摘要:在分析湍流目標(biāo)檢測(cè)方法的基礎(chǔ)上,針對(duì)傳統(tǒng)的湍流目標(biāo)檢測(cè)方法的檢測(cè)概率不高,運(yùn)用對(duì)數(shù)似然比準(zhǔn)則,并假設(shè)湍流回波是一個(gè)窄帶馬爾科夫過程,提出了一種新的湍流檢測(cè)方法。分別設(shè)置了不同樣本量、虛警率和信噪比的情形,運(yùn)用Monte Carlo方法仿真分析了提出的湍流檢測(cè)方法性能,并與傳統(tǒng)的脈沖對(duì)處理方法進(jìn)行了比較。仿真結(jié)果表明,提出的湍流檢測(cè)方法的檢測(cè)概率分別在不同的樣本量、虛警率和信噪比的性能指標(biāo)下均大于傳統(tǒng)的脈沖對(duì)檢測(cè)方法的檢測(cè)概率。
關(guān)鍵詞:對(duì)數(shù)似然比; 湍流檢測(cè); 信噪比; 馬爾科夫過程; 譜寬
中圖分類號(hào):TP959.4 文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):2095-2163(2014)04-0005-04
Abstract:On the basis of analyzing the turbulence target detection method, aimed at the situation that the detection probability of traditional turbulence detection method is not high, simultaneously using the logarithmic likelihood ratio criterion, and assumeing that turbulence echo is a narrowband markov process,a new turbulence detection method is proposed in this paper. The different sample 、size false alarm rate and signal-to-noise ratio are set up respectively.The proposed turbulence detection method performance is simulated by using the Monte Carlo method simulation,and the comparison with traditional method of the pulse pair is also given. The simulation results show that the detection probability of new detection algorithm is better than the traditional turbulence detection method in different indexes of sample、false alarm rate and signal to noise ratio.
Key words:Log Likelihood Ratio; Turbulence Detection; Signal to Noise Ratio; Markov Process; Spectrum Width
0引言
湍流指的是短時(shí)間內(nèi)的風(fēng)速波動(dòng),引發(fā)湍流的原因可能是氣壓變化、急流、冷峰、暖峰或雷暴,甚至在晴朗的天空中也可能出現(xiàn)湍流。湍流運(yùn)動(dòng)極不規(guī)則、也極不穩(wěn)定,每一點(diǎn)的速度都在隨機(jī)地變化著。通??梢詫⑼牧骺闯墒怯筛鞣N不同尺度的大小和方向隨機(jī)分布的渦旋疊合而成的流動(dòng),湍流中每個(gè)小尺度的渦旋特性則完全相同。對(duì)機(jī)載氣象雷達(dá)而言,湍流是一種微粒速度偏差較大的氣象目標(biāo),速度偏差可理解為速度的范圍或多普勒頻譜,頻譜越寬,湍流越大[1]。在湍流區(qū)域中,氣流速度和方向的變化都相當(dāng)急劇,其作用不僅會(huì)使飛機(jī)顛簸,而且會(huì)使機(jī)體承受巨大的作用力,因而對(duì)飛行安全極為不利。為此,飛機(jī)應(yīng)盡量避免進(jìn)入湍流區(qū)域。
文獻(xiàn)[2-5]分析了不同的湍流模型和湍流多普勒速度,并研究了傳統(tǒng)的脈沖對(duì)湍流檢測(cè),但是其檢測(cè)概率卻不高,本文提出了一種新的湍流檢測(cè)算法,經(jīng)實(shí)驗(yàn)驗(yàn)證可大大提高其檢測(cè)概率。文獻(xiàn)[6-10]研究了湍流的特性和湍流的功率譜,應(yīng)用傅里葉變換法對(duì)湍流信號(hào)進(jìn)行仿真分析,在獲得較好的湍流特性估算的同時(shí),又分析了湍流空間三維場(chǎng)的產(chǎn)生。文獻(xiàn)[11-12]分析了湍流中移動(dòng)目標(biāo)的檢測(cè)算法,同時(shí)也研究了模式分析法在湍流信號(hào)檢測(cè)中的應(yīng)用。
本文則在詳細(xì)分析湍流特性和傳統(tǒng)的脈沖對(duì)檢測(cè)方法的基礎(chǔ)上,建立了湍流模型,而且運(yùn)用對(duì)數(shù)似然比準(zhǔn)則提出了一種新的湍流檢測(cè)算法。
1湍流檢測(cè)分析
3仿真分析
設(shè)機(jī)載氣象雷達(dá)工作波長(zhǎng)λ為0.03m,脈沖重復(fù)周期Ts為0.01s,運(yùn)用Monte Carlo方法進(jìn)行仿真分析。圖5和圖6分別是在相同虛警率和信噪比、不同樣本量下新的湍流檢測(cè)算法與傳統(tǒng)脈沖對(duì)算法的檢測(cè)概率的結(jié)果比較。
圖5顯示了在虛警率F=0.01、SNR=10dB、樣本量N=16下的湍流檢測(cè)性能。通過圖5可以看出:隨著湍流多普勒速度均方根值的增大,其檢測(cè)概率呈增大趨勢(shì);通過與脈沖對(duì)處理方法對(duì)比,其檢測(cè)性能要優(yōu)于傳統(tǒng)的脈沖對(duì)檢測(cè)方法,并且高出了45.26%。
4結(jié)束語
本文在分析傳統(tǒng)的脈沖對(duì)湍流檢測(cè)方法的基礎(chǔ)上,提出了一種新的湍流檢測(cè)算法。并經(jīng)實(shí)驗(yàn)驗(yàn)證,提出的新算法的檢測(cè)概率要優(yōu)于傳統(tǒng)的檢測(cè)方法。在低SNR下,本文提出的湍流檢測(cè)算法的性能將更為優(yōu)秀;這是因?yàn)閭鹘y(tǒng)的脈沖對(duì)湍流檢測(cè)算法主要是檢測(cè)相關(guān)因子的減少和非相干噪聲,這就意味著為了得到相同的虛警率,其檢測(cè)門限將要設(shè)置一定的增加,同時(shí)也進(jìn)一步說明了脈沖對(duì)算法在SNR=10dB或更小的情形下其檢測(cè)效率會(huì)急劇減小的原因所在。
參考文獻(xiàn):
[1]MASON M S, WOOD G S, FLETCHER D F. Numerical simulation of downburst winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2009,97(11): 523-539.
[2]劉小洋,李勇,程宇峰.機(jī)載脈沖多普勒雷達(dá)湍流信號(hào)的仿真分析[J] .系統(tǒng)工程與電子技術(shù), 2012,34(5):920-924.
[3]MAZURA I V, YANOVSKY F J. Modeling of relationship between differential doppler velocity and turbulence[J].Telecommunication and Radio Engineering,2007,66(12):1113-1121.
[4]LIGTHART L P,YANOVSKY F J, PROKOPENKO I G.Adaptive algorithms for radar detection of turbulent zones in clouds and precipitation[J]. IEEE Transactions on aerospace and electronic systems, 2003,39(1):357-367.
[5]SANDALIDIS H G,TSIFTSIS T A,KARAGIANNIDIS G K,et al. BER performance of FSO links over strong atmospheric turbulence channels with pointing errors[J].IEEE Communications Letters,2008,12 (1):44-46.
[6]李勇,劉小洋,程宇峰.機(jī)載雷達(dá)三維空間湍流場(chǎng)產(chǎn)生與仿真分析[J].系統(tǒng)工程與電子技術(shù),2013,35(6):1193-1198.
[7]NICOLA D D. Steady homogeneous turbulence in the presence of an average velocity gradient[J].International Journal of Engineering Science,2012,51:74-89.
[8]HUI M C H,LARSEN A,XIANG H F.Wind turbulence characteristics study at the Stonecutters Bridge site: Part II: Wind power spectra, integral length scales and coherences[J]. Journal of Wind Engineering and Industrial Aerodynamics,2009,97:48-59.
[9]DANAILA L, ANTONIA R A, BURATTINI P. Comparison between kinetic energy and passive scalar energy transfer in locally homogeneous isotropic turbulence[J]. Nonlinear Phenomena:Physica D,2012,241:224-231.
[10]THOMAS R,CHRISTIAN B,PIERRE M, et al. Generation of correlated stress time histories from continuous turbulence Power Spectral Density for fatigue analysis of aircraft structures[J].International Journal of Fatigue,2012,42:147-152.
[11]ZHU Xiang,MILANFAR,PEYMAN.Removing atmospheric turbulence via space-invariant deconvolution[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(1):157-170.
[12]OMAR O,LI Xin, MUBARAK S. Simultaneous Video stabilization and moving object detection in turbulence[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(2):450-462.