肖熠,黃鑫,江振洲,陳丁丁**
中國藥科大學(xué) 1藥學(xué)院;2新藥篩選中心,南京 210009
有機(jī)陰離子轉(zhuǎn)運(yùn)多肽介導(dǎo)的藥物相互作用研究進(jìn)展*
肖熠1,黃鑫2,江振洲2,陳丁丁1**
中國藥科大學(xué)1藥學(xué)院;2新藥篩選中心,南京 210009
藥物轉(zhuǎn)運(yùn)體介導(dǎo)的藥物相互作用正日益受到人們的關(guān)注和重視,近年來的研究表明藥物轉(zhuǎn)運(yùn)體對藥物的吸收、分布和排出有著重要的作用。有機(jī)陰離子轉(zhuǎn)運(yùn)多肽是一類藥物攝取轉(zhuǎn)運(yùn)體,其表達(dá)分布廣泛,轉(zhuǎn)運(yùn)的內(nèi)源性和外源性的底物眾多,一些藥物因抑制有機(jī)陰離子轉(zhuǎn)運(yùn)體而導(dǎo)致藥物相互作用。本文綜述了有機(jī)陰離子轉(zhuǎn)運(yùn)多肽家族不同成員的組織分布、結(jié)構(gòu)特點(diǎn)以及其介導(dǎo)的藥物相互作用的最新研究進(jìn)展。
有機(jī)陰離子轉(zhuǎn)運(yùn)多肽;藥物轉(zhuǎn)運(yùn)體;藥物相互作用
藥物相互作用(drug-drug interaction,DDI)是指幾種藥物同時(shí)或前后序貫應(yīng)用時(shí)藥物原有的理化性質(zhì)及藥代動(dòng)力學(xué)或藥效動(dòng)力學(xué)發(fā)生改變。絕大多數(shù)藥物在肝臟中經(jīng)過細(xì)胞色素P450(CYP酶系)代謝,相對于代謝酶介導(dǎo)的DDI來說,轉(zhuǎn)運(yùn)體介導(dǎo)的DDI較少報(bào)道,但近年來隨著分子生物學(xué)的發(fā)展,人們對藥物轉(zhuǎn)運(yùn)體的研究取得了飛速的進(jìn)步,轉(zhuǎn)運(yùn)體介導(dǎo)的DDI也逐漸被重視起來。
有機(jī)陰離子轉(zhuǎn)運(yùn)多肽(organic anion transporting polypeptides,OATP)是一類重要的細(xì)胞膜吸收轉(zhuǎn)運(yùn)蛋白,能攝取大量結(jié)構(gòu)各異的體內(nèi)外化合物進(jìn)入細(xì)胞。OATP屬于溶質(zhì)載體超家族,是動(dòng)物及人體內(nèi)重要的膜轉(zhuǎn)運(yùn)蛋白,廣泛分布于胃腸道、肝臟、腎臟、血腦屏障等處。OATP的藥物底物廣泛,包括HMG-CoA還原酶抑制劑(他汀類藥物)、抗生素、抗癌藥和強(qiáng)心苷類等,而內(nèi)源性物質(zhì)包括膽鹽、類固醇以及類固醇結(jié)合物、甲狀腺激素和陰離子寡肽等[1]。本文就近年來對OATP的最新研究進(jìn)展進(jìn)行綜述,介紹人類已知的11種OATP的組織分布、結(jié)構(gòu)特點(diǎn)以及其介導(dǎo)的DDI。
大鼠Oatp1a1為第一個(gè)被發(fā)現(xiàn)的OATP/Oatp家族成員,于1994年被Jacquemin等克隆發(fā)現(xiàn)[2]。隨后,與其相關(guān)的轉(zhuǎn)運(yùn)蛋白均被發(fā)現(xiàn)和鑒定出來,至今有超過40多個(gè)來源于大鼠、小鼠和人類OATP/ Oatp家族成員已經(jīng)被發(fā)現(xiàn)[3],圖1展示了人類和嚙齒類動(dòng)物的OATP/Oatp家族基因的演化發(fā)展分類,可見大多數(shù)人類的OATP家族成員的蛋白結(jié)構(gòu)和嚙齒類動(dòng)物(大鼠和小鼠)均有著直接的同源性[4]。OATP多肽鏈的長度集中在643~848個(gè)氨基酸之間,是一類典型的跨膜蛋白,包含有12個(gè)跨膜區(qū)域(圖2),在結(jié)構(gòu)上有3個(gè)顯著特征[5]:(1)在第9和10跨膜區(qū)域之間有一個(gè)環(huán)狀結(jié)構(gòu),這個(gè)環(huán)狀結(jié)構(gòu)含有許多保守的半胱氨酸,形成類似于DNA與蛋白結(jié)合的鋅指結(jié)構(gòu);(2)在細(xì)胞外環(huán)2、5存在N-糖基化位點(diǎn);(3)在細(xì)胞外環(huán)3和跨膜結(jié)構(gòu)6邊緣有OATP超家族的顯著特征,在細(xì)胞外環(huán)1、3、5和細(xì)胞內(nèi)環(huán)1、2、4、5發(fā)現(xiàn)了大量的保守氨基酸。
目前為止人類OATP家族已有11個(gè)成員被鑒定,其中一些成員只在特定的組織中表達(dá),如OATP1B1和OATP1B3在肝臟內(nèi)表達(dá),OATP4C1在腎內(nèi)表達(dá),OATP6A1在睪丸內(nèi)表達(dá),OATP1C1在腦和睪丸中表達(dá),而有些則在人體組織內(nèi)廣泛表達(dá),包括有OATP2A1、OATP2B1、OATP3A1和OATP4A1,如表1所示[4,6-7]。
OATP在肝、腸、腎等重要器官中均有表達(dá),在組織攝取和轉(zhuǎn)運(yùn)外源性與內(nèi)源性物質(zhì)的過程中起著十分重要的作用,同時(shí),OATP的底物廣泛,不僅有有機(jī)陰離子,還有陽離子、中性的、兩性的以及陰離子復(fù)合物。而目前研究較多的主要為OATP1A2、OATP1B1、OATP1B3和OATP2B1介導(dǎo)的DDI。
圖1 人類和嚙齒類OATP/Oatp家族成員系統(tǒng)進(jìn)化樹[4]
圖2 OATP的二級(jí)結(jié)構(gòu)模型
表1 人類OATP家族的主要亞型及其組織分布
3.1 OATP1A2
OATP1A2主要分布于腦、腎以及前列腺,其轉(zhuǎn)運(yùn)底物主要包括:四溴酚酞磺酸鈉、膽汁酸鹽、牛磺膽酸、甲狀腺激素、前列腺素E2、非索非那定、阿利克侖、奎巴因,以及一些有機(jī)陽離子如羅庫溴銨、維庫溴銨、阿片肽等,在調(diào)節(jié)血腦屏障通透性以及膽汁鹽的運(yùn)轉(zhuǎn)中起重要作用。有報(bào)道稱一些果汁能夠通過抑制腸道OATP1A2對底物的攝取,從而降低其生物利用度,如果汁中的柚皮苷能使阿利克侖的AUC降低38%,使非索非那定攝取受到抑制[8-9],柚子汁和橘子汁能分別使非索非那定的AUC降低40%和70%[10]。而近期Misaka等[11]發(fā)現(xiàn)綠茶通過抑制OATP1A2對納多洛爾的攝取使其Cmax和AUC分別降低85.3%和85.0%。
3.2 OATP1B1
OATP1B1特異性表達(dá)于肝臟中,主要存在于肝細(xì)胞基底外側(cè)(竇狀)質(zhì)膜。OATP1B1參與轉(zhuǎn)運(yùn)的底物包括膽汁酸鹽、膽紅素、甲狀腺激素T3和T4、青霉素、普伐他汀、甲氨喋呤、利福平及次毒蕈環(huán)肽等。
環(huán)孢素A(CsA)是OATP1B1的經(jīng)典抑制劑[12],同時(shí)也是OATP2B1和OATP1B3以及外排轉(zhuǎn)運(yùn)體P-gp、MRP2與代謝酶CYP3A4的抑制劑,其對OATP1B1的IC50為0.2 μmol·L-1,在1 μmol·L-1時(shí)能夠完全抑制OATP1B1的活性[13]。臨床上報(bào)道的OATP1B1底物和CsA之間的相互作用見表2所示。從表2中可見,這些相互作用的一個(gè)共同點(diǎn)是AUC和Cmax的變化都比t1/2更加顯著,這是因?yàn)樗☆愃幬锶菀妆桓闻K攝取而其主要是被肝臟代謝或者膽汁分泌而消除,CsA抑制了OATP1B1而使肝臟攝取他汀類藥物減少,而導(dǎo)致AUC和Cmax的增加,同時(shí)也使得CL和Vd的減小,而t1/2為ln2×CL/ Vd,因而t1/2維持基本不變。近期研究表明,在1μmol· L-1劑量下,移除CsA后,其對OATP1B1的抑制依然能夠持續(xù)至少18 h,這可能是臨床上OATP1B1的藥物底物和CsA發(fā)生的相互作用的重要原因[14]。
吉非羅齊也是OATP1B1的抑制劑[23],并且對CYP1A2、2C8、2C9和2C19也有抑制。吉非羅齊與OATP1B1的底物藥物的相互作用見表3,其中與西立伐他汀的相互作用主要是由于其對CYP2C8的抑制作用,因吉非羅齊對CYP2C8的IC50值(28 μmol·L-1)比其對OATP1B1的IC50值(72 μmol·L-1)要小很多,普伐他汀和羅蘇伐他汀與吉非羅齊聯(lián)合給藥時(shí)AUC和Cmax顯著增加,而對t1/2影響較小,這與CsA引起的相互作用情況類似,因?yàn)檫@兩個(gè)他汀類藥物主要是以原型排出,所以這些相互作用主要是因吉非羅齊抑制OATP1B1而產(chǎn)生。此外,阿托伐他汀通過CYP3A4代謝,而吉非羅齊對CYP3A4介導(dǎo)的代謝沒有影響,因此吉非羅齊通過抑制使OATP1B1阿托伐他汀的AUC和t1/2均有改變,而Cmax沒有變化。
表2 CsA與OATP1B1底物藥物的相互作用
表3 吉非羅齊與OATP1B1底物藥物的相互作用
利福平是多種CYP酶的強(qiáng)誘導(dǎo)劑,且能抑制OATP1B1介導(dǎo)的轉(zhuǎn)運(yùn)。Lau等[30]發(fā)現(xiàn)單次合用利福平能夠顯著增加阿托伐他汀的血藥濃度,而多次合用則降低其血藥濃度,同樣的現(xiàn)象在利福平和波生坦合用時(shí)也會(huì)發(fā)生[31]。這是因?yàn)槔F絾未魏嫌脮r(shí)抑制OATP1B1,使得肝臟攝取降低而增加其血藥濃度,而后多次合用則通過誘導(dǎo)CYP3A4的表達(dá)使其代謝加快而降低其血藥濃度。
3.3 OATP1B3
OATP1B3的表達(dá)分布與OATP1B1相似,其不同之處在于OATP1B3在多種腫瘤組織和來源于胃、結(jié)腸、胰腺、膽囊、肺和腦腫瘤細(xì)胞系中表達(dá)。OATP1B3的轉(zhuǎn)運(yùn)底物也與OATP1B1大多相同,但OATP1B3是OATP家族中唯一能夠轉(zhuǎn)運(yùn)內(nèi)源性產(chǎn)物腸促胰酶肽-8(CCK-8)、地高辛、多西他賽和紫杉醇的轉(zhuǎn)運(yùn)蛋白[6]。
由于結(jié)構(gòu)和轉(zhuǎn)運(yùn)底物與OATP1B1相似,同樣很多藥物能夠通過抑制OATP1B3而與他汀類藥物發(fā)生相互作用,大環(huán)內(nèi)酯類抗生素和抗糖尿病藥物在這方面的作用已經(jīng)分別被Seithel[32]和Bachmakov等[33]證實(shí)。瑞格列奈能夠抑制OATP1B3介導(dǎo)的普伐他汀的攝取,但在10 μmol·L-1羅格列酮?jiǎng)┝肯?,能夠刺激OATP1B3介導(dǎo)的普伐他汀的攝取增加400%。與OATP1B1一樣,利福平和CsA能夠抑制OATP1B3介導(dǎo)的波生坦以及非索非那定的攝取[34]。
3.4 OATP2B1
OATP2B1表達(dá)主要分布于腸、肝、卵巢、睪丸和脾臟中,對底物有嚴(yán)格的限制,主要轉(zhuǎn)運(yùn):3-硫酸雌酮、四溴酚酞磺酸鈉、青霉素、胺碘酮、中性類固醇以及類固醇結(jié)合物等[35]。
與OATP1A2類似,多種果汁中的柚皮苷和橙皮苷對OATP2B1具有抑制作用[36],由于腸道OATP1B1攝取被抑制,OATP2B1底物阿利吉侖的AUC和Cmax分別被降低61%和81%,從而影響其藥效[37]。也有研究表明,氟伐他汀與200 μmol·L-1吉非羅齊共同給藥時(shí),導(dǎo)致OATP2B1介導(dǎo)的氟伐他汀攝取增加了70%[38]。Fuchikami等[39]發(fā)現(xiàn),越橘、紫錐菊、綠茶、香蕉、葡萄籽、銀杏和大豆的提取物分別能使OATP2B1特異底物3-硫酸雌酮的攝取降低75.5%、55.5%、82.1%、61.1%、64.5%、85.4%和66.8%,由于OATP2B1在腸上皮細(xì)胞中大量表達(dá),這些結(jié)果提示口服藥物時(shí)應(yīng)注意食物對藥物吸收的影響。
3.5 其他OATP
OATP1C1分布在人腦部和睪丸,與甲狀腺激素的轉(zhuǎn)運(yùn)密切相關(guān)。OATP2A1為前列腺素轉(zhuǎn)運(yùn)體,廣泛存在于胰、肺、腸、前列腺等組織中。OATP3A1與前列腺素、甲狀腺激素、芐青霉素和加壓素的轉(zhuǎn)運(yùn)密切相關(guān),OATP3A1有兩種基因型,較短的基因型特異性分布在睪丸和大腦,另一個(gè)則廣泛分布。OATP4A1分布廣泛并與前列腺素類、甲狀腺激素和芐青霉素等的轉(zhuǎn)運(yùn)有密切聯(lián)系。OATP4C1于人近端小管細(xì)胞的底外側(cè)膜分布,調(diào)節(jié)底物由血進(jìn)入腎。OATP5A1的DNA序列已鑒定,但其分布和特異性底物尚不清楚。OATP6A1的mRNA已在睪丸中確定,但底物特異性尚不明確。
轉(zhuǎn)運(yùn)體介導(dǎo)的相互作用隨著分子生物學(xué)的發(fā)展逐步被人們重視起來,OATP家族的底物非常廣泛且組織分布廣,在藥物的生物利用度和組織分布中起到了關(guān)鍵性的作用,導(dǎo)致的DDI也十分常見,但目前相對代謝酶介導(dǎo)的DDI來說,對OATP家族成員的研究還不夠透徹,有些成員的表達(dá)分布和轉(zhuǎn)運(yùn)底物尚不明確,因此,對OATP家族的進(jìn)一步研究,將能為提高藥效、有效預(yù)測藥物動(dòng)力學(xué)以及設(shè)計(jì)新型藥物提供寶貴的信息。
[1] Shitara Y,Maeda K,Ikejiri K,et al.Clinical significance of organic anion transporting polypeptides(OATPs) in drug disposition:their roles in hepatic clearance and intestinal absorption[J].Biopharm Drug Dispos,2013, 34(1):45-78.
[2] Jacquemin E,Hagenbuch B,Stieger B,et al.Expression cloning of a rat liver Na(+)-independent organic anion transporter[J].Proc Natl Acad Sci,1994,91(1): 133-7.
[3] Mikkaichi T,Suzuki T,Tanemoto M,et al.The organic anion transporter(OATP)family[J].Drug Metab Pharmacokinet,2004,19(3):171-9.
[4] Martin FF,Richard BK.Drug Transporters[M].Springer, 2011:1-22.
[5] Hagenbuch B,Meier PJ.The superfamily of organic anion transporting polypeptides[J].Biochim Biophys Acta,2003,1609(1):1-18.
[6] Kalliokoski A,Niemi M.Impact of OATP transporters on pharmacokinetics[J].Br J Pharmacol,2009,158(3): 693-705.
[7] Niemi M.Role of OATP transporters in the disposition of drugs[J].Pharmacogenomics,2007,8(7):787-802.
[8] RebelloS,ZhaoS,HariryS,etal.Intestinal OATP1A2 inhibition as a potential mechanism for the effect of grapefruit juice on aliskiren pharmacokinetics in healthy subjects[J].Eur J Clin Pharmacol,2012,68 (5):697-708.
[9] Tapaninen T,Neuvonen PJ,Niemi M.Orange and apple juice greatly reduce the plasma concentrations of the OATP2B1 substrate aliskiren[J].Br J Clin Pharmacol,2011,71(5):718-26.
[10] Bailey DG,Dresser GK,Leake BF,et al.Naringin is a major and selective clinical inhibitor of organic aniontransporting polypeptide 1A2(OATP1A2)in grapefruit juice[J].Clin Pharmacol Ther,2007,81(4):495-502.
[11] Misaka S,Yatabe J,Müller F,et al.Green tea ingestion greatly reduces plasma concentrations of nadolol in healthy subjects[J].Clin Pharmacol Ther,2014,95 (4):432-438.
[12] Hirano M,Maeda K,Shitara Y,et al.Drug-drug interaction between pitavastatin and various drugs via OATP1B1[J].Drug Metab Dispos,2006,34(7):1229-36.
[13] Shitara Y,Itoh T,Sato H,et al.Inhibition of transporter-mediated hepatic uptake as a mechanism for drug-druginteractionbetweencerivastatinandcyclosporin A[J].J Pharmacol Exp Ther,2003,304(2): 610-6.
[14] Shitara Y,Takeuchi K,Nagamatsu Y,et al.LonglastinginhibitoryeffectsofcyclosporinA,butnot tacrolimus,on OATP1B1-and OATP1B3-mediated uptake[J].Drug Metab Pharmacokinet,2011,27(4):368-78.
[15] Asberg A,Hartmann A,Fjelds? E,et al.Bilateral pharmacokineticinteractionbetweencyclosporineA and atorvastatin in renal transplant recipients[J].Am J Transplant,2001,1(4):382-6.
[16] Hermann M,Asberg A,Christensen H,et al.Substantially elevated levels of atorvastatin and metabolites in cyclosporine-treated renal transplant recipients [J].Clin Pharmacol Ther,2004,76(4):388-91.
[17] MückW,MaiI,FritscheL,etal.Increasein cerivastatin systemic exposure after single and multiple dosing in cyclosporine-treated kidney transplant recipients[J].Clin Pharmacol Ther,1999,65(3):251-61.
[18] Park JW,Siekmeier R,Lattke P,et al.Pharmacokinetics and pharmacodynamics of fluvastatin in heart transplant recipients taking cyclosporine A[J].J Cardiovasc Pharmacol Ther,2001,6(4):351-61.
[19] Hedman M,Neuvonen PJ,Neuvonen M,et al.Pharmacokinetics and pharmacodynamics of pravastatin in pediatric and adolescent cardiac transplant recipients on a regimen of triple immunosuppression[J].Clin Pharmacol Ther,2004,75(1):101-9.
[20] Simonson SG,Raza A,Martin PD,et al.Rosuvastatin pharmacokinetics in heart transplant recipients administered an antirejection regimen including cyclosporine [J].Clin Pharmacol Ther,2004,76(2):167-77.
[21] KajosaariLI,NiemiM,NeuvonenM,etal.Cyclosporine markedly raises the plasma concentrations of repaglinide[J].Clin Pharmacol Ther,2005,78(4): 388-99.
[22] Binet I,Walln?fer A,Weber C,et al.Renal hemodynamics and pharmacokinetics of bosentanwithand without cyclosporine A[J].Kidney Int,2000,57(1): 224-31.
[23] Hinton LK,Galetin A,Houston JB.Multiple inhibition mechanisms and prediction of drug-drug interactions: status of metabolism and transporter models as exemplified by gemfibrozil-drug interactions[J].Pharm Res,2008,25(5):1063-74.
[24] Whitfield LR,Porcari AR,Alvey C,et al.Effect of gemfibrozil and fenofibrate on the pharmacokinetics of atorvastatin[J].J Clin Pharmacol,2011,51(3):378-88.
[25] Backman JT,Kyrklund C,Neuvonen M,et al.Gemfibrozilgreatlyincreasesplasmaconcentrationsof cerivastatin[J].Clin Pharmacol Ther,2002,72(6):685-91.
[26] Spence JD,Munoz CE,Hendricks L,et al.Pharmacokinetics of the combination of fluvastatin and gemfibrozil[J].Am J Cardiol,1995,76(1):80A-83A.
[27] Kyrklund C,Backman JT,Neuvonen M,et al.Gemfibrozil increases plasma pravastatin concentrations and reduces pravastatin renal clearance[J].Clin Pharmacol Ther,2003,73(6):538-44.
[28] Schneck DW,Birmingham BK,Zalikowski JA,et al. The effect of gemfibrozil on the pharmacokinetics of rosuvastatin[J].Clin Pharmacol Ther,2004,75(5): 455-63.
[29] Kalliokoski A,Backman JT,Kurkinen KJ,et al.Effects of gemfibrozil and atorvastatin on the pharmacokinetics of repaglinide in relation to SLCO1B1 polymorphism[J].Clin Pharmacol Ther,2008,84(4):488-96.
[30] LauYY,HuangY,FrassettoL,etal.Effectof OATP1B transporter inhibition on the pharmacokinetics of atorvastatin in healthy volunteers[J].Clin Pharmacol Ther,2007,81(2):194-204.
[31] Van Giersbergen PLM,Treiber A,Schneiter R,et al. Inhibitory and inductive effects of rifampin on the pharmacokinetics of bosentan in healthy subjects[J].Clin Pharmacol Ther,2007,81(3):414-9.
[32] Seithel A,Eberl S,Singer K,et al.The influence of macrolide antibiotics on the uptake of organic anions and drugs mediated by OATP1B1 and OATP1B3[J].Drug Metab Dispos,2007,35(5):779-86.
[33] Bachmakov I,Glaeser H,Fromm MF,et al.Interaction of oral antidiabetic drugs with hepatic uptake transportersfocusonorganicaniontransporting polypeptides and organic cation transporter 1[J].Diabetes,2008,57(6):1463-9.
[34] Treiber A,Schneiter R,H?usler S,et al.Bosentan is a substrate of human OATP1B1 and OATP1B3:inhibition of hepatic uptake as the common mechanism of itsinteractionswithcyclosporinA,rifampicin,and sildenafil[J].Drug Metab Dispos,2007,35(8):1400-7.
[35] Seki S,Kobayashi M,Itagaki S,et al.Contribution of organicaniontransportingpolypeptideOATP2B1to amiodarone accumulation in lung epithelial cells[J].Biochim Biophys Acta,2009,1788(5):911-7.
[36] Shirasaka Y,Shichiri M,Mori T,et al.Major active components in grapefruit,orange,and apple juices responsible for OATP2B1-mediated drug interactions[J].J Pharm Sci,2013,102(9):3418-26.
[37] Rebello S,Compain S,Feng A,et al.Effect of cyclosporineonthepharmacokineticsofaliskirenin healthy subjects[J].J Clin Pharmacol,2011,51(11): 1549-60.
[38] Noé J,Portmann R,Brun ME,et al.Substrate-dependent drug-drug interactions between gemfibrozil,fluvastatin and other organic anion-transporting peptide (OATP)substratesonOATP1B1,OATP2B1,and OATP1B3[J].Drug Metab Dispos,2007,35(8):1308-14.
[39] Fuchikami H,Satoh H,Tsujimoto M,et al.Effects of herbal extracts on the function of human organic anion-transporting polypeptide OATP-B[J].Drug Metab Dispos,2006,34(4):577-82.
Advances in Drug-drug Interactions Mediated by Organic Anion Transporting Polypeptides*
XIAO Yi1,HUANG Xin2,JIANG Zhen-zhou2,CHEN Ding-ding1**
1Department of Pharmacology;2Jiangsu Center for Drug Screening,China Pharmaceutical University,Nanjing, 210009,China
Transporter-mediated drug-drug interactions have attracted increasing attentions,recent studies have shown that transporters play a very important role in drug absorption,distribution and excretion. Organic anion transporting polypeptides(OATP)are a group of drug uptake transporters and increasingly recognized as important factors in governing the pharmacokinetics of clinical medicine because of their broad expression and spectrum of substrate,drug-drug interaction may happen with some drugs inhibiting the OATP-mediated uptake.In this review,we summarized the distribution,molecular characteristics of human OATP superfamily and OATP-mediated drug-drug interactions.
Organic anion transporting polypeptides;Drug transporters;Drug-drug interaction
R969.2
A
1673-7806(2014)03-257-05
國家自然科學(xué)基金(81303301);中國藥科大學(xué)中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助(PY2014YW0016,PT2014YK0076)
肖熠,男,碩士生 E-mail:xiaoe1103@gmail.com
**通訊作者 陳丁丁,男,碩士生導(dǎo)師 E-mail:chdd@cpu.edu.cn
2014-04-06
2014-04-28