趙君亮
(1.中國科學院上海天文臺,上海 200030;2.上海師范大學,上海 200233)
銀河系恒星潮汐流的探測進展
趙君亮1,2
(1.中國科學院上海天文臺,上海 200030;2.上海師范大學,上海 200233)
銀暈外區(qū)存在眾多星流,它們或源自銀河系的矮伴星系,或源自暈族球狀星團,常分別稱為矮星系星流和球狀星團潮汐尾。星流可以利用各類示蹤星,并通過不同的途徑加以探測,對若干代表性矮星系星流和球狀星團潮汐尾的探測進展做了簡要的介紹。
銀河系;星流;人馬星流;球狀星團;潮汐尾;暗暈
CN53-1189/P ISSN1672-7673
“星流(stellar stream)”,是指具有共性運動學和物理學特征的一群恒星,因其在位置空間中呈現(xiàn)長條形水流狀分布得名,與20世紀初Kapteyn[1-2]提出的“二星流假設”中的“星流”有著不同的物理含義。
關(guān)于星流的有效實測研究始于1994年文[3]的工作,他們在人馬座方向銀河系中心以遠處探測到一批有共性運動特征的恒星,從而發(fā)現(xiàn)了距銀河系最近的伴星系——人馬矮橢球星系。該星系的結(jié)構(gòu)表現(xiàn)為朝銀道面方向拉長,并正處于瓦解過程之中,最終將會與銀河系并合[3-5]。隨后,人們對人馬矮星系進行了多方面的探測研究[6-18]。
繼人馬星流之后,銀河系周邊又陸續(xù)發(fā)現(xiàn)了眾多星流,與矮伴星系有關(guān)的如室女星流[19-23]、麒麟星流[19,24-26]、鯨魚星流[15,27]等;與暈族球狀星團有關(guān)的一些星流[28-32],特別是星團Palomar 5(Pal 5)的星流[19,33-37],以及若干尚未確認其本源的星流[38-44]。
星流是因矮伴星系或暈族球狀星團在銀河系潮汐力場的長期作用下生成的,在這一過程中伴星系或星團不斷丟失質(zhì)量,并最終會導致它們瓦解——已發(fā)現(xiàn)有些星流的母星系(或母星團)因瓦解而難覓蹤影[45-46]。另一方面,因星流物質(zhì)向銀河系內(nèi)落,甚至最終與之并合,銀河系的結(jié)構(gòu)會隨之發(fā)生變化。所以,有關(guān)星流的觀測研究,對探索銀河系的結(jié)構(gòu)和演化有重要的意義[8,14,44]。
由銀河系伴星系生成的星流,常以其主要部分所在的星座名命名,如室女星流[20]、麒麟星流[24]、鯨魚星流[27]等;個別以母星系的名稱命名,如人馬星流[47]。與星團有關(guān)的星流,因數(shù)目眾多、尺度又相對較小,通常并不賦以特定的名稱[28]。
星流常表現(xiàn)為由諸多小塊恒星集聚區(qū)構(gòu)成的條狀結(jié)構(gòu),故又可稱為恒星碎片流[48]。星流是在銀河系潮汐力場作用下生成的,有人便稱之為潮汐流[49],其中尺度較小的亦稱潮汐尾(tidal tail)[33],如球狀星團的此類結(jié)構(gòu)常稱為潮汐尾。上述多種名稱反映的乃是天文學上的一類重要觀測現(xiàn)象——在銀河系引力場作用下,從伴星系或球狀星團中拖曳出來,由眾多恒星構(gòu)成的、長短不一的條形結(jié)構(gòu)。
與銀河系的總體結(jié)構(gòu)相比,星流可歸于銀暈周邊尺度不等的次結(jié)構(gòu),或者說密度超區(qū)——相空間中星流成員星的數(shù)密度要高于周圍同類場星的數(shù)密度。不過,此類密度超區(qū)并非僅限于條狀的星流。如位于武仙座和天鷹座方向的密度超區(qū)的投影尺度為~15 kpc×20 kpc,稱為武仙-天鷹恒星云[50];位于大犬座的環(huán)狀星流冠名為大犬恒星環(huán)[25,51]。
本文僅限于簡要介紹與星流有關(guān)的探測結(jié)果。為明確起見,除個別小節(jié)(§3.3)外也不涉及如麥哲倫流那樣的氣體流。
圖1 銀河系周邊不同尺度星流結(jié)構(gòu)的示意圖Fig.1 A sketch diagram showing the 3D distributions of different-scale stellar tidal streams around the Galaxy
星流的成員星源自同一個伴星系或球狀星團(即星流本源),且已經(jīng)歷了長時間的演化,它們在參數(shù)(如位置、速度、星等、顏色、金屬度)空間中會呈現(xiàn)與場星不同的共性特征。一旦從觀測上發(fā)現(xiàn)某種可能的次結(jié)構(gòu),接下來就要在相應的參數(shù)空間中把它與某種銀河系模型的恒星預期分布進行比較,以證實該觀測次結(jié)構(gòu)在理論上的合理性,同時亦可給相關(guān)理論模型以觀測約束[52-54]。
星流可以通過以下幾種途徑(或者它們的綜合利用)加以探測[54]:
(1)位置空間(距離或球面位置,或兩者兼有之)中的恒星密度分布[55];
(2)恒星的CM圖[3,24];
(3)速度(視向速度和或自行)空間中恒星的共性運動學特征[14,25];
(4)角動量-能量相空間圖上恒星的成團性[56-57]。
觀測者必需借助能反映銀河系物質(zhì)分布的所謂“示蹤天體”,間接地探究銀河系的結(jié)構(gòu)成分。示蹤天體可以是恒星,也可以是氣體,如探測銀河系棒結(jié)構(gòu)就可以利用中性氫氣體。對于星流探測,示蹤星應滿足以下條件:(1)能起到標距天體的作用,能方便地確定其光度距離;(2)應有較高的光度,在很遠處也能取得所需要的觀測資料;(3)在星流結(jié)構(gòu)中應普遍存在,能保證統(tǒng)計分析結(jié)論的可靠性;(4)不難在眾多恒星中加以識別。
目前較為廣泛用于星流探測的示蹤星有:
(1)天琴RR(RRL)型變星。這是星流研究中最常用的示蹤星之一,有關(guān)研究相當多[10,19,55,58-60]。
(2)紅團簇(RC)星[55,61]。
(3)藍水平支(BHB)星[13,62-65]。
(4)主序折向點(MSTO)星,但它們并非是十分理想的標距天體,故常與其他類別的示蹤星綜合利用[38,55]。
(5)隨著SDSS巡天資料的面世,M型巨星被單獨或綜合用于銀河系星流研究[3,8,15,64]。
此外,還有其他一些類別的天體被用作探測星流的示蹤星,如藍離散(BS)星[66]、K型巨星[3,12,44]、紅巨星支(RGB)星[18]、碳星[67]、球狀星團[68-69]等,不過研究相對較少。另外,在同一項研究中會用到2種甚至2種以上的示蹤星[3,39,66]。
大尺度數(shù)字巡天(如SDSS、2MASS、Pan-STARRS 1[55]等)計劃的成功實施,大大提高了人們探測銀河系次結(jié)構(gòu)的能力,尤其是SDSS資料被廣泛用于星流探測,并得到了一系列新的成果,包括已知星流之細結(jié)構(gòu)[11,64],發(fā)現(xiàn)新的星流[11]和恒星密度超區(qū)[24]。既有矮伴星系產(chǎn)生的較大尺度星流[24-25,47,70],也有暈族球狀星團恒星形成的潮汐尾[31,71],或者本源尚不確準的小尺度星流[11,72]。
目前,在諸多矮星系星流中,研究工作做得最多、認識最為清楚且結(jié)論最為一致的當推射手星流。
2.1 人馬星流
人馬矮橢球星系為小星系在大星系潮汐力場作用下瓦解,并最終融入大星系的過程提供了一個極好的范本。最初,目標天區(qū)大多限于人馬矮星系本體10°~15°范圍內(nèi)[5,73],隨后被探測到的星流尺度漸而擴大[74-75],如2001年發(fā)現(xiàn)了距人馬矮星系本體60°處的潮汐碎片[76],2003年發(fā)現(xiàn)了日心距r=90 kpc處的人馬潮汐碎片[62]。事實上人馬矮星系的潮汐碎片流可能包圍了整個銀河系,而且碎片流大致分布在該伴星系的運動軌道附近[74]。21世紀初,利用SDSS資料提供的多種示蹤星所做的一系列研究,都證實了上述基本結(jié)論[24,47,58,76-79]。
2003年文[8]作者以2MASS提供的M型巨星作為示蹤星,發(fā)現(xiàn)從人馬矮星系本體向外存在兩條明顯的潮汐流,分別稱為前導星流和后隨星流,它們在天空中大致呈現(xiàn)一個360°的大圓。翌年,通過視向速度測定,發(fā)現(xiàn)前導星流成員星的動力學年齡比后隨星流恒星較為年老[80]。2006年證實沿著人馬星流呈現(xiàn)明顯的年齡/金屬度梯度——早期剝離的恒星更多的是一些老年貧金屬星[81],由此推知母星系應該存在徑向年齡/金屬度梯度。2007年發(fā)現(xiàn),人馬前導星流在太陽圈以遠處穿過銀道面,星流碎片之最小銀心距r>15 kpc[22]。
2006年文[11]作者利用SDSS(DR5)多色測光資料,確認了沿著人馬星流存在明顯的距離梯度,并探測到人馬前導星流從北銀極附近位置起呈現(xiàn)分叉結(jié)構(gòu),分別冠名為分支A和分支B。最近,文[15]作者發(fā)現(xiàn)南銀半球人馬后隨星流呈現(xiàn)與北部分叉相似的分叉結(jié)構(gòu),兩條分支相距~10°,有類似的距離梯度但星族成份有所不同。
近期,關(guān)于人馬星流的工作可謂方興未艾,如人馬星流的三維運動學研究[14-15],以及星流分叉結(jié)構(gòu)的研究(圖2)等[55]。
2.2 鯨魚星流(Cetus stream)
2009年文[12]作者注意到,在南銀冠人馬后隨星流附近,有一群具有共性運動特征的低金屬度BHB星,運動速度亦接近人馬星流。同年,文[27]作者通過對SDSS(DR7)資料的分析指出,這很可能說明那兒存在一條新的星流——鯨魚星流,因軌道路徑近乎極向又稱鯨魚極向星流(CPS)。鯨魚極向星流與人馬星流在位置上是交叉的,但星族和運動學特征則不同。上述基本結(jié)論后來為文[15]作者的研究所證實。
關(guān)于鯨魚極向星流的前身天體有兩種可能:(1)鑒于鯨魚極向星流恒星的銀緯跨度至少有15° (~10 kpc),前身天體很可能是一個矮星系,不過在其軌道附近并未探測到任何矮星系;(2)球狀星團NGC5824的位置距鯨魚極向星流軌道不到3°,兩者的日心距、視向速度和星族特征相近,它也許就是鯨魚極向星流的母天體,而這個大質(zhì)量球狀星團則可能曾經(jīng)是一個矮星系的核[12,82]。
圖2 射手星流在銀道直角坐標系(X,Z)平面(左)和(Y,Z)平面(右)上的投影位置,前者大致位于星流軌道面附近,后者則與軌道面正交。中央水平線代表銀盤所處位置,叉號代表太陽。圖中的圓圈和三角分別表示亮支和暗支上RC星的觀測位置,小黑點取自模擬數(shù)據(jù)[55]Fig.2 The projections of the Sgr.stream onto the Galactic X-Z plane and Y-Z plane,respectively.The X-Z plane is about the orbital plane of the stream,and the Y-Z plane is about perpendicular to the orbit.The Galactic disk is represented by the horizontal line,and the location of the Sun is marked with a cross.Circles and triangles indicate the positions of the RC stars in the fields of the bright and faint arms.The small solid dots represent the simulated data[55]
2.3 獨孤星流(Orphan stream)
獨孤星流是由文[11]和文[83]作者于2006年獨立發(fā)現(xiàn)的,因當時尚未有明確的前身母天體而得其名。之后,人們隨即對它進行了多方面的探究[39-44]。
2007年文[39]作者的研究表明,SDSS(DR5)資料所顯示的獨孤星流的角尺度約為50°。該星流存在距離梯度:天赤道附近星流的日心距約為20 kpc,并以~40 km s-1的速度朝向地球運動;在高赤緯區(qū)星流日心距最大可達~32 kpc,以~100 km s-1的速度遠離地球而去。
2010年文[43]作者利用SDSS和SEGUE資料詳細地討論了獨孤星流的軌道,發(fā)現(xiàn)該星流位于一條順行軌道上,遠銀心距90 kpc,近銀心距16.4 kpc,軌道偏心率e=0.7。最近,文[44]作者由K型巨星樣本得出,該星流的角寬度只有2°左右,約只及人馬星流的1/5。
關(guān)于獨孤星流的前身天體,迄今尚未得出一致性的結(jié)論。2007年文[39]作者率先提出,獨孤星流與新發(fā)現(xiàn)的矮橢球星系大熊II可能有物理上的聯(lián)系,主要理由是兩者的距離頗為接近。大熊II由文[84]作者于2006年發(fā)現(xiàn)并命名,其日心距約為30 kpc,且正處于瓦解之中。同年,文[40]作者的理論工作支持了上述觀點,并進而提出了較為連貫的演化圖像——很久以前,某個伴星系與銀河系相并合,獨孤星流、大熊II以及若干年輕暈族球狀星團,都是這一并合過程中,因該伴星系被撕裂而生成的碎片。盡管如此,不同的觀點依然存在[42-44]。
除上述星流外,銀暈外區(qū)還存在其他一些矮星系星流。如室女星流[19-23,71]、麒麟星流[71,85-88]、大犬恒星環(huán)[25,51]、反銀心星流(ACS)[89-90]、Styx星流[48]等等。
球狀星團在星流探測中可能具有雙重身份:其一,在銀河系引力場作用下,部分星團成員星被剝離而生成潮汐尾,星團是潮汐尾的母天體;其二,球狀星團自身可能來自近鄰矮星系,它們屬于矮星系星流的成員,矮星系是星團的母天體。
3.1 球狀星團潮汐尾
20世紀90年代中期,人們發(fā)現(xiàn)許多星團的兩側(cè)存在潮汐碎片,表現(xiàn)為在星團的最外緣部分,實測密度輪廓與King模型不符,即超出了模型潮汐半徑的范圍[28-29,91]。碎片來自瓦解中的球狀星團,與星團有著類似的運動軌道,它們會沿著軌道路徑從兩個方向伸出,形成星團的前導尾和后隨尾[33]。
數(shù)字巡天使探測工作進一步深入[33,35,71]。在眾多球狀星團中,以星團Pal 5潮汐尾的工作做得最多,也最為細致[19,33-37,71],而其他球狀星團則顯得較為零碎[31-32,36,38,48,92-97]。
3.1.1 球狀星團Pal 5潮汐尾
Pal 5是一個結(jié)構(gòu)相對松散的遠距離球狀星團,日心距r=23.2 kpc,質(zhì)量M=(0.8-1.3)×104M☉,核半徑約20 pc(角半徑2.′9)。Pal 5可歸于光度最低的球狀星團之列,總光度僅約為MV=-5.0 mag,質(zhì)量只及銀河系球狀星團中位質(zhì)量的1/30[33-34]。
2001年,文[33]作者率先利用SDSS的5色深度測光資料對Pal 5結(jié)構(gòu)進行了探究。他們發(fā)現(xiàn)從星團本體的南、北兩側(cè)、距團中心約0.2° (投影線距離為80 pc)處出發(fā),分別朝東北和西南方向(也就是星團的軌道路徑方向)伸出2條近乎對稱的潮汐尾,其銀緯大體上保持不變,整個潮汐尾結(jié)構(gòu)的張角約為2.6°(圖3)。
上述基本結(jié)論為多項后續(xù)工作所證實或修正。如2003年給出潮汐尾的總長度超過10°(線尺度40 kpc),其中前導尾長3.5°,后隨尾長6.5°,遠大于2年前得到的長度2.6°[35]。3年后,利用SDSS(DR4)資料得出,Pal 5后隨尾的長度接近19°,潮汐尾結(jié)構(gòu)總長度可達22.5°[36]。顯然,潮汐尾長度的增大與觀測天區(qū)的范圍有關(guān)——隨著目標天區(qū)的擴大,發(fā)現(xiàn)了距團中心越來越遠的潮汐尾成員。另一方面,恒星從星團中剝離是一種間歇性、而不是連續(xù)性過程:星團通過近銀心點附近時會有較多恒星剝離出來,而在遠銀心點附近則少有、甚至沒有恒星被剝離,早期的觀測天區(qū)較小,遠處的潮汐碎片就發(fā)現(xiàn)不了。
圖3 球狀星團Pal 5的面密度輪廓,2條潮汐尾清晰可見[33]。橫坐標為赤經(jīng),縱坐標是赤緯,其單位均為“°”Fig.3 Contours of the surface-density profile of the globular cluster Pal 5.Two tidal tails of the Pal 5 are obvious in this contour plot[33].The horizontal axis is for Right Ascensions in degrees,and the vertical axis is for Declinations in degrees
文[33]作者2001年的工作表明,在19.5≤i≤22.0星等范圍內(nèi),Pal 5潮汐尾中的恒星約占目前該星團總星數(shù)的32%,可見Pal 5已經(jīng)歷了較為顯著的質(zhì)量損失。2003年發(fā)現(xiàn),潮汐尾中原為母星團成員的恒星總數(shù)是目前星團成員星數(shù)的1.2倍——潮汐尾質(zhì)量已超過了星團自身的質(zhì)量[35]。據(jù)此他們認為質(zhì)量損失主要是在最近20億年內(nèi)發(fā)生的,并估算了平均質(zhì)量損失率,同時指出該星團的原始質(zhì)量可能是它現(xiàn)有質(zhì)量的6~10倍。
3.1.2 多星團樣本的探測研究
1995年,文[20]作者討論了NGC288等12個球狀星團的外部結(jié)構(gòu),發(fā)現(xiàn)對于大部分樣本星團,面密度輪廓都存在因外部潮汐力生成的側(cè)翼結(jié)構(gòu)。不久,文[91]作者計算了M5等7個球狀星團的潮汐半徑,發(fā)現(xiàn)其中5個星團呈現(xiàn)潮汐尾結(jié)構(gòu)。
2000年文[30]作者證實,星團潮汐尾的存在乃是一種普遍現(xiàn)象。他們的觀測樣本中計有20個球狀星團,所有星團表現(xiàn)出有潮汐尾結(jié)構(gòu),其投影方向偏于朝向銀心。在這些星團中,有7個團的潮汐尾取向與潮汐場梯度相一致,說明它們起因于銀河系激波;有9個團的潮汐尾結(jié)構(gòu)可能反映了星團的軌道路徑,且有著不同程度的質(zhì)量損失。
3.2 作為矮星系星流成員的球狀星團
銀河系內(nèi)約有150個球狀星團,它們大多形成于約120億年前。但暈族球狀星團有很寬的年齡譜,最年輕的(如Pal 1)甚至比厚盤球狀星團(如杜鵑47)的年齡小得多。對這種異常情況的解釋是大星系在形成過程中吸積了多個小星系,而被吸積的矮星系各有其恒星和星團的形成史。因此,需要找到能支持這一觀點的觀測證據(jù)。
早在1992年文[92]作者就已指出,年輕球狀星團Ruprecht 106很可能是因銀河系潮汐力作用從麥哲倫云俘獲而來,另一個年輕星團Pal 12也許有著同樣的起源,后者是一個很遠的球狀星團,日心距約19 kpc。但是,2000年,文[93]作者的研究表明,Pal 12更可能是人馬星流的成員,而非源自麥哲倫云,并估計出Pal 12從矮星系經(jīng)潮汐剝離而被俘獲的時間大約發(fā)生在17億年之前。
2002年文[94]作者的研究支持了Dinescu等人的觀點,他們發(fā)現(xiàn)Pal 12的球面位置距人馬矮星系主體約40°,且很靠近南方人馬星流。他們還在Pal 12附近發(fā)現(xiàn)了一個同樣屬于人馬星流成員的低面亮度(LSB)恒星系統(tǒng),并在總結(jié)前人工作[3,24,98]的基礎(chǔ)上指出,人馬矮星系在瓦解過程中至少為銀暈注入了5個球狀星團,其中M54和Ter 8兩個星團的年齡與銀河系最年老球狀星團相仿,第3個星團Arp 2較之略微年輕些,還有2個星團(Ter 7和Pal 12)的年齡則要比上述3個星團年輕幾十億年,屬于銀暈中最年輕、金屬豐度最高的球狀星團。除球狀星團外,人馬矮星系在瓦解過程中還為銀暈注入了許多不同年齡和不同金屬度的恒星——這些正是文[99]銀河系演化模型的預期結(jié)果。
5年后,文[95]作者發(fā)現(xiàn)了源自人馬矮星系的第6個銀暈球狀星團——Whiting 1,年齡僅為6.5 Ga,較上述5個星團更為年輕,日心距r=29.4 kpc,金屬度為[Fe/H]=-0.65。Whiting 1經(jīng)歷了來自銀河系的潮汐剝離過程,它的天球位置、日心距和視向速度(-130.6 km s-1)與人馬后隨星流的觀測特征相一致。Whiting 1母星系的確認,說明至少在60億年前人馬矮星系中還能形成星團,有力地支持了年輕暈族球狀星團來自被銀河系吸積的矮星系的觀點。
順便指出,有些結(jié)構(gòu)相對松散的高光度暈族球狀星團,可能就是很久以前因經(jīng)歷潮汐剝離作用而剩下的矮星系核,或者說是被吸積矮星系的遺跡,它們的母星系早已不復存在,如NGC2419即屬此列——NGC2419是一個現(xiàn)已瓦解的矮星系的核,室女星流亦屬該星系的一部分[100-101]。
最早提出“星流”概念的也許可追溯到1894年Holmes的工作[102]。不過,關(guān)于銀河系星流僅有約20年的有效觀測研究史,而期間所取得成果之豐富卻遠非拙文所能充分述及。隨著觀測資料的累積,以及一些近距河外星系中矮星系星流和星團潮汐尾的發(fā)現(xiàn)[103-105],相關(guān)實測結(jié)果必將受到人們更為廣泛的關(guān)注。
[1] Trumpler R J,Weaver H F.Statistical Astronomy[M].California:University of California Press,1953:272.
[2] Trumpler R J,Weaver H F.Statistical Astronomy[M].California:University of California Press,1953:274.
[3] Ibata R A,Gilmore G,Irwin M J.A dwarf satellite galaxy in Sagittarius[J].Nature,1994,370 (6486):194-196.
[4] Irwin M J,Ibata R A,Gilmore G,et al.The space motion and extent of the Sagittarius dwarf galaxy[J].Astronomical Society of the Pacific Conference series,1996,92:84-87.
[5] Ibata R A,Wyse R F G,Gilmore G,et al.The kinematics,orbit and survival of the Sagittarius dwarf spheroidal galaxy[J].The Astronomical Journal,1997,113:634-655.
[6] Zhao H S.The survival of the Sagittarius dwarf spheroidal galaxy and the flatness of the rotation curve of the Galaxy[J].The Astrophysical Journal,1998,500:L149-L152.
[7] Johnston K V,Majewski S R,Siegel M H,et al.Constraining the history of the Sagittarius dwarf galaxy using observations of its tidal debris[J].The Astronomical Journal,1999,118:1719-1726.
[8] Majewski S R,Skrutskie M F,Weinberg M D,et al.A two micron all sky survey of the Sagittarius dwarf galaxy I.morphology of the Sagittarius core and tidal arms[J].The Astrophysical Journal,2003,599:1082-1115.
[9] Martínez-Delgado D,Gómez-Flechoso M á,Aparicio A,et al.Tracing out the northern tidal stream of the Sagittarius dwarf spheroidal galaxy[J].The Astrophysical Journal,2004,601: 242-259.
[10] Vivas A K,Zinn R,Gallart C.VLT spectroscopy of RR Lyrae stars in the Sagittarius tidal stream [J].The Astronomical Journal,2005,129:189-200.
[11] Belokurov V,Zucker D B,Evans N W,et al.The field streams:Sagittarius and its siblins[J]. The Astrophysical Journal,2006,642:L137-L140.
[12] Yanny B,Newberg H J,Johnson J A,et al.Tracing Sagittarius structure with SDSS and Segue imaging and spectroscopy[J].The Astrophysical Journal,2009,700:1282-1298.
[13] Law D R,Majewski S R.Assessing the Milky Way satellites associated with the Sagittarius dwarf spheroidal galaxy[J].The Astrophysical Journal,2010,718:1128-1150.
[14] Carlin J L,Majewski S R,Casetti-Dinescu D J,et al.Kinematics and chemistry of stars along the Sagittarius trailing tail and constrains on the Milky Way Mass distribution[J].The Astrophysical Journal,2012,744:25-53.
[15] Koposov S E,Berokurov V,Evans N W,et al.The Sagittarius streams in the southern galactic hemosphere[J].The Astrophysical Journal,2012,750:80-88.
[16] Koposov S E,Berokurov V,Evans N W.Sagittarius stream three-dimensional kinematics from Sloan digital sky survey stripe 82[J].The Astrophysical Journal,2013,766:79-86.
[17] Ibata R,Lewis G F,Martin N F,et al.Does the Sagittarius stream constrain the Milky Way halo to be triaxial?[J].The Astrophysical Journal,2013,765:L15-L19.
[18] Martin C,Carlin J L,Newberg H J,et al.Kinematic discovery of a stellar stream located in Pisces[J].The Astrophysical Journal,2013,765:L39-L43.
[19] Vivas A K,Zinn R.The quest RR Lyrae survey.II.The halo overdensities in the first catalog [J].The Astronomical Journal,2006,132:714-728.
[20] Duffau S,Zinn R,Vivas A K,et al.Spectroscopy of quest RR Lyrae variables:the new Virgo stellar stream[J].The Astrophysical Journal,2006,636:L97-L100.
[21] Vivas A K,Jaffé Y L,Zinn R,et al.Spectroscopy of bright quest RR Lyrae stars:velocity substructure toward Virgo[J].The Astronomical Journal,2008,136:1645-1657.
[22] Newberg H J,Yanny B,Cole N,et al.The overdensity in Virgo,Sagittarius debris and the asymmetric spheroid[J].The Astrophysical Journal,2007,668:221-235.
[23] Carlin J L,Yam W,Casetti-Dinescu D I,et al.The origin of the Virgo stellar substructure[J]. The Astrophysical Journal,2012,753:145-163.
[24] Newberg H J,Yanny B,Rockosi C,et al.The ghost of Sagittarius and lumps in the halo of the Milky Way[J].The Astrophysical Journal,2002,569:245-274.
[25] Yanny B,Newberg H J,Grebel E K,et al.A low latitude halo stream around the Milky Way [J].The Astrophysical Journal,2003,588:824-841.
[26] Pe?arrubia J,Martínez-Delgado D,Rix H W,et al.A comprehensive model for the Monoceros tidal stream[J].The Astrophysical Journal,2005,626:128-144.
[27] Newberg H J,Yanny B,Willett B A.Discovery of a new polar-orbiting debris stream in the Milky Way stellar halo[J].The Astrophysical Journal,2009,700:L61-L64.
[28] Lynden-Bell D,Lynden-Bell R M.Ghostly streams from the formation of the Galaxy’s halo[J]. Monthly Notices of the Royal Astronomical Society,1995,275:429-442.
[29] Grillmair C J,F(xiàn)reeman K C,Irwin M,et al.Globular clusters with tidal tails:deep two-colors star counts[J].The Astronomical Journal,1995,109:2553-2585.
[30] Leon S,Meylan G,Combes F.Tidal tails around 20 globular clusters[J].The Astronomy and Astrophysics,2000,359:907-931.
[31] Grillmair C J,Johnson R.The detection of a 45°tidal stream associated with the globular cluster NGC5466[J].The Astrophysical Journal,2006,639:L17-L20.
[32] Grillmair C J,Dionatos O.Detection of a 63°cold stellar stream in the Sloan digit sky survey [J].The Astrophysical Journal,2006,643:L17-L20.
[33] Odenkirchen M,Grebel E K,Rockosi C M,et al.Detection of massive tidal tail around the globular cluster Palomar 5 with Sloan digit sky survey commissioning data[J].The Astrophysical Journal,2001,548:L165-L169.
[34] Odenkirchen M,Grebel E K,Dehnen W,et al.Kinematic study of the disrupting globular cluster Palomar 5 using VLT spectra[J].The Astronomical Journal,2002,124:1497-1510.
[35] Odenkirchen M,Grebel E K,Dehnen W,et al.The extended tails of Palomar 5 arc of globular cluster tidal debris[J].The Astronomical Journal,2003,126:2385-2407.
[36] Grillmair C J,Dionatos O.A 22°tidal tail for Palomar 5[J].The Astrophysical Journal,2006,641:L37-L39.
[37] Odenkirchen M,Grebel E K,Kayser A,et al.Kinematics of the tidal debris of the globular cluster Palomar 5[J].The Astronomical Journal,2009,137:3378-3387.
[38] Drake J L,Catelan M,Djorgovski S G,et al.Evidence for a Milky Way tidal stream reaching deyand 100 kpc[J].The Astrophysical Journal,2013,765:154-168.
[39] Belokurov V,Evans N W,Irwin M J,et al.An orphan in the“field of streams”[J].The Astrophysical Journal,2007,658:337-344.
[40] Fellhauer M,Evans N W,Belokurov V,et al.Is Ursa Major II the progenitor of the orphan stream?[J].Monthly Notices of the Royal Astronomical Society,2007,375:1171-1179.
[41] Jin S,Lynden-Bell D.Are complex A and the orphan stream related?[J].Monthly Notices of the Royal Astronomical Society,2007,378:L64-67.
[42] Sales L V,Helmi A,Starkenburg E,et al.On the genealogy of the orphan stream[J].Monthly Notices of the Royal Astronomical Society,2008,389:1391-1399.
[43] Newberg H J,Willett B A,Yanny B,et al.The orbit of the orphan stream[J].The Astrophysical Journal,2010,711:32-49.
[44] Casey A R,da Costa G,Keller S C,et al.Hunting the parent of the orphan stream:identifying stream members from low-resolution spectroscopy[J].The Astrophysical Journal,2013,764: 39-45.
[45] Ibata R A,Irwin M J,Lewis G F,et al.One ring to encompass them all:a giant stellar structure that surrounds the Galaxy[J].Monthly Notices of the Royal Astronomical Society,2003,340: L21-L27.
[46] Sesar B,Cohen J G,Levitan D,et al.Two distant halo velocity groups discovered by the Palomar transient factory[J].The Astrophysical Journal,2012,755:134-144.
[47] Ibata R A,Irwin M J,Lewis G F,et al.Galactic halo substructure in the Sloan digit sky survey:the ancient tidal stream from the Sagittarius dwarf galaxy[J].The Astrophysical Journal,2001,547:L133-L136.
[48] Grillmair C J.Four new stellar debris stream in the Galactic halo[J].The Astrophysical Journal,2009,693:1118-1127.
[49] Law D R,Majewski S R.The Sagittarius dwarf galaxy:a model for evolution in a triaxial Milky Way halo[J].The Astrophysical Journal,2010,714:229-254.
[50] Belokurov V,Evans N W,Bell E F,et al.The Hercules-Aquila cloud[J].The Astrophysical Journal,2007,657:L89-L92.
[51] Kinman T D,Saha A,Pier J R.Halo structure shown by RR Lyrae stars in the anticenter direction[J].The Astrophysical Journal,2004,605:L25-L28.
[52] Robin A C,Reylé C,Derriére S,et al.A synthetic view on structure and evolution of the Milky Way[J].Astronomy and Astrophysics,2003,409:523-540.
[53] Girardi L,Groenewegen M A T,Hatziminaoglou E,et al.Star counts in the Galaxy simulating from very deep to very shallow photometric surveys with the TRILEGAL code[J].Astronomy and Astrophysics,2005,436:895-915.
[54] Rocha-Pinto H J.Chemo-dynamical substructure of the Galactic halo[J].International Astronomical Union Symposium,2009,265:255-262.
[55] Slater C T,Bell E F,Schlafly E F,et al.A Pan-STARRSI view of the bifurcated Sagittarius stream[J].The Astrophysical Journal,2013,762:6-14.
[56] Helmi A,White S D M,de Zeeuw P T,et al.Debris streams in the solar neighbourhood as relics from the formation of the Milky Way[J].Nature,1999,402(6757):53-55.
[57] Klement R,Rix H W,F(xiàn)lynn C,et al.Halo streams in the seventh Sloan digital sky survey data release[J].The Astrophysical Journal,2009,698:865-894.
[58] Vivas A K,Zinn R,Andrews P,et al.The quest RR Lyrae survey:confirmation of the clump at 50 kiloparsecs and other overdensities in the outer halo[J].The Astrophysical Journal,2001,554:L33-L36.
[59] Watkins L L,Evans N W,Belokurov V,et al.Substructure revealed by RR Lyraes in SDSS stripe 82[J].Monthly Notices of the Royal Astronomical Society,2009,398:1757-1771.
[60] Sesar B,Ivezic′?,Lupton R H et al.Exploring the variable sky with the Sloan digital sky survey [J].The Astronomical Journal,2007,134:2236-2251.
[61] Correnti M,Bellazzini M,Ibata R A,et al.The northern wraps of the Sagittarius stream as traced by red clump stars:distance intrinsic widths,and stellar densities[J].The Astrophysical Journal,2010,721:329-356.
[62] Newberg H J,Yanny B,Grebel E K,et al.Sagittarius tidal debris 90 kiloparsecs from the Galactic center[J].The Astrophysical Journal,2003,596:L191-L194.
[63] Monaco L,Bellazzini M,F(xiàn)erraro F R,et al.Blue horizontal-branch stars in the Sagittarius dwarf spheroidal galaxy[J].The Astrophysical Journal,2003,597:L25-L28.
[64] Niederste-Ostholt,M,Belokurov V,Evans N W,et al.Re-assembling the Sagittarius dwarf galaxy[J].The Astrophysical Journal,2010,712:516-526.
[65] Ruhland C,Bell E F,Rix H W,et al.The structure of the Sagittarius stream as traced by Blue horizontal branch stars[J].The Astrophysical Journal,2011,731:119-135.
[66] Yanny B,Newberg H J,Kent S,et al.Identification of a-colored stars and structure in the halo of the Milky Way from Sloan digital sky survey commissioning data[J].The Astrophysical Journal,2000,540:825-841.
[67] Totten E J,Irwin M J.The APM survey for cool carbon stars in the Galactic halo-I[J].Monthly Notices of the Royal Astronomical Society,1998,294:1-27.
[68] Lynden-Bell D,Lynden-Bell R M.Ghostly streams from the formation of the Galaxy’s halo[J]. Monthly Notices of the Royal Astronomical Society,1995,275:429-442.
[69] Bellazzini M,F(xiàn)erraro F R,Ibata R.Building up the globular cluster system of the Milky Way: contribution of the Sagittarius galaxy[J].The Astronomical Journal,2003,125:188-196.
[71] 田浩,姜碧溈.星流的搜尋[J].天文學進展,2012,30(1):64-76. Tian Hao,Jiang Bi Wei.Searching for the stellar streams[J].Progress in Astronomy,2012,30 (1):64-76.
[72] Rockosi C,Odenkirchen M,Grebel E K,et al.A matched-filter analysis of the tidal tails of the globular cluster Palomar 5[J].The Astronomical Journal,2002,124:349-363.
[73] Mateo M,Olszewski E W,Morrison H L.Tracing the outer structure of the Sagittarius dwarf galaxy:detections at angular distances between 10°-34°[J].The Astrophysical Journal,1998,508:L55-L59.
[74] Majewski S R,Siegel M H,Kunkel,et al.Constraining the history of the Sagittarius dwarf galaxy using observations of its tidal debris[J].The Astronomical Journal,1999,118:1709-1718.
[75] Dinescu D I,Majewski S R,Girard T M,et al.Absolute proper motions to β~22.5.V.detection of Sagittarius dwarf spheroidal debris in the direction of the Galactic anticenter[J].The Astrophysical Journal,2002,575:L67-L70.
[76] Dohm-Palmer R C,Helmi A,Morrison H L,et al.Mapping the Galactic halo,V.Sagittarius dwarf spheroidal tidal debris 60°from the main body[J].The Astrophysical Journal,2001,555:L37-L40.
[77] Martínez-Delgado D,Aparicio D,Gómez-Flechoso M A,et al.Tidal streams in the Galactic halo:evidence for the Sagittarius northern stream or traces of a new nearby dwarf galaxy[J]. The Astrophysical Journal,2001,549:L199-L202.
[78] Kundu A,Majewski S R,Rhee J,et al.Exploring halo substructure with giant stars.III.first results from the grid giant star survey and discovery of a possible nearby Sagittarius tidal structure in Virgo[J].The Astrophysical Journal,2002,576:L125-L129.
[79] Ibata R A,Lewis G F,Irwin M,et al.Great circle tidal streams:evidence for a nearby spherical massive dark halo around the Milky Way[J].The Astrophysical Journal,2001,551:294-311.
[80] Helmi A.Velocity trends in the debris of Sagittarius and the shape of the dark matter halo our Galaxy[J].The Astrophysical Journal,2004,610:L97-L100.
[81] Bellazzini M,Newberg H J,Correnti M,et al.Detection of a population gradient in the Sagittarius stream[J].Astronomy and Astrophysics,2006,457:L21-L24.
[82] Georgiev I Y,Hilker M,Puzia T H,et al.On the genealogy of the orphan stream[J].Monthly Notices of the Royal Astronomical Society,2009,396:1075-1085.
[83] Grillmair C J.Detection of a 60°-long dwarf galaxy debris stream[J].The Astrophysical Journal,2006,645:L37-L40.
[84] Zucker D B,Belokurov V,Evans N W,et al.A curious Milky Way satellite in Ursa Major[J]. The Astrophysical Journal,2006,650:L41-L44.
[85] Martin N F,Ibata R A,Bellazzini M,et al.A dwarf galaxy remnant in the Canis Major:the fossil of an in-plane accretion on to the Milky Way[J].Monthly Notices of the RoyalAstronomical Society,2004,348:12-23.
[86] Martínez-Delgado D,Butler D J,Rix H W,et al.The closest view of a dwarf galaxy:new evidence on the nature of the Canis Major overdensity[J].The Astrophysical Journal,2005,633:205-209.
[87] Momany Y,Zaggia S R,Bonifacio P,et al.Probong the Canis Major stellar over-density as due to the Galactic warp[J].Astronomy and Astrophysics,2004,421:L29-L32.
[88] Carraro G,Vázquez R A,Moitinho A,et al.Detection of a young stellar population in the background of open clusters in the third galactic quadrant[J].The Astrophysical Journal,2005,630:L153-L156.
[89] Grillmair C J,Carlin J L,Majewski S R.Fishing in tidal streams:new radial velocity and proper motions constrains on the orbit of the anticenter stream[J].The Astrophysical Journal,2008,689:L117-L120.
[90] Li J,Newberg H J,Carlin J L,et al.On rings and streams in the Galactic anti-center[J].The Astrophysical Journal,2012,757:151-175.
[91] Lehmann I,Scholz R D.Tidal radii of the globular clusters M5,M12,M13,M15,M53,NGC5053 and NGC5466 from automated star counts[J].Astronomy and Astrophysics,1997,320:776-782.
[92] Lin D N C,Richer H B.Young globular clusters in the Milky Way Galaxy[J].The Astrophysical Journal,1992,388:L57-L60.
[93] Dinescu D I,Majewski S R,Girard T M,et al.The absolute proper motions of Palomar 12:a case for tidal capture from the Sagittarius dwarf spheroidal galaxy[J].The Astronomical Journal,2000,120:1892-1905.
[94] Martínez-Delgado D,Zinn R,Carrera R,et al.Remnants of the Sagittarius dwarf spheroidal galaxy around the young globular cluster Palomar 12[J].The Astrophysical Journal,2002,573:L19-L22.
[95] Carraro G,Zinn R,Bidin C M.Whiting 1:the youngest globular cluster associated with the Sagittarius dwarf spheroidal galaxy[J].Astronomy and Astrophysics,2007,466:181-189.
[96] Niederste-Ostholt M,Belokurov V,Evans N W,et al.The tidal tails of the ultra-faint globular cluster Palomar 1[J].Monthly Notices of the Royal Astronomical Society,2010,408:66-71.
[97] Koposov S E,Rix H W,Hogg D W.Constraining the Milky Way potential with a six-dimensional phase-space map of the GD-1 stellar stream[J].The Astrophysical Journal,2010,712:260-273.
[98] Irwin M.Proper motions of Local Group satellites[J].International Astronomical Union Symposium,1999,192:409-419.
[99] Searle L,Zinn R.Compositions of halo clusters and the formation of the Galactic halo[J].The Astrophysical Journal,1978,225:357-379.
[100] Casetti-Dinascu D I,Girard T M,Majewski S R,et al.Proper motions of Kapteyn selected area 103:a preliminary orbit for the Virgo stellar stream[J].The Astrophysical Journal,2009,701: L29-L33.
[101] Cohen J G,Kirby E N,Simon J D,et al.NGC2419-another remnant of accretion by the Milky Way[J].The Astrophysical Journal,2010,725:288-295.
[102] Holmes E.Star streams[J].Journal of British Astronomical Association,1894,5:26-28.
[103] Martínez-Delgado D,Gabany R J,Crawford K,et al.Stellar tidal streams in spiral galaxies of the local volume:a pilot survey with the modest aperture telescopes[J].The Astronomical Journal,2010,140:962-967.
[104] Ma J,de Grijs R,Chen D,et al.Are complex A and the orphan stream related?[J].Monthly Notices of the Royal Astronomical Society,2007,376:1621-1629.
[105] Kalirai J S,Guhathakurta P,Gilbert K M,et al.Kinematics and metallicity of M31 red giants: the giant southern stream and discovery of a second cold component at R=20kpc[J].The Astrophysical Journal,2006,641:268-280.
Progress of Detections of Stellar Tidal Streams around the Galaxy
Zhao Junliang1,2
(1.Shanghai Astronomical Observatory,Chinese Academy of Sciences,Shanghai 200030,China,Email:jlzhao@shao.ac.cn;2.Shanghai Normal University,Shanghai 200233,China)
Many stellar tidal streams in the outer halo of the Galaxy have been found since 1994.Some streams were formed from dwarf satellites of the Galaxy and others were from globular clusters.The streams of these two types of origin are usually called dwarf streams and tidal tails of clusters,respectively.Observational and theoretical studies of stellar tidal streams have been steadily accumulated throughout the past 20 years or so.Stellar tidal streams can be identified by using different luminous tracers,such as RR Layaes,red clump stars,blue horizontal-branch stars,main-sequence turnoff stars,M giant stars,and red giant branch stars. These stars are observable even if they are rather far away from the Sun and can be used to determine the heliocentric distances of streams.Various approaches can be used to analyze parameter distributions of these tracers to detect stellar tidal streams.The parameter distributions include distributions of positions,velocities,and Color-Magnitude values.Among the many streams discovered the Sagittarius(Sgr)stream is most spectacular.Since its discovery the Sgr dwarf spheroid galaxy(dSph)has been considered the illustrative example of the assimilation of a small galaxy into a larger one through tidal destruction.In 2003 two tidal substreams of the Sgr stream were discovered;one of them is leading the main body of the dSph galaxy and the other is trailing.A few years later,a bifurcation of the leading sub-stream(into branches A and B)starting at about the North Galactic Pole was identified.Recently,a similar bifurcation of the trailing sub-stream in the Southern Galactic Hemisphere was also identified.Since mid-1990s it has been known that most of the Galactic globular clusters show leading or trailing tidal tails out of their main bodies.Among these,tidal tails of the Palomar 5(Pal 5)are the most closely studied.It has been known over a decade that the Pal 5 has two tails symmetrically stretching out from the main body with a total angular extension of at least 2.6°.Subsequent observations show that the extension of the tails can be even more than known previously,reaching up to 22.5° according to 2006 data.Studies of stellar tidal streams are important for several reasons.First,they yield details about tidal destruction and galaxy merging.Second,they may reveal interesting aspects of galaxy evolution in the presence of strong tidal forces.Third,tidal streams can be used to effectively probe the gravitational potential of the Galaxy(including the dark halo).On the last aspect,however,observations and models of the disruption of the Sgr stream have yielded ambiguous results,which are affected by different choices of data,analysis approaches,and the shape of the Galactic halo(which has been modeled to be oblate,protracted,spherical,or even triaxial).
The Galaxy;Stellar tidal stream;Sagittarius stream;Globular cluster;Tidal tail;Dark halo
P156
A
1672-7673(2014)04-0323-12
2014-02-21;
2014-04-16
趙君亮,男,碩士.研究方向:星團與銀河系結(jié)構(gòu).Email:jlzhao@shao.ac.cn