尤 勐,黃戰(zhàn)華,蔡懷宇
基于嚴(yán)格耦合波理論的新型耦合光柵分析
尤 勐1,2,黃戰(zhàn)華1,2,蔡懷宇1,2
(1. 天津大學(xué)精密儀器與光電子工程學(xué)院,天津 300072;2. 天津大學(xué)光電信息技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,天津 300072)
針對(duì)波導(dǎo)全息平視器中一種新型的耦合光柵結(jié)構(gòu),基于嚴(yán)格耦合波理論數(shù)值分析了其衍射特性,同時(shí)對(duì)光柵的工藝容差進(jìn)行了分析,計(jì)算了膜厚、槽深、周期與入射波長(zhǎng)對(duì)耦合效率的影響.該光柵以波導(dǎo)板中內(nèi)嵌的閃耀光柵鋸齒面作基底,鍍高折射率的膜層后,覆蓋鋸齒狀的金屬膜層.計(jì)算結(jié)果表明:對(duì)于波長(zhǎng)532,nm的TE偏振光,空氣中0°入射的一級(jí)衍射效率可大于90%;當(dāng)空氣中入射光的縱向角在[-8°,12°]、橫向角在[-15°,15°]內(nèi)變化時(shí),一級(jí)衍射效率可大于82%且保持平穩(wěn).該光柵可在波導(dǎo)全息平視器中,對(duì)大視場(chǎng)成像光束進(jìn)行均勻、高效的耦合.
光柵;衍射效率;嚴(yán)格耦合波理論
波導(dǎo)型全息平視顯示器件(waveguide holographic helmet mounted display,W-HMD)是由英國(guó)軍火商BAE Systems公司推向市場(chǎng)的一種新型屏顯器件[1],其功能在于同時(shí)顯示外界目標(biāo)與艙內(nèi)參數(shù),減輕駕駛員的操作負(fù)擔(dān).相較于傳統(tǒng)的反射式屏顯,該設(shè)計(jì)采用波導(dǎo)折疊光路的方式,可壓縮空間結(jié)構(gòu),使其更加小型集成化.但是該器件要求各視場(chǎng)的成像光束均勻、高效地耦合入波導(dǎo)板內(nèi),以完成對(duì)出瞳的二維展開(kāi).前人在光柵耦合領(lǐng)域做了許多工作,但很少考慮寬角度入射下光柵的耦合特性[2-4].2010年BAE Systems公司在相關(guān)專(zhuān)利中公布了一種新型的耦合光柵結(jié)構(gòu)[5],可以很好地解決寬角度、大視場(chǎng)入射下光束的耦合問(wèn)題,并將其應(yīng)用到W-HMD的工業(yè)生產(chǎn)中.但是限于專(zhuān)利的保密性,該光柵的組成材料、結(jié)構(gòu)細(xì)節(jié)、衍射特性等參數(shù)并未得到披露,且鮮有文獻(xiàn)做過(guò)詳細(xì)的報(bào)道.
筆者基于嚴(yán)格耦合波理論(rigorous coupled wave analysis,RCWA),選取了特定的光柵材料,數(shù)值分析了寬角度入射下該新型光柵的衍射效率.同時(shí),對(duì)光柵的工藝容差進(jìn)行了分析,計(jì)算了膜厚、槽深、周期與入射波長(zhǎng)對(duì)耦合效率的影響,可對(duì)光柵的實(shí)際制作加工提供理論指導(dǎo).
由于耦合光柵的特征尺寸在波長(zhǎng)量級(jí),本文選擇了RCWA進(jìn)行矢量計(jì)算,以求得各級(jí)衍射效率的嚴(yán)格解.RCWA的出發(fā)點(diǎn)在于各層相應(yīng)級(jí)次的橫向諧波耦合,即空間頻率需要保持一致.以TE波入射為例,先求出入射與透射區(qū)域的電場(chǎng)表達(dá)式EⅠ,y和,即
再由Maxwell方程得到光柵內(nèi)部的電磁場(chǎng)分量Egy和Hgx,即
結(jié)合光柵內(nèi)的介電常數(shù)()xε′并在0z=和zd=處運(yùn)用邊界條件,得到不同介質(zhì)分界面電磁場(chǎng)的連續(xù)分量,列方程組即可求解各衍射級(jí)次的能量.求解過(guò)程中采用透射矩陣以提高計(jì)算效率,并運(yùn)用薄層光柵的遞推方法以避免數(shù)值的不穩(wěn)定.
編程后,以北京大學(xué)Fu等[8]所述的參數(shù)進(jìn)行設(shè)定,計(jì)算矩形金屬光柵的衍射效率.圖1為該光柵在不同占空比的條件下,反射率與刻槽深度的關(guān)系曲線,與文獻(xiàn)[8]相符,可證明程序編寫(xiě)正確.
圖1 矩形金屬光柵的衍射效率Fig.1 Diffraction efficiency for square-wave metal grating with different filling factors
2.1 光柵結(jié)構(gòu)
如圖2(a)所示,該光柵由3部分組成:第一部分是下基底,與波導(dǎo)板相黏合,上端呈鋸齒狀,選用二氧化硅(SiO2),折射率為1.52;第二部分是在鋸齒斜面鍍的膜層,選用二氧化鈦(TiO2),其折射率為2.5;第三部分是上基底,由金屬銀(Ag)組成[9-10].設(shè)圖2(a)中光柵的周期為T(mén),閃耀槽深為d,膜層的厚度為x.
在RCWA程序中模擬該光柵的一個(gè)周期,設(shè)定分層數(shù)目為50,如圖2(b)所示.圖中白色區(qū)域表示下基底,灰色區(qū)域表示上基底,黑色區(qū)域表示膜層.編寫(xiě)相應(yīng)代碼后代入RCWA程序計(jì)算各級(jí)衍射效率.
圖2 新型耦合光柵結(jié)構(gòu)Fig.2 Structure of the novel coupling grating
2.2 0°入射下的衍射效率
由于光柵結(jié)構(gòu)中存在金屬介質(zhì),經(jīng)過(guò)程序的多次嘗試性計(jì)算后,選擇入射光為T(mén)E模偏振,可以獲得較好的衍射特性.考慮人眼對(duì)波長(zhǎng)的靈敏度以及常用圖像源的波長(zhǎng)范圍,選擇入射波長(zhǎng)為532,nm.考慮常用的波導(dǎo)介質(zhì),選擇折射率為1.52.光束耦合入波導(dǎo)后,會(huì)以全反射的方式在波導(dǎo)內(nèi)部傳播,如圖3所示.
由于W-HMD視場(chǎng)內(nèi)的光束均需滿足波導(dǎo)內(nèi)的全反射條件,根據(jù)波導(dǎo)1.52的折射率計(jì)算,全反射角度至少大于42°.同時(shí)為了滿足光束在波導(dǎo)內(nèi)存在足夠的反射次數(shù),全反射角度不宜大于75°.所以在[42°,75°]的角度范圍內(nèi),選擇60°作為視場(chǎng)中心光束(即圖3中縱向角b=0°的光束)在波導(dǎo)內(nèi)的全反射角度,以滿足大視場(chǎng)光束的耦合需求.因此可計(jì)算得到光柵的周期T=410,nm.此時(shí)光束以縱向角b= 0°入射,正一級(jí)衍射光將在導(dǎo)板中全反射傳播,與底面夾角約60°,如圖3所示.
圖3 耦合光柵與波導(dǎo)板示意Fig.3 Combination of coupling grating and the waveguide
為了比較新型耦合光柵的性能,圖4(a)給出了普通鋸齒光柵的衍射特性(即圖2(a)中去除膜層,上、下基底直接黏合).其中(0)R、(-1)R、(+1)R分別代表零級(jí)、負(fù)一級(jí)、正一級(jí)的衍射.在槽深d增加至250,nm時(shí),普通鋸齒光柵的正一級(jí)衍射效率為60%,負(fù)一級(jí)衍射效率接近20%.
圖4 RCWA計(jì)算的各級(jí)衍射效率Fig.4 Diffraction efficiency changing with parameters calculated by RCWA
圖4 (b)給出了新型耦合光柵隨膜厚x變化的衍射效率.經(jīng)過(guò)程序的多次計(jì)算,設(shè)定槽深d= 240,nm,此時(shí)膜厚x變化時(shí),光柵可以獲得衍射效率的峰值.可以看出,當(dāng)x在[50,nm,150,nm]范圍內(nèi)變化時(shí),正一級(jí)衍射效率接近90%,零級(jí)與負(fù)一級(jí)均低于5%.隨著x的繼續(xù)增加,正一級(jí)衍射效率遞減而零級(jí)效率遞增,同時(shí)在x=180,nm、380,nm、450,nm處,存在明顯的導(dǎo)模共振現(xiàn)象.為了獲取較高的耦合效率,本文選擇膜厚x=96,nm,此時(shí)的正一級(jí)衍射效率可達(dá)90%.
2.3 寬角度入射下的衍射效率
當(dāng)入射角發(fā)生變化時(shí),導(dǎo)板內(nèi)的正一級(jí)衍射角也會(huì)發(fā)生變化.為了滿足全反射條件,設(shè)定入射縱向角b∈[-8°,12°],橫向角a[∈-15°,15°],該角度范圍可同時(shí)滿足W-HMD 20°×30°的視場(chǎng)要求[11].
設(shè)定d=240,nm,x=96,nm.圖5(a)為a或b獨(dú)立變化時(shí),新型耦合光柵的正一級(jí)衍射效率曲線.圖中兩短虛線的間隔表示[-8°,12°],長(zhǎng)虛線表示隨b變化的曲線,實(shí)線表示隨a變化的曲線.可以看出,當(dāng)b在[-8°,12°]或a在[-15°,15°]范圍內(nèi)變化時(shí),一級(jí)衍射效率大于82%且變化平穩(wěn).
圖5 隨入射角度變化的衍射效率Fig.5Variation of diffraction efficiency with incident angle
在圖5(b)中設(shè)定a和b聯(lián)立變化,以模擬空間中任意角度入射的光束.可以看出,新型耦合光柵的正一級(jí)衍射效率依然大于82%,且?guī)缀醪浑S入射角而變.這種對(duì)角度的不敏感性,可使W-HMD中各視場(chǎng)的入射光均勻、高效地耦合入波導(dǎo)中.
作為對(duì)比,圖5(c)顯示了普通鋸齒光柵的衍射效率曲線,很明顯隨b的變化幅度較大.
新型耦合光柵的制備需要離子束刻蝕、電子束蒸發(fā)等工藝[12-13],在制備的過(guò)程中由于儀器精度或者加工流程等因素,使得成品與原先設(shè)計(jì)的參數(shù)相比,可能存在以下幾方面的偏差:鍍膜厚度x的偏差、槽深d的偏差、光柵周期T的偏差,同時(shí)入射光的波長(zhǎng)也易在小范圍內(nèi)發(fā)生改變.本節(jié)討論這些參數(shù)的變化對(duì)耦合效率的影響.
3.1 鍍膜厚度x的偏差
在第2.2節(jié)已經(jīng)討論過(guò)膜厚與衍射效率的關(guān)系,由圖4(b)可以看出,當(dāng)膜厚在[50,nm,150,nm]范圍內(nèi)變化時(shí),正一級(jí)的衍射效率均接近90%,在此范圍外則迅速下降.
3.2 槽深d的偏差
圖6(a)為槽深d在[0,nm,500,nm]范圍內(nèi)變化時(shí),衍射效率的變化曲線.該曲線在d=234,nm達(dá)到峰值的90%,而后向兩側(cè)遞減.當(dāng)d[200∈,nm,280,nm]時(shí),正一級(jí)衍射效率可大于85%;當(dāng)d∈[180,nm,312,nm]時(shí),正一級(jí)衍射效率可大于80%.
3.3 光柵周期T的偏差
當(dāng)改變光柵的周期T時(shí),正一級(jí)衍射光束與底面的夾角也會(huì)發(fā)生改變.為了滿足全反射條件,同時(shí)觀察圖6(b)中隨周期T變化的衍射效率,設(shè)定T[380∈,nm,500,nm].在此范圍內(nèi),衍射光束與底面的夾角在[45°,66°]之間,滿足全反射條件且正一級(jí)衍射效率大于80%.
3.4 入射波長(zhǎng)的偏差
在[400,nm,700,nm]內(nèi)改變?nèi)肷洳ㄩL(zhǎng),同時(shí)改變銀(Ag)隨波長(zhǎng)變化的折射率,計(jì)算所得的效率曲線如圖6(c)所示.在考慮全反射條件后,得出波長(zhǎng)在[480,nm,580,nm]范圍內(nèi)變化時(shí),正一級(jí)衍射光束效率可大于80%.
圖6 工藝容差分析Fig.6Variation of diffraction efficiency with different parameters
本文對(duì)W-HMD中的新型耦合光柵進(jìn)行了數(shù)值分析.在選取了光柵材料和入射條件后,光柵的正一級(jí)衍射效率在垂直入射下大于90%,寬角度入射下大于82%,且隨入射角度的變化可保持平穩(wěn).該結(jié)構(gòu)可在W-HMD中,完成大視場(chǎng)、高效率、均勻的成像光束耦合.最后對(duì)光柵的工藝容差進(jìn)行了分析,為實(shí)際制作提供理論依據(jù).
[1] Simmons Michael,Howard Richard. A Projection Dis-play with a Rod-Like,Rectangular Cross-Section Waveguide and a Plate-Like Waveguide,Each of Them Having a Diffraction Grating:WO 2007/029034[P]. 2007-03-15.
[2] Miller J M,Beaucoudrey N D,Chavel P,et al. Design and fabrication of binary slanted surface-relief gratings for a planar optical interconnection [J]. Applied Optics,1997,36(23):5717-5726.
[3] Wang B,Jiang J H,Nordin G P. Compact slanted grating couplers [J]. Optics Express,2004,12(15):3313-3325.
[4] Chen H Y,Yang K C. Design of a high-efficiency grating coupler based on a silicon nitride overlay for siliconon-insulator waveguides [J]. Applied Optics,2010,49(33):6455-6461.
[5] Simmons Michael David. Improvements in Optical Waveguides:WO 2010/122330 [P]. 2010-10-28.
[6] Moharam M G. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings [J]. Journal of Optical Society of America A,1995,12(5):1068-1076.
[7] Moharam M G. Stable implementation of the rigorous coupled wave analysis for surface-relief gratings enhanced transmittance matrix approach [J]. Journal of Optical Society of America A,1995,12(5):1077-1086.
[8] Fu Zhengping,Lin Feng,Zhu Xing. Numerical study on the optical absorption of one dimension metallic gratings [J]. Acta Physics Sinica,2011,60(11):114213-1-114213-6.
[9] Ghosh G. Handbook of Thermo-Optic Coefficients of Optical Materials with Applications [M]. San Diego:Academic Press,1998.
[10] Palik E P. Handbook of Optical Constants of Solids [M]. 1st ed. San Diego:Academic Press,1998.
[11] Huang Q,Caulfield H J. Waveguide holography and its applications[J]. SPIE Proceedings,1991,1461:303-312.
[12] 王 寧,魏朝陽(yáng),邵建達(dá),等. 電子束自動(dòng)掃描SiO2材料沉積速率控制實(shí)驗(yàn)研究[J]. 中國(guó)激光,2010,31(10):2615-2619.
Wang Ning,Wei Chaoyang,Shao Jianda,et al. Experimentation of deposition rate control of SiO2by E-beam auto-sweeping [J]. Chinese Journal of Lasers,2010,31(10):2615-2619(in Chinese).
[13] 徐宗偉,房豐洲,張少婧,等. 基于聚焦離子束銑削的復(fù)雜微納結(jié)構(gòu)制備[J]. 天津大學(xué)學(xué)報(bào),2009,42(1):91-94.
Xu Zongwei,F(xiàn)ang Fengzhou,Zhang Shaojing,et al. Fabrication of complicated micronano structures using focused ion beam milling method [J]. Journal of Tianjin University,2009,42(1):91-94(in Chinese).
(責(zé)任編輯:趙艷靜)
Numerical Analysis of a Novel Coupling Grating Based on RCWA
You Meng1,2,Huang Zhanhua1,2,Cai Huaiyu1,2
(1. School of Precision Instrument and Opto-Electronics Engineering,Tianjin University,Tianjin 300072,China;2. Key Laboratory of Opto-Electronics Information Technology of Ministry of Education,Tianjin University,Tianjin 300072,China)
A novel coupling grating could play an important part in the waveguide holographic helmet mounted display,but to our knowledge few documents reveal its diffraction features in detail. Based on rigorous coupled wave analysis,the diffraction features are numerically analyzed. Tolerance analyses are also made of film thickness,groove depth,cycles and incident wavelength. The grating base is like the blazing grating etched in the waveguide. On the tilt surface,the film with high refractive index is first coated and then the metal is coated on the film in succession. The results show that for the TE-polarized incident light of 532,nm,the 1storder diffraction efficiency is larger than 90% with perpendicular incidence. It could remain stable with the incident angle from the air changing between [-8°,12°] vertically and [-15°,15°] horizontally. The 1st diffraction efficiency could be larger than 82% and keep stable. The proposed coupling gratingcould couple the image rays from large view fields into the display device with high efficiency and uniformity.
grating;diffraction efficiency;rigorous coupled wave analysis
O436.1
A
0493-2137(2014)03-0262-05
10.11784/tdxbz201206061
2012-06-26;
2012-08-10.
尤 勐(1986— ),男,博士研究生,ymeng@tju.edu.cn.
黃戰(zhàn)華,zhanhua@tju.edu.cn.