李一星,吳梅,李友國
摘要:對前期利用抑制消減雜交技術(shù)(Suppressive subtractive hybridization, SSH)構(gòu)建的紫云英(Astragalus sinicus)根部組織的共生固氮差異表達cDNA文庫進行了全文庫測序和初步分析,并利用半定量RT-PCR方法驗證了其中5個基因片段在根瘤中的下調(diào)表達。結(jié)果表明,從180個克隆中共獲得94個有效序列,文庫插入片段長度為200~1 300 bp。BLAST同源比對分析結(jié)果表明,有90個序列可以找到同源片段,有4個可能為新基因,按功能分為10個類群。
關(guān)鍵詞:紫云英(Astragalus sinicus);共生固氮;抑制消減雜交;下調(diào)表達基因
中圖分類號:S541+.3;Q786 文獻標識碼:A 文章編號:0439-8114(2014)07-1684-06
Isolation and Analysis of Down-regulated Symbiotic Nitrogen Fixation Genes in Astragalus sinicus Root Nodules
LI Yi-xing, WU Mei, LI You-guo
(State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China)
Abstract: In previous work, a cDNA library of Astragalus sinicus genes related with symbiotic nitrogen fixation was constructed with suppressive subtractive hybridization(SSH). The library containing down-regulated genes was sequenced and analyzed. Among the sequenced genes, five fragments were sckeened and its down-regulated expressions were confirmed by semi-quantitative RT-PCR. The results showed that 94 genes were obtained from 180 clones and the average length of inserted fragments was 200~1 300 bp. Nucleotide BLAST homological analysis showed that 90 genes had similarities to known genes and 4 genes were putatively novel genes. All the 94 genes were divided into 10 functional categories.
Key words:Astragalus sinicus; symbiotic nitrogen fixation; suppressive subtractive hybridization; down-regulated gene
根瘤菌和豆科植物可以共生固氮,共生固氮是一個二者相互識別、相互作用的復(fù)雜過程。根瘤的形成以及根瘤菌的入侵、分化和發(fā)育離不開植物基因的參與和調(diào)控[1]。這種調(diào)控涉及多種代謝途徑和信號傳遞過程,有多個基因參與。對共生固氮過程中基因表達情況進行全局性的研究,可以發(fā)現(xiàn)并鑒定出更多與根瘤形成和固氮過程相關(guān)的基因,有助于建立共生固氮的調(diào)控網(wǎng)絡(luò)。如研究者從蒺藜苜蓿中鑒定出756個與根瘤形成和固氮相關(guān)的差異表達基因,其中313個基因上調(diào)表達,而443個基因則下調(diào)表達[2]。Lohar等[3]也從苜蓿中檢測出在根瘤菌感染的1~72 h內(nèi)各階段上調(diào)或下調(diào)表達的基因。抑制消減雜交技術(shù)是一種以mRNA差異顯示為基礎(chǔ)的篩選差異表達基因技術(shù),已被廣泛應(yīng)用于植物差異表達基因的研究。Fan等[4]利用抑制消減雜交技術(shù)篩選出火龍果中與干旱脅迫相關(guān)的基因;Guo等[5]采用抑制消減雜交從胡椒中鑒定出73個在低溫脅迫下可能受脫落酸調(diào)控的基因;韓明鵬等[6]構(gòu)建了紫花苜蓿高溫脅迫條件下的抑制消減雜交文庫,用來篩選高溫誘導(dǎo)表達的基因。抑制消減雜交技術(shù)同樣是研究共生條件下差異表達基因的有效手段。Clement等[7]構(gòu)建了干旱條件下大豆根瘤的抑制消減雜交文庫,并從中鑒定出一批與干旱條件下根瘤的固氮功能相關(guān)的新基因。Godiard等[8]通過抑制消減雜交技術(shù)篩選出52個在根瘤菌-苜蓿共生固氮過程中起調(diào)控作用的基因。
紫云英(Astragalus sinicus)是一種主要分布于中國、日本和韓國等東南亞國家的豆科綠肥。它和華癸中慢生根瘤菌共生,形成不定型根瘤,二者的共生具有嚴格的宿主專一性,是研究共生固氮的好材料[9]。前期工作中Chou等[10]構(gòu)建了紫云英根瘤的正向和反向抑制消減雜交文庫,并通過上調(diào)文庫鑒定出16個共生條件下增強或誘導(dǎo)表達的新基因。相對于上調(diào)表達基因,下調(diào)表達基因同等重要,本研究對前期構(gòu)建的下調(diào)文庫進行了全文庫測序,并對測序結(jié)果進行了同源比對分析,為后續(xù)基因功能的研究提供參考。
1 材料和方法
1.1 材料
華癸中慢生根瘤菌7653R(Mesorhizobium huakuii 7653R)為華中農(nóng)業(yè)大學(xué)農(nóng)業(yè)微生物學(xué)國家重點實驗室固氮室保存。RNA抽提所用Trizol試劑購自Invitrogen公司,Taq DNA聚合酶、DNaseⅠ、Reverse Transcriptase M-MLV均購自Takara大連有限公司。
1.2 方法
1.2.1 植物培養(yǎng)及結(jié)瘤 將紫云英種子用70%乙醇處理5 min,再用3%NaClO處理10 min,然后用無菌水洗滌5~6次,將消毒后的種子用無菌水浸泡2 h后,平攤于含有0.5%蔗糖和1.2%瓊脂的平皿上,置于光照培養(yǎng)箱中22 ℃培養(yǎng)。待胚根長至1 cm左右時,將種子接種于無菌沙缽中培養(yǎng),子葉展開后接種華癸中慢生根瘤菌7653R。所有植株均用無氮營養(yǎng)液澆灌。
1.2.2 總RNA的提取和cDNA合成 接種根瘤菌7653R后26 d,收集根瘤、去除根瘤的根和未接種植株的根,用Trizol試劑提取根瘤組織總RNA,經(jīng)DNaseⅠ處理后,用紫外分光光度計測定其純度和濃度,然后用DEPC水將各樣品RNA濃度調(diào)整到一致。取3 μL總RNA,以O(shè)ligo dT18為引物,反轉(zhuǎn)錄酶Reverse Transcriptase M-MLV反轉(zhuǎn)錄得到cDNA,以5′-ATGCAGATCTTTTGTGAAGAC-3′和5′-ACCACCACGGAAGACGGAG-3′為引物, 進行PCR 擴增保守基因泛素序列,以驗證cDNA合成是否有效。
1.2.3 半定量RT-PCR 分別以根瘤、去除根瘤的根和未接種植株的根的cDNA為模板,用基因特異性引物擴增AsG6、AsC2、AsB3、AsT6、AsD5這5個基因片段,擴增產(chǎn)物經(jīng)2%瓊脂糖凝膠電泳,進行半定量分析,以232 bp的18S rRNA 基因片段為內(nèi)參。所用引物序列見表1。
1.2.4 序列分析 目的基因氨基酸序列推測及比對利用BioEdit軟件進行。同源比對利用BLAST程序(http://www.ncbi.nlm.nih.gov/,http://ca.expasy.org/)進行。氨基酸保守結(jié)構(gòu)域采用InterProScan (http://www.ebi.ac.uk/)和Pfam(http://www.sanger.ac.uk/Software/)數(shù)據(jù)庫進行分析。
2 結(jié)果和分析
2.1 文庫序列的聚類分析
將下調(diào)文庫進行全文庫測序,共獲得94個有效序列,插入片段的大小在200~1 300 bp。將所有序列利用BLAST程序進行同源序列比對(表2),結(jié)果發(fā)現(xiàn)有90個序列可以找到同源片段,同時有4個序列在數(shù)據(jù)庫中找不到同源片段,推測這4個序列可能代表新的基因。以上94個有效序列對應(yīng)81個基因,按其編碼蛋白的功能分為10個類群(圖1):核糖體蛋白9個,信號轉(zhuǎn)導(dǎo)相關(guān)蛋白7個,基因表達相關(guān)蛋白12個,代謝相關(guān)蛋白20個,膜及轉(zhuǎn)運相關(guān)蛋白11個,細胞應(yīng)激防御相關(guān)蛋白8個,未知蛋白6個,假定蛋白3個,無同源性蛋白4個和1個其他蛋白。
2.2 半定量RT-PCR驗證
在測序得到的94個基因片段中,分別選取過氧化物酶、熱激蛋白、C3HC4型鋅指蛋白、假定蛋白和質(zhì)體藍素蛋白5個基因片段AsG6、AsC2、AsB3、AsT6、AsD5(表2)對其下調(diào)表達進行驗證。提取接種后26 d的紫云英根瘤、感染根和未接種對照根的總RNA,進行半定量RT-PCR分析。以232 bp的18S rRNA 基因片段為內(nèi)參,檢測5個目標基因的半定量結(jié)果。由圖2可知,與未接種的根相比,這5個基因在根瘤中的表達量大大降低,呈明顯的下調(diào)表達特征,這說明文庫的結(jié)果是可靠的。
3 結(jié)論與討論
3.1 基因表達相關(guān)蛋白
El Yahyaoui等[2]在蒺藜苜蓿根瘤中發(fā)現(xiàn)了13個上調(diào)表達的轉(zhuǎn)錄因子和11個下調(diào)表達的轉(zhuǎn)錄因子,基因芯片結(jié)果顯示,其中一些轉(zhuǎn)錄因子可能與結(jié)瘤素基因的表達相關(guān),在下調(diào)基因中包括一個與DNA結(jié)合的WRKY蛋白。Lohar等[3]對苜蓿早期共生階段的轉(zhuǎn)錄組進行測序,發(fā)現(xiàn)了許多WRKY家族基因的下調(diào)表達。本研究也發(fā)現(xiàn)一個WRKY家族基因AsF6的下調(diào)表達。WRKY家族基因在植物抵抗病原菌侵染和其他非生物脅迫的過程中發(fā)揮重要的調(diào)節(jié)作用,其靶蛋白可能是病程相關(guān)蛋白,因此WRKY與防御相關(guān)蛋白的表達有關(guān)[11]。除WRKY外,本研究還發(fā)現(xiàn)了1個NAC家族基因AsI1的下調(diào)表達。NAC家族是植物轉(zhuǎn)錄因子中最大的家族之一,在植物抵抗不同的生物和非生物脅迫中發(fā)揮重要的調(diào)節(jié)作用[12],如NAC家族成員參與植物對干旱、低溫、鹽等脅迫的反應(yīng)[13],在植物應(yīng)對病原菌的防御反應(yīng)中發(fā)揮作用[14]。另外,一些NAC家族成員在植物發(fā)育的過程中發(fā)揮調(diào)節(jié)作用,如種子萌發(fā)[15]、細胞分裂[16]、葉的衰老[17]等。
近年來,對苜蓿MtNAC969研究發(fā)現(xiàn),其在根應(yīng)對鹽脅迫的過程中發(fā)揮負調(diào)控作用,而在苜蓿與根瘤菌的共生過程中可以刺激側(cè)根的形成,但不影響根瘤數(shù)量,同時在根瘤中的下調(diào)表達導(dǎo)致根瘤提前衰老[18]。因此,本研究中發(fā)現(xiàn)的NAC蛋白在共生過程中可能也發(fā)揮重要的調(diào)節(jié)作用,值得深入研究。
3.2 信號轉(zhuǎn)導(dǎo)和膜轉(zhuǎn)運相關(guān)基因
目前發(fā)現(xiàn)在根瘤菌和宿主共生的過程中,植物中有很多信號傳導(dǎo)相關(guān)基因是上調(diào)表達的。同時,El Yahyaoui等[2]發(fā)現(xiàn)在苜蓿中有些信號轉(zhuǎn)導(dǎo)相關(guān)基因是下調(diào)表達的,如鈣調(diào)素-GTP結(jié)合蛋白、鋅指蛋白、蛋白激酶以及與CLAVATA1、Lj HAR 和GmNARK同源的受體激酶,可能與結(jié)瘤的自主調(diào)節(jié)有關(guān)。本研究也發(fā)現(xiàn)了許多紫云英根瘤中下調(diào)表達的信號轉(zhuǎn)導(dǎo)相關(guān)基因,包括編碼磷酸誘導(dǎo)蛋白1、鈣調(diào)蛋白4、泛素家族蛋白、蛋白磷酸酶、蛋白激酶等的基因。
膜轉(zhuǎn)運相關(guān)蛋白在類菌體與植物細胞物質(zhì)交換的過程中發(fā)揮重要作用,根瘤的固氮會增加根瘤和根部的氨基酸、己糖、硫酸鹽等的轉(zhuǎn)運,同時有一些轉(zhuǎn)運基因被下調(diào)表達,如某些磷酸鹽和硝酸鹽轉(zhuǎn)運基因在苜蓿的根瘤中下調(diào)表達[19]。本研究中下調(diào)的相關(guān)基因有11個(膜及轉(zhuǎn)運相關(guān)蛋白對應(yīng)基因),編碼蛋白包括硫氧還蛋白h、細胞溶質(zhì)因子、蔗糖轉(zhuǎn)運蛋白、G蛋白偶聯(lián)受體、鈉鈣交換體蛋白、液泡儲藏蛋白55家族蛋白等。
3.3 代謝相關(guān)蛋白
在下調(diào)表達的基因中,初級和次級代謝相關(guān)基因較多,包括UDP-葡糖醛酸酯-4-異構(gòu)酶、分支酸合成酶、SAM依賴的羧甲基轉(zhuǎn)移酶、長鏈脂肪酸-輔酶A連接酶家族蛋白、S-腺苷-L-甲硫氨酸合成酶、NAD依賴型異檸檬酸脫氫酶、質(zhì)體藍素、12-氧代植二烯酸-10,11-還原酶等22個基因。El Yahyaoui等[2]也研究發(fā)現(xiàn)與根中相比,大量與初級和次級代謝相關(guān)的基因在苜蓿根瘤中被下調(diào)表達。這可能反映了根瘤與根在代謝水平上的差異,如在根瘤中很多代謝途徑受到了抑制,另一些與固氮相關(guān)的代謝途徑卻被激活。
3.4 防御和應(yīng)激相關(guān)基因
一般認為,根瘤菌與植物共生的過程中需要抑制宿主的防御機制,從而保證其成功入侵[20]。事實上,確實有很多與病程和防御相關(guān)的基因表達在共生過程中受到抑制,如在苜蓿中編碼過氧化物酶、多數(shù)非特異性轉(zhuǎn)脂蛋白、脂肪氧化酶、PR10/Betv1、Kunitz 型胰蛋白酶抑制劑等的基因均被下調(diào)表達。本研究中發(fā)現(xiàn)1個過氧化物酶編碼基因AsG6的下調(diào)表達,除此之外下調(diào)的基因還包括脂肪酸?;o酶A脫氫酶、生存蛋白、過氧化物酶、熱激蛋白Hsp70、鐵氧化還蛋白、dnaJ伴侶蛋白等。豆科植物通過抑制防御基因的表達允許根瘤菌的侵入,然而某些防御和抗病相關(guān)基因的上調(diào)表達又說明豆科植物同時還要限制根瘤菌的侵入,或保護根瘤不受病原菌和昆蟲的侵害[21]。
3.5 未知基因、假設(shè)蛋白基因和無同源性基因
在下調(diào)基因中,未知蛋白編碼基因有6個,假定蛋白基因有3個,無任何同源性的基因有4個,這些基因都有可能是一些尚未被發(fā)現(xiàn)的新基因,特別是無任何同源性的4個基因,有待進一步研究。
參考文獻:
[1] MERGAERT P, UCHIUMI T, ALUNNI B, et al. Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(13):5230-5235.
[2] EL YAHYAOUI F, KUSTER H, AMOR B B, et al. Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program[J]. Plant Physiology,2004,136(2):3159-3176.
[3] LOHAR D P, SHAROPOVA N, ENDRE G, et al. Transcript analysis of early nodulation events in Medicago truncatula[J]. Plant Physiology,2006,140(1):221-234.
[4] FAN Q J, YAN F X, QIAO G, et al. Identification of differentially-expressed genes potentially implicated in drought response in pitaya (Hylocereus undatus) by suppression subtractive hybridization and cDNA microarray analysis[J].Gene,2014,533(1):322-331.
[5] GUO W L, CHEN R G, GONG Z H, et al. Suppression subtractive hybridization analysis of genes regulated by application of exogenous abscisic acid in pepper plant (Capsicum annuum L.) leaves under chilling stress[J]. PLoS One,2013,8(6):e66667.doi:10.1371/journal.pone.0066667.
[6] 韓明鵬,王彥華,高永革,等.高溫脅迫下紫花苜蓿抑制消減雜交文庫的構(gòu)建[J].草業(yè)學(xué)報,2011,20(5):126-132.
[7] CLEMENT M, LAMBERT A, HEROUART D, et al. Identification of new up-regulated genes under drought stress in soybean nodules[J]. Gene,2008,426(1-2):15-22.
[8] GODIARD L, NIEBEL A, MICHELI F, et al. Identification of new potential regulators of the Medicago truncatula-Sinorhizobium meliloti symbiosis using a large-scale suppression subtractive hybridization approach[J]. Molecular Plant-Microbe Interactions,2007,20(3):321-332.
[9] 吳 梅,丑敏霞,李一星,等.參與紫云英共生固氮的一個上調(diào)表達結(jié)瘤素基因的分離與鑒定[J].華中農(nóng)業(yè)大學(xué)學(xué)報,2010,29(2):169-174.
[10] CHOU M X, WEI X Y, CHEN D S, et al. Thirteen nodule-specific or nodule-enhanced genes encoding products homologous to cysteine cluster proteins or plant lipid transfer proteins are identified in Astragalus sinicus L. by suppressive subtractive hybridization[J]. Journal of Experimental Botany,2006,57(11):2673-2685.
[11] EULGEM T, RUSHTON P J, ROBATZEK S, et al. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science,2000,5(5):199-206.
[12] NURUZZAMAN M, SHARONI A M, KIKUCHI S, et al. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants[J]. Frontiers in Microbiology,2013,4:248.
[13] SHAH S T, PANG C, FAN S,et al. Isolation and expression profiling of GhNAC transcription factor genes in cotton (Gossypium hirsutum L.) during leaf senescence and in response to stresses[J].Gene,2013,531(2):220-234.
[14] JENSEN M K, HAGEDORN P H, DE TORRES-ZABALA M, et al. Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis[J]. The Plant Journal,2008,56(6):867-880.
[15] KIM S G, LEE A K, YOON H K, et al. A membrane-bound NAC transcription factor NTL8 regulates gibberellicacid-mediated salt signaling in Arabidopsis seed germination[J]. The Plant Journal,2008,55(1):77-88.
[16] KIM Y S, KIM S G, PARK J E, et al. A membrane-bound NAC transcription factor regulates cell division in Arabidopsis[J]. The Plant Cell,2006,18(11):3132-3144.
[17] ZHOU Y, HUANG W, LIU L, et al. Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence[J]. BMC Plant Bbiology,2013,13:132.
[18] DE ZELICOURT A, DIET A, MARION J, et al. Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence[J]. The Plant Journal,2012,70(2):220-230.
[19] MITHOFER A. Suppression of plant defence in rhizobia-legume symbiosis[J]. Trends in Plant Science,2002,7(10):446-450.
[20] SAEKI K. Rhizobial measures to evade host defense strategies and endogenous threats to persistent symbiotic nitrogen fixation: A focus on two legume-rhizobium model systems[J]. Cellular and Molecular Life Sciences,2011,68(8):1327-1339.
[21] GERARD P J. Dependence of Sitona lepidus (Coleoptera: Curculionidae) larvae on abundance of white clover Rhizobium nodules[J]. Bulletin of Entomological Research,2001,91(2):149-152.
[9] 吳 梅,丑敏霞,李一星,等.參與紫云英共生固氮的一個上調(diào)表達結(jié)瘤素基因的分離與鑒定[J].華中農(nóng)業(yè)大學(xué)學(xué)報,2010,29(2):169-174.
[10] CHOU M X, WEI X Y, CHEN D S, et al. Thirteen nodule-specific or nodule-enhanced genes encoding products homologous to cysteine cluster proteins or plant lipid transfer proteins are identified in Astragalus sinicus L. by suppressive subtractive hybridization[J]. Journal of Experimental Botany,2006,57(11):2673-2685.
[11] EULGEM T, RUSHTON P J, ROBATZEK S, et al. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science,2000,5(5):199-206.
[12] NURUZZAMAN M, SHARONI A M, KIKUCHI S, et al. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants[J]. Frontiers in Microbiology,2013,4:248.
[13] SHAH S T, PANG C, FAN S,et al. Isolation and expression profiling of GhNAC transcription factor genes in cotton (Gossypium hirsutum L.) during leaf senescence and in response to stresses[J].Gene,2013,531(2):220-234.
[14] JENSEN M K, HAGEDORN P H, DE TORRES-ZABALA M, et al. Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis[J]. The Plant Journal,2008,56(6):867-880.
[15] KIM S G, LEE A K, YOON H K, et al. A membrane-bound NAC transcription factor NTL8 regulates gibberellicacid-mediated salt signaling in Arabidopsis seed germination[J]. The Plant Journal,2008,55(1):77-88.
[16] KIM Y S, KIM S G, PARK J E, et al. A membrane-bound NAC transcription factor regulates cell division in Arabidopsis[J]. The Plant Cell,2006,18(11):3132-3144.
[17] ZHOU Y, HUANG W, LIU L, et al. Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence[J]. BMC Plant Bbiology,2013,13:132.
[18] DE ZELICOURT A, DIET A, MARION J, et al. Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence[J]. The Plant Journal,2012,70(2):220-230.
[19] MITHOFER A. Suppression of plant defence in rhizobia-legume symbiosis[J]. Trends in Plant Science,2002,7(10):446-450.
[20] SAEKI K. Rhizobial measures to evade host defense strategies and endogenous threats to persistent symbiotic nitrogen fixation: A focus on two legume-rhizobium model systems[J]. Cellular and Molecular Life Sciences,2011,68(8):1327-1339.
[21] GERARD P J. Dependence of Sitona lepidus (Coleoptera: Curculionidae) larvae on abundance of white clover Rhizobium nodules[J]. Bulletin of Entomological Research,2001,91(2):149-152.
[9] 吳 梅,丑敏霞,李一星,等.參與紫云英共生固氮的一個上調(diào)表達結(jié)瘤素基因的分離與鑒定[J].華中農(nóng)業(yè)大學(xué)學(xué)報,2010,29(2):169-174.
[10] CHOU M X, WEI X Y, CHEN D S, et al. Thirteen nodule-specific or nodule-enhanced genes encoding products homologous to cysteine cluster proteins or plant lipid transfer proteins are identified in Astragalus sinicus L. by suppressive subtractive hybridization[J]. Journal of Experimental Botany,2006,57(11):2673-2685.
[11] EULGEM T, RUSHTON P J, ROBATZEK S, et al. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science,2000,5(5):199-206.
[12] NURUZZAMAN M, SHARONI A M, KIKUCHI S, et al. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants[J]. Frontiers in Microbiology,2013,4:248.
[13] SHAH S T, PANG C, FAN S,et al. Isolation and expression profiling of GhNAC transcription factor genes in cotton (Gossypium hirsutum L.) during leaf senescence and in response to stresses[J].Gene,2013,531(2):220-234.
[14] JENSEN M K, HAGEDORN P H, DE TORRES-ZABALA M, et al. Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis[J]. The Plant Journal,2008,56(6):867-880.
[15] KIM S G, LEE A K, YOON H K, et al. A membrane-bound NAC transcription factor NTL8 regulates gibberellicacid-mediated salt signaling in Arabidopsis seed germination[J]. The Plant Journal,2008,55(1):77-88.
[16] KIM Y S, KIM S G, PARK J E, et al. A membrane-bound NAC transcription factor regulates cell division in Arabidopsis[J]. The Plant Cell,2006,18(11):3132-3144.
[17] ZHOU Y, HUANG W, LIU L, et al. Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence[J]. BMC Plant Bbiology,2013,13:132.
[18] DE ZELICOURT A, DIET A, MARION J, et al. Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence[J]. The Plant Journal,2012,70(2):220-230.
[19] MITHOFER A. Suppression of plant defence in rhizobia-legume symbiosis[J]. Trends in Plant Science,2002,7(10):446-450.
[20] SAEKI K. Rhizobial measures to evade host defense strategies and endogenous threats to persistent symbiotic nitrogen fixation: A focus on two legume-rhizobium model systems[J]. Cellular and Molecular Life Sciences,2011,68(8):1327-1339.
[21] GERARD P J. Dependence of Sitona lepidus (Coleoptera: Curculionidae) larvae on abundance of white clover Rhizobium nodules[J]. Bulletin of Entomological Research,2001,91(2):149-152.