):231-238.
[78] TSUGANE K,KOBAYASHI K,NIWA Y,et al.A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification[J].Plant Cell,1999,11(7):1195-1206.
[79] TEIGE M,SCHEIKL E,EULGEM T,et al.The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis[J].Mol Cell,2004,15(1):141-152.
[80] MOON H,LEE B,CHOI G,et al.NDP kinase 2 interacts with two oxidative stressactivated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants[J].Proc Nat Acad Sci,2003,100(1):358-363.
[81] KOVTUN Y,CHIU W L,TENA G,et al.Functional analysis of oxidative stressactivated mitogenactivated protein kinase cascade in plants[J].Proc Nat Acad Sci,2000,97(6):2940-2945.
[82] ULM R,ICHIMURA K,MIZOGUCHI T,et al.Distinct regulation of salinity and genotoxic stress responses by Arabidopsis MAP kinase phosphatase 1[J].EMBO J,2002,21(23):6483-6493.
[83] MOON H,LEE B,CHOI G,et al.NDP kinase 2 interacts with two oxidative stressactivated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants[J].Proc Nat Acad Sci,2003,100(1):358-363.
[84] URAO T,YAKUBOV B,SATOH R,et al.A transmembrane hybridtype histidine kinase in Arabidopsis functions as an osmosensor[J].Plant Cell,1999,11(9):1743-1754.
[85] WISE M J,TUNNACLIFFE A.POPP the question:what do LEAproteins do[J].Trends Plant Sci,2004,9(1):13-17.