趙建云+鄧展進(jìn)+劉瑞珍
[摘要] 目的 研究大麻素CB2受體激動(dòng)劑HU308對(duì)脂多糖(LPS)誘導(dǎo)小膠質(zhì)細(xì)胞激活后NO及IL-6分泌的影響。 方法 體外培養(yǎng)小鼠小膠質(zhì)細(xì)胞株(BV-2細(xì)胞),分為對(duì)照組、LPS刺激組及干預(yù)組(LPS+HU308)。通過顯微鏡觀察各組小膠質(zhì)細(xì)胞的形態(tài)學(xué)變化,CCK-8法檢測(cè)各組小膠質(zhì)細(xì)胞的增殖情況,Griess法檢測(cè)各組NO含量,ELISA法檢測(cè)各組IL-6水平。 結(jié)果 LPS刺激組的小膠質(zhì)細(xì)胞中出現(xiàn)大量胞體增大,偽足粗短或消失的細(xì)胞和一些壞死細(xì)胞,細(xì)胞增殖較差,NO及IL-6表達(dá)水平顯著增高。經(jīng)大麻素CB2受體激動(dòng)劑HU308干預(yù)后,大部分細(xì)胞胞體稍大,偽足尚明顯,細(xì)胞破壞程度輕,增殖較好,炎性因子表達(dá)均明顯下降。 結(jié)論 激動(dòng)小膠質(zhì)細(xì)胞表面的大麻素CB2受體,可以減輕LPS造成的小膠質(zhì)細(xì)胞過度活化或損傷,抑制其炎性因子N0及IL-6的分泌,從而達(dá)到中樞神經(jīng)系統(tǒng)炎性損傷后的神經(jīng)保護(hù)作用。
[關(guān)鍵詞] 大麻素CB2受體激動(dòng)劑;HU308;脂多糖;小膠質(zhì)細(xì)胞;NO;IL-6
[中圖分類號(hào)] R285.5 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 2095-0616(2014)05-36-04
腦血管病繼發(fā)腦損傷,炎癥反應(yīng)起著重要作用[1]。小膠質(zhì)細(xì)胞是中樞神經(jīng)系統(tǒng)重要的免疫細(xì)胞,在腦內(nèi)起著免疫監(jiān)視和免疫防御功能[2],并且對(duì)中樞神經(jīng)系統(tǒng)有支持、營養(yǎng)、保護(hù)和修復(fù)等重要作用[3]。正常情況下,小膠質(zhì)細(xì)胞處于相對(duì)靜息狀態(tài),在中樞神經(jīng)系統(tǒng)缺血、缺氧時(shí)可迅速被激活,大量分泌炎癥因子、一氧化氮(nitric oxide,NO)等分子,參與中樞神經(jīng)損傷的病理發(fā)展過程[4]。因此,抑制小膠質(zhì)細(xì)胞活化后的炎癥反應(yīng)可以作為治療腦血管疾病腦損傷的重要途徑之一[5-6]。內(nèi)源性大麻素系統(tǒng)神經(jīng)保護(hù)作用成為當(dāng)今研究的熱點(diǎn)問題。激動(dòng)內(nèi)源性大麻素受體(CB1\CB2)可減輕動(dòng)物模型局灶性腦缺血和全腦缺血造成的腦損傷[7],但具體機(jī)制尚不明確。大麻素CB2受體在中樞神經(jīng)系統(tǒng)主要表達(dá)在小膠質(zhì)細(xì)胞[8]。本實(shí)驗(yàn)預(yù)通過體外培養(yǎng)小膠質(zhì)細(xì)胞;研究CB2受體激動(dòng)劑HU308對(duì)脂多糖造成的小膠質(zhì)細(xì)胞過度活化或損傷后炎癥因子NO、IL-6表達(dá)的影響;探討激動(dòng)小膠質(zhì)細(xì)胞表面的CB2受體,對(duì)小膠質(zhì)細(xì)胞形態(tài)功能及炎癥反應(yīng)的影響,為神經(jīng)保護(hù)類藥物的研發(fā)提供新的靶點(diǎn)。
1 材料與方法
1.1 主要試劑和儀器
小鼠小膠質(zhì)細(xì)胞(江陰康眾康民生物醫(yī)藥技術(shù)公司);胎牛血清(四季青,浙江天杭生物科技有限公司);DMEM高糖培養(yǎng)基、胰蛋白酶、青鏈雙抗、脂多糖(博士德生物公司);IL-6 ELISA試劑盒(上海西唐生物科技有限公司);CCK-8試劑盒及Griess法NO檢測(cè)試劑盒(碧云天生物技術(shù)研究所);HU-308(Cayman Chemical,美國)。
1.2 細(xì)胞培養(yǎng)
小膠質(zhì)細(xì)胞株BV2購于江陰康眾康民生物醫(yī)藥技術(shù)公司。培養(yǎng)于含10%胎牛血清的DMEM高糖培養(yǎng)液(含青霉素100 U/mL 和鏈霉素100mg/mL)中,在37℃、5%CO2 恒溫孵箱中培養(yǎng),細(xì)胞呈單層貼壁生長,進(jìn)行常規(guī)培養(yǎng)和傳代。當(dāng)細(xì)胞密度達(dá)80%左右時(shí)收集細(xì)胞,細(xì)胞以4×104~5×104/孔接種于培養(yǎng)板。
1.3 實(shí)驗(yàn)分組與處理
實(shí)驗(yàn)分為正常對(duì)照組、LPS刺激組(LPS濃度為1?g/mL)、LPS聯(lián)合HU308干預(yù)組(LPS濃度1?g/mL,HU308濃度分別1?mol/L、5?mol/L、10?mol/L)。上述五組均干預(yù)12h。
1.4 鏡下觀察
倒置相差顯微鏡10×20倍鏡下觀察各組小膠質(zhì)細(xì)胞的形態(tài)變化。
1.5 CCK-8法檢測(cè)細(xì)胞增殖
應(yīng)用96孔細(xì)胞培養(yǎng)板檢測(cè)細(xì)胞增殖,每孔加入培養(yǎng)基200?L約10000個(gè)細(xì)胞,經(jīng)實(shí)驗(yàn)分組與干預(yù)12h后,各孔加入20?LCCK-8溶液,在細(xì)胞培養(yǎng)箱內(nèi)繼續(xù)孵育2h后用酶標(biāo)儀檢測(cè),450nm測(cè)定各孔吸光度值。
1.6 Griess 法檢測(cè)NO的含量
按照說明書Griess 法檢測(cè)NO的含量。取各組細(xì)胞培養(yǎng)上清液50μL加入96孔平底酶標(biāo)板中,每組設(shè)6個(gè)復(fù)孔,依次加入氨基苯磺酸、萘基乙二胺,室溫避光孵育10min,酶標(biāo)儀540nm 波長讀取A值,再依據(jù)標(biāo)準(zhǔn)曲線計(jì)算出NO的含量(濃度)。
1.7 ELISA法檢測(cè)細(xì)胞培養(yǎng)上清IL-6含量
按照試劑盒說明書推薦方法測(cè)定。根據(jù)說明書要求配制標(biāo)準(zhǔn)品液、10×標(biāo)本稀釋液及洗滌液。收集細(xì)胞培養(yǎng)上清液,96孔酶標(biāo)板中每孔各加入標(biāo)準(zhǔn)品或待測(cè)樣品100μL,將反應(yīng)板充分混勻后置37℃40min,用洗滌液將反應(yīng)板充分洗滌4~6次,向?yàn)V紙上印干;每孔加入蒸餾水和第一抗體工作液各50μL(空白除外),將反應(yīng)板充分混勻后置37℃20min,同前洗板;每孔加酶標(biāo)抗體工作液100μL。將反應(yīng)板置37℃10min,同前洗板;每孔加入底物工作液100μL,置37℃暗處反應(yīng)15min;每孔加入100μL終止液混勻;30min內(nèi)用酶標(biāo)儀在450nm處測(cè)吸光值。以標(biāo)準(zhǔn)品2000、1000、500、250、125、62.5、31.2、0pg/mL為橫坐標(biāo),OD值為縱坐標(biāo),使用軟件作圖,畫出標(biāo)準(zhǔn)曲線。計(jì)算出相應(yīng)IL-6含量。
1.8 統(tǒng)計(jì)學(xué)分析
實(shí)驗(yàn)數(shù)據(jù)應(yīng)用SPSS16.0統(tǒng)計(jì)軟件分析。以()表示統(tǒng)計(jì)數(shù)據(jù),組間比較應(yīng)用單因素方差分析,P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 倒置相差顯微鏡觀察各組小膠質(zhì)細(xì)胞的形態(tài)變化
正常對(duì)照組細(xì)胞體呈圓形或橢圓形,從胞體發(fā)出細(xì)長的突起,表面有許多小棘突,細(xì)胞密度較高;見圖1。LPS刺激組刺激小膠質(zhì)細(xì)胞12h后觀察大量胞體增大,偽足粗短或消失,可見一些壞死細(xì)胞,細(xì)胞密度較低;見圖2。與LPS刺激組比較,LPS聯(lián)合HU308 10?mol/L干預(yù)組,干預(yù)12h后觀察大部分細(xì)胞胞體稍大,偽足尚明顯,細(xì)胞破壞程度輕,密度較高。見圖3。endprint
2.2 HU308對(duì)LPS誘導(dǎo)的小膠質(zhì)細(xì)胞增殖的影響
表1值結(jié)果顯示,LPS刺激組細(xì)胞增殖較差,與正常對(duì)照組比較差異具有統(tǒng)計(jì)學(xué)意義(P<0.05)。HU308不同濃度干預(yù)組細(xì)胞增殖較好,濃度為10?mol/L的HU308組細(xì)胞增殖最好,各組與LPS刺激組比較差異具有統(tǒng)計(jì)學(xué)意義(P<0.05)。組間兩兩比較差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。HU308對(duì)損傷的小膠質(zhì)細(xì)胞有保護(hù)作用。
2.3 HU308對(duì)LPS誘導(dǎo)的小膠質(zhì)細(xì)胞炎癥因子(NO、IL-6)分泌的影響
表1結(jié)果顯示,LPS刺激組的細(xì)胞培養(yǎng)液中NO及IL-6含量顯著升高,與正常對(duì)照組比較差異具有統(tǒng)計(jì)學(xué)意義(P<0.05)。HU308不同濃度干預(yù)組細(xì)胞培養(yǎng)液中NO及IL-6含量明顯降低,濃度為10?mol/L的HU308組NO及IL-6含量降低最明顯,與LPS刺激組比較差異具有統(tǒng)計(jì)學(xué)意義(P<0.05)。各組間兩兩比較差異均有統(tǒng)計(jì)學(xué)意義。HU308對(duì)損傷小膠質(zhì)細(xì)胞NO及IL-6的分泌有抑制作用。
3 討論
小膠質(zhì)細(xì)胞是中樞神經(jīng)系統(tǒng)最重要的固有免疫細(xì)胞和主要效應(yīng)細(xì)胞,一般認(rèn)為,它來源于單核巨噬細(xì)胞系,生理?xiàng)l件下靜息狀態(tài)的小膠質(zhì)細(xì)胞呈分枝狀,僅進(jìn)行簡單的吞噬作用,清除代謝產(chǎn)物,其活性受神經(jīng)元產(chǎn)生的抑制因子如CD200R、CX3CR1 等調(diào)控[9]。當(dāng)中樞神經(jīng)系統(tǒng)發(fā)生損傷后,小膠質(zhì)細(xì)胞迅速活化,其形態(tài)呈阿米巴樣改變,具有抗原提呈、調(diào)理吞噬及分泌炎性因子的作用[10]。腦損傷、低氧、缺血以及神經(jīng)系統(tǒng)退行性疾?。ˋD 和PD),常伴隨著腦內(nèi)炎癥的出現(xiàn)。小膠質(zhì)細(xì)胞激活經(jīng)常被認(rèn)為是神經(jīng)元凋亡的前期標(biāo)志[11]?;罨蟮男∧z質(zhì)細(xì)胞可通過釋放炎性因子等對(duì)神經(jīng)元具有損傷作用[12]。
近些年對(duì)內(nèi)源性大麻素系統(tǒng)(endocannabinoid system,ECS)的研究成為一個(gè)熱點(diǎn)。研究發(fā)現(xiàn),ECS由內(nèi)源性大麻素、大麻素受體及大麻素生物合成和降解的酶系組成。體內(nèi)存在兩種大麻素受體,即CB1受體和CB2受體[13-14]。CB1受體主要分布在腦、脊髓及外周神經(jīng)系統(tǒng)中,發(fā)揮止痛、鎮(zhèn)靜,參與調(diào)控?cái)z食、脂肪聚集及胰島素抵抗等作用;CB2受體在免疫組織中有豐富的表達(dá),脾臟邊緣區(qū)、免疫細(xì)胞、扁桃體、胸腺等,起免疫調(diào)節(jié)及抗炎作用[15-17]。近年大麻素類藥物在臨床應(yīng)用中出現(xiàn)了成癮、抑郁或焦慮等中樞神經(jīng)系統(tǒng)不良反應(yīng),考慮與CB1受體有關(guān),部分藥物已被叫停。因此,學(xué)者們開始更關(guān)注對(duì)CB2受體的研究。CB2受體在中樞神經(jīng)系統(tǒng)主要表達(dá)在小膠質(zhì)細(xì)胞[18-19]。本實(shí)驗(yàn)發(fā)現(xiàn)LPS可引起小膠質(zhì)細(xì)胞活化或損傷,分泌炎性因子NO及IL-6明顯增多;給予CB2受體激動(dòng)劑HU308處理后,可以減輕小膠質(zhì)細(xì)胞的損傷,NO及IL-6分泌也顯著減少,且有劑量依賴性;這一結(jié)果證明激動(dòng)小膠質(zhì)細(xì)胞CB2受體可以對(duì)其起保護(hù)作用,并且抑制炎癥反應(yīng),從而可能發(fā)揮神經(jīng)保護(hù)作用。
綜上所述,激動(dòng)大麻素CB2受體,可以對(duì)損傷的小膠質(zhì)細(xì)胞起保護(hù)作用,抑制其過度活化及炎癥反應(yīng),從而達(dá)到神經(jīng)保護(hù)作用。此研究可以為神經(jīng)保護(hù)類藥物的研發(fā)提供新的思路和理論基礎(chǔ)。
[參考文獻(xiàn)]
[1] Lindsberg PJ,Grau AJ.Inflammation and infections as risk factors for ischemic stroke[J].Stroke,2003, 34(10):2518-2532.
[2] Minagar A,Shapshak P,F(xiàn)ujimura R,et al.The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders:HIV-associated dementia,Alzheimer disease,and multiple sclerosis[J]. Journal of the Neurological Sciences,2002,202(1):13-23.
[3] Kettenmann H,Hanisch U K,Noda M,et al.Physiology of microglia[J].Physiological Reviews,2011,91(2):461-553.
[4] Luo XG,Ding JQ,Chen SD.Microglia in the aging brain: relevance to neurodegeneration[J]. Mol Neurodegener, 2010,5(1):12.
[5] Giovannini MG,Scali C,Prosperi C,et al.β-Amyloid-Induced Inflammation and Cholinergic Hypofunction in the Rat Brain in Vivo:Involvement of the p38MAPK Pathway[J].Neurobiology of Disease,2002,11(2):257-274.
[6] van Rossum D,Hanisch UK.Microglia[J].Metabolic brain disease,2004,19(3-4):393-411.
[7] Bonfils PK,Reith J,Hasseldam H,et al.Estimation of the hypothermic component in neuroprotection provided by cannabinoids following cerebral ischemia[J].Neurochemistry International,2006,49(5):508-518.endprint
[8] Gifford AN,Samiian L,Gatley SJ,et al.Examination of the effect of the cannabinoid receptor agonist, CP 55,940,on electrically evoked transmitter release from rat brain slices[J].European Journal of Pharmacology,1997,324(2):187-192.
[9] Noda M,Doi Y,Liang J,et al.Fractalkine attenuates excito-neurotoxicity via microglial clearance of damaged neurons and antioxidant enzyme heme oxygenase-1 expression[J].Journal of Biological Chemistry,2011,286(3):2308-2319.
[10] 王均輝,孫峰,于常海,等.異?;罨男∧z質(zhì)細(xì)胞的特征與功能[J].生理科學(xué)進(jìn)展,2008,39(1):37-42.
[11] Perry VH,Nicoll JAR,Holmes C.Microglia in neurodegenerative disease[J].Nature Reviews Neurology,2010,6(4):193-201.
[12] Takeuchi H,Jin S,Wang J,et al.Tumor necrosis factor-α induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner[J].Journal of Biological Chemistry,2006, 281(30):21362-21368.
[13] Herkenham M,Lynn AB,Little MD,et al.Cannabinoid receptor localization in brain[J].Proceedings of the National Academy of Sciences,1990,87(5):1932-1936.
[14] Munro S,Thomas KL,Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids[J].Nature,1993,365:61-65.
[15] Galiègue S,Mary S,Marchand J,et al. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations[J].European Journal of Biochemistry,1995,232(1): 54-61.
[16] Ashton JC,F(xiàn)riberg D,Darlington CL,et al.Expression of the cannabinoid CB2 receptor in the rat cerebellum: an immunohistochemical study[J].Neuroscience Letters,2006,396(2):113-116.
[17] Howlett AC,Johnson MR, Melvin LS, et al. Nonclassical cannabinoid analgetics inhibit adenylate cyclase: development of a cannabinoid receptor model[J].Molecular Pharmacology,1988,33(3):297-302.
[18] Cs?lle C,Sperlágh B.Peripheral origin of IL-1β production in the rodent hippocampus under in vivo systemic bacterial lipopolysaccharide(LPS)challenge and its regulation by P2X(7) receptors[J].Journal of Neuroimmunology,2010,219(1):38-46.
[19] Pertwee RG.Pharmacological actions of cannabinoids[M]//Cannabinoids.Springer Berlin Heidelberg,2005: 1-51.
(收稿日期:2014-01-02)endprint
[8] Gifford AN,Samiian L,Gatley SJ,et al.Examination of the effect of the cannabinoid receptor agonist, CP 55,940,on electrically evoked transmitter release from rat brain slices[J].European Journal of Pharmacology,1997,324(2):187-192.
[9] Noda M,Doi Y,Liang J,et al.Fractalkine attenuates excito-neurotoxicity via microglial clearance of damaged neurons and antioxidant enzyme heme oxygenase-1 expression[J].Journal of Biological Chemistry,2011,286(3):2308-2319.
[10] 王均輝,孫峰,于常海,等.異?;罨男∧z質(zhì)細(xì)胞的特征與功能[J].生理科學(xué)進(jìn)展,2008,39(1):37-42.
[11] Perry VH,Nicoll JAR,Holmes C.Microglia in neurodegenerative disease[J].Nature Reviews Neurology,2010,6(4):193-201.
[12] Takeuchi H,Jin S,Wang J,et al.Tumor necrosis factor-α induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner[J].Journal of Biological Chemistry,2006, 281(30):21362-21368.
[13] Herkenham M,Lynn AB,Little MD,et al.Cannabinoid receptor localization in brain[J].Proceedings of the National Academy of Sciences,1990,87(5):1932-1936.
[14] Munro S,Thomas KL,Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids[J].Nature,1993,365:61-65.
[15] Galiègue S,Mary S,Marchand J,et al. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations[J].European Journal of Biochemistry,1995,232(1): 54-61.
[16] Ashton JC,F(xiàn)riberg D,Darlington CL,et al.Expression of the cannabinoid CB2 receptor in the rat cerebellum: an immunohistochemical study[J].Neuroscience Letters,2006,396(2):113-116.
[17] Howlett AC,Johnson MR, Melvin LS, et al. Nonclassical cannabinoid analgetics inhibit adenylate cyclase: development of a cannabinoid receptor model[J].Molecular Pharmacology,1988,33(3):297-302.
[18] Cs?lle C,Sperlágh B.Peripheral origin of IL-1β production in the rodent hippocampus under in vivo systemic bacterial lipopolysaccharide(LPS)challenge and its regulation by P2X(7) receptors[J].Journal of Neuroimmunology,2010,219(1):38-46.
[19] Pertwee RG.Pharmacological actions of cannabinoids[M]//Cannabinoids.Springer Berlin Heidelberg,2005: 1-51.
(收稿日期:2014-01-02)endprint
[8] Gifford AN,Samiian L,Gatley SJ,et al.Examination of the effect of the cannabinoid receptor agonist, CP 55,940,on electrically evoked transmitter release from rat brain slices[J].European Journal of Pharmacology,1997,324(2):187-192.
[9] Noda M,Doi Y,Liang J,et al.Fractalkine attenuates excito-neurotoxicity via microglial clearance of damaged neurons and antioxidant enzyme heme oxygenase-1 expression[J].Journal of Biological Chemistry,2011,286(3):2308-2319.
[10] 王均輝,孫峰,于常海,等.異?;罨男∧z質(zhì)細(xì)胞的特征與功能[J].生理科學(xué)進(jìn)展,2008,39(1):37-42.
[11] Perry VH,Nicoll JAR,Holmes C.Microglia in neurodegenerative disease[J].Nature Reviews Neurology,2010,6(4):193-201.
[12] Takeuchi H,Jin S,Wang J,et al.Tumor necrosis factor-α induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner[J].Journal of Biological Chemistry,2006, 281(30):21362-21368.
[13] Herkenham M,Lynn AB,Little MD,et al.Cannabinoid receptor localization in brain[J].Proceedings of the National Academy of Sciences,1990,87(5):1932-1936.
[14] Munro S,Thomas KL,Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids[J].Nature,1993,365:61-65.
[15] Galiègue S,Mary S,Marchand J,et al. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations[J].European Journal of Biochemistry,1995,232(1): 54-61.
[16] Ashton JC,F(xiàn)riberg D,Darlington CL,et al.Expression of the cannabinoid CB2 receptor in the rat cerebellum: an immunohistochemical study[J].Neuroscience Letters,2006,396(2):113-116.
[17] Howlett AC,Johnson MR, Melvin LS, et al. Nonclassical cannabinoid analgetics inhibit adenylate cyclase: development of a cannabinoid receptor model[J].Molecular Pharmacology,1988,33(3):297-302.
[18] Cs?lle C,Sperlágh B.Peripheral origin of IL-1β production in the rodent hippocampus under in vivo systemic bacterial lipopolysaccharide(LPS)challenge and its regulation by P2X(7) receptors[J].Journal of Neuroimmunology,2010,219(1):38-46.
[19] Pertwee RG.Pharmacological actions of cannabinoids[M]//Cannabinoids.Springer Berlin Heidelberg,2005: 1-51.
(收稿日期:2014-01-02)endprint