王菊宅
代數(shù)知識是在算術(shù)知識的基礎(chǔ)上發(fā)展起來的,其特點是用字母表示數(shù),使數(shù)的概念及其運算法則抽象化和公式化。初中一年級剛接觸代數(shù)時,學(xué)生要經(jīng)歷由算術(shù)到代數(shù)的過渡,這里的主要標志是由數(shù)過渡到字母表示數(shù),這是在小學(xué)的數(shù)的概念的基礎(chǔ)上更高一個層次上的抽象。字母是代表數(shù)的,但它不代表某個具體的數(shù),這種一般與特殊的關(guān)系正是初一學(xué)生學(xué)習的困難所在。
為了克服初一新生對這一轉(zhuǎn)化而引發(fā)的學(xué)習障礙,教學(xué)中要特別重視“代數(shù)初步知識”這一章的教學(xué)。它是承小學(xué)知識之前,啟初中知識之后,開宗明義,搞好中小學(xué)數(shù)學(xué)銜接的重要環(huán)節(jié)。數(shù)學(xué)中要把握全章主體內(nèi)容的深度,從小學(xué)學(xué)過的用字母表示數(shù)的知識入手,盡量用一些字母表示數(shù)的實例,自然而然地引出代數(shù)式的概念。再講述如何列代數(shù)式表示常見的數(shù)量關(guān)系,以及代數(shù)式的一些初步應(yīng)用知識。要注意始終以小學(xué)所接觸過的代數(shù)知識(小學(xué)沒有用“代數(shù)”的提法)為基礎(chǔ),對其進行較為系統(tǒng)的歸納與復(fù)習,并適當加強提高。使學(xué)生感到升入初一就像在小學(xué)升級那樣自然,從而減小升學(xué)感覺的負效應(yīng)。
初一代數(shù)的第一堂課,一般不講課本知識,而是對學(xué)生初學(xué)代數(shù)給予一定的描述、指導(dǎo)。目的是在總體上給學(xué)生一個認識,使其粗略了解中學(xué)數(shù)學(xué)的一些情況。如介紹:(1)數(shù)學(xué)的特點。(2)初中數(shù)學(xué)學(xué)習的特點。(3)初中數(shù)學(xué)學(xué)習展望。(4)中學(xué)數(shù)學(xué)各環(huán)節(jié)的學(xué)習方法,包括預(yù)習、聽講、復(fù)習、作業(yè)和考核等。(5)注意觀察、記憶、想象、思維等智力因素與數(shù)學(xué)學(xué)習的關(guān)系。(6)動機、意志、性格、興趣、情感等非智力因素與數(shù)學(xué)學(xué)習的聯(lián)系。
學(xué)生對于數(shù)的概念,在小學(xué)數(shù)學(xué)中雖已有過兩次擴展,一次是引進數(shù)0,一次是引進分數(shù)(指正分數(shù))。但學(xué)生對數(shù)的概念為什么需要擴展,體會不深。而到了初一要引進的新數(shù)———負數(shù),與學(xué)生日常生活上的聯(lián)系表面上看不很密切。他們習慣于“升高”、“下降”的這種說法,而現(xiàn)在要把“下降5米”說成“升高負5米”是很不習慣的,為什么要這樣說,一時更不易理解。所以使學(xué)生認識引進負數(shù)的必要是初一數(shù)學(xué)中首先遇到的一個難點。
我們在正式引入負數(shù)這一概念前,先把小學(xué)數(shù)學(xué)中的數(shù)的知識作一次系統(tǒng)的整理,使學(xué)生注意到數(shù)的概念是為解決實際問題的需要而逐漸發(fā)展的,也是由原有的數(shù)集與解決實際問題的矛盾而引發(fā)新數(shù)集的擴展。即自然數(shù)集添進數(shù)0→擴大自然數(shù)集(非負整數(shù)集)添進正分數(shù)→算術(shù)數(shù)集(非負有理數(shù)集)添進負整數(shù)、負分數(shù)→有理數(shù)集……。這樣就為數(shù)系的再一次擴充作好準備。
這樣,逐步引進正、負數(shù)的概念,將會有助于學(xué)生體會引進新數(shù)的必要性。從而在心理產(chǎn)生認同,進而順利地把數(shù)的范疇從小學(xué)的算術(shù)數(shù)擴展到初一的有理數(shù),使學(xué)生不至產(chǎn)生巨大的跳躍感。
初一的四則運算是源于小學(xué)數(shù)學(xué)的非負有理數(shù)運算而發(fā)展到有理數(shù)的運算,不僅要計算絕對值,還要首先確定運算符號,這一點學(xué)生開始很不適應(yīng)。在負數(shù)的“參算”下往往出現(xiàn)計算上的錯誤,有理數(shù)的混合運算結(jié)果的準確率較低,所以,特別需要加強練習。
另外,對于運算結(jié)果來說,計算的結(jié)果也不再像小學(xué)那樣唯一了。如|a|,其結(jié)果就應(yīng)分三種情況討論。這一變化,對于初一學(xué)生來說是比較難接受的,代數(shù)式的運算對他們而言是個全新的問題,要正確解決這一難點,必須非常注重,要使學(xué)生在正確理解有理數(shù)概念的基礎(chǔ)上,掌握有理數(shù)的運算法則。對運算法則理解越深,運算才能掌握得越好。但是,初一學(xué)生的數(shù)學(xué)基礎(chǔ)尚
不能透徹理解這些運算法則,所以在處理上要注意設(shè)置適當?shù)奶荻?,逐步加深。有理?shù)的四則運算最終要歸結(jié)為非負數(shù)的運算,因此“絕對值”概念應(yīng)該是我們教學(xué)中必須抓住的關(guān)鍵點。而定義絕對值又要用到“互為相反數(shù)”的概念,“數(shù)軸”又是講授這兩個概念的基礎(chǔ),一定要注意數(shù)形結(jié)合,加強直觀性,不能急于求成。學(xué)生正確掌握、熟練運用絕對值這一概念,是要有一個過程的。在結(jié)合實例利用數(shù)軸來說明絕對值概念后,還得在練習中逐步加深認識、進行鞏固。
學(xué)生在小學(xué)做習題,滿足于只是進行計算。而到初一,為了使其能正確理解運算法則,盡量避免計算中的錯誤,就不能只是滿足于得出一個正確答案,應(yīng)該要求學(xué)生每做一步都要想想根據(jù)什么,要靈活運用所學(xué)知識,以求達到良好的教學(xué)效果。這樣,不但可以培養(yǎng)學(xué)生的運算思維能力,也可使學(xué)生逐步養(yǎng)成良好的學(xué)習習慣。
進入初中的學(xué)生,這個年齡段學(xué)生的思維正由形象思維向抽象思維過渡。思維的不穩(wěn)定性以及思維模式的尚未形成,決定了列方程解應(yīng)用題的學(xué)習將是初一學(xué)生面臨的一個難度非常大的坎。列方程解應(yīng)用題的教學(xué)往往是費力不小,效果不佳。因為學(xué)生解題時只習慣小學(xué)的思維套用公式,屬定勢思維,不善于分析、轉(zhuǎn)化和作進一步的深入思考,思路狹窄、呆滯,題目稍有變化就束手無策。
這頭一個方面是主要的,解決了它,另兩個方面就都好解決了。所以,小學(xué)數(shù)學(xué)第八冊列方程解應(yīng)用題教學(xué)時,一要使學(xué)生掌握算術(shù)法和代數(shù)法的異同點,并講清列方程解應(yīng)用題的思路;二要有針對性地讓學(xué)生加強把實際中的數(shù)量關(guān)系改寫成代數(shù)式的訓(xùn)練,這樣對小學(xué)生逆向思維有好處,使較復(fù)雜的應(yīng)用題化難為易。初一講授列方程解應(yīng)用題教學(xué)時,要重視知識發(fā)生過程。因為數(shù)學(xué)本身就是一種思維活動,教學(xué)中要使學(xué)生盡可能參與進去,從而形成和發(fā)展具有思維特點的智力結(jié)構(gòu)。
總之,學(xué)生在小學(xué)數(shù)學(xué)中接觸的都是較為直觀、簡單的基礎(chǔ)知識,而升入初一后,要學(xué)的知識在抽象性、嚴密性上都有一個飛躍,作為初一數(shù)學(xué)教師,認真分析研究有關(guān)問題,對搞好中小學(xué)數(shù)學(xué)課堂教學(xué)的銜接和提高教學(xué)質(zhì)量有很大的現(xiàn)實意義