吳孔友,瞿建華,王鶴華
(1.中國(guó)石油大學(xué)地球科學(xué)與技術(shù)學(xué)院,山東青島 266580; 2.中國(guó)石油新疆油田分公司勘探開(kāi)發(fā)研究院,新疆克拉瑪依 834000)
準(zhǔn)噶爾盆地大侏羅溝斷層走滑特征、形成機(jī)制及控藏作用
吳孔友1,瞿建華2,王鶴華1
(1.中國(guó)石油大學(xué)地球科學(xué)與技術(shù)學(xué)院,山東青島 266580; 2.中國(guó)石油新疆油田分公司勘探開(kāi)發(fā)研究院,新疆克拉瑪依 834000)
根據(jù)扭動(dòng)構(gòu)造理論,結(jié)合物理模擬實(shí)驗(yàn)方法,綜合運(yùn)用野外露頭勘測(cè)和高精度三維地震資料解釋,在簡(jiǎn)單剪切模式指導(dǎo)下,對(duì)準(zhǔn)噶爾盆地西北緣大侏羅溝斷層特征、形成機(jī)制及控藏作用進(jìn)行研究。結(jié)果表明:大侏羅溝斷層為右旋平移斷層,屬達(dá)爾布特大型走滑斷層的派生構(gòu)造,并依據(jù)地層分布關(guān)系及流體包裹體信息,判斷該斷層形成于印支期,在燕山期有強(qiáng)烈活動(dòng);大侏羅溝斷層形成于壓扭環(huán)境,沿Sylvester簡(jiǎn)單剪切模式中的R′剪裂面發(fā)育,并派生出次級(jí)斷層,構(gòu)成走滑斷裂體系;大侏羅溝斷裂帶巖石碎裂嚴(yán)重,糜棱化和片理化明顯,主走滑帶及其分支斷層封閉能力均較強(qiáng),形成了多個(gè)有效的斷塊圈閉,顯示扭動(dòng)構(gòu)造對(duì)西北緣油氣成藏具有明顯的控制作用。
大侏羅溝斷層;走滑構(gòu)造;形成機(jī)制;控藏作用;準(zhǔn)噶爾盆地
走滑斷層是指斷面兩側(cè)巖塊主要作平行于斷層走向的水平運(yùn)動(dòng),常形成復(fù)雜的斷裂構(gòu)造體系[1]。走滑斷層具有普遍性,是地殼運(yùn)動(dòng)的基本方式之一,在地球表層線(xiàn)形構(gòu)造中大于50%[2],但由于鑒別困難,大量與走滑有關(guān)的構(gòu)造被忽略[3]。20世紀(jì)初期,通過(guò)對(duì)新西蘭、日本、加利福尼亞等國(guó)家和地區(qū)的震后地面位錯(cuò)現(xiàn)象的調(diào)查研究,才逐漸認(rèn)識(shí)到走滑構(gòu)造的重要性和普遍性[4]。20世紀(jì)70年代, Harding[5]提出了“花狀構(gòu)造”的概念,用來(lái)描述典型的與走滑斷層相關(guān)的構(gòu)造變形,并分析了這類(lèi)構(gòu)造的地震響應(yīng)和解釋方法[6],大大提升了含油氣盆地中走滑斷層的識(shí)別和判定,越來(lái)越多的走滑斷層被揭示[7]。同時(shí),也發(fā)現(xiàn)了走滑斷層與油氣富集之間的緊密關(guān)系[8]。走滑斷層即能作為有效的運(yùn)移通道,又能夠起遮擋作用而形成圈閉[9]。準(zhǔn)噶爾盆地西北緣環(huán)瑪湖凹陷的斜坡區(qū)構(gòu)造簡(jiǎn)單,一直以來(lái)以地層、巖性油氣藏勘探為主,效果不甚理想。近年來(lái),隨著高精度地震資料的采集,在構(gòu)造平緩的斜坡區(qū)先后發(fā)現(xiàn)了多條具有走滑特征的斷層,使勘探效果得到明顯提升[10]。大侏羅溝斷層是其中最主要的斷層,對(duì)其走滑性質(zhì)、形成機(jī)制及控藏作用開(kāi)展研究,為瑪湖凹陷斜坡區(qū)尋找新的勘探目標(biāo)提供指導(dǎo)。
準(zhǔn)噶爾盆地位于中國(guó)新疆北部,為一晚古生代—中生代—新生代大型擠壓復(fù)合疊加盆地,內(nèi)部劃分為多個(gè)構(gòu)造單元[11-12]。西北緣為其內(nèi)部一級(jí)構(gòu)造單元,處于西準(zhǔn)噶爾海西褶皺系與準(zhǔn)噶爾地塊之間,構(gòu)造位置屬前陸沖斷帶,是古生代晚期—中生代早期發(fā)展起來(lái)的大型沖斷推覆系統(tǒng)[9,13]。根據(jù)構(gòu)造變形和地層發(fā)育特征,西北緣可進(jìn)一步分為超剝帶、斷褶帶和單斜帶[14]。超剝帶位于山前沖斷層上盤(pán),地層剝蝕嚴(yán)重,侏羅—白堊系超覆沉積之上;斷褶帶為山前沖斷層集中發(fā)育區(qū),地層變形強(qiáng)烈;單斜帶位于沖斷層下盤(pán),變形弱,整體呈斜坡?tīng)?因其緊鄰瑪湖凹陷,又稱(chēng)為瑪湖斜坡區(qū)(圖1)。大侏羅溝斷層走向平直,呈NW向,延伸長(zhǎng)度大于30 km,由西準(zhǔn)噶爾海西褶皺系一直切至瑪湖斜坡區(qū),對(duì)西北緣的構(gòu)造格局與油氣成藏均具重要影響。
圖1 大侏羅溝斷層構(gòu)造背景Fig.1 Structural setting of Dazhuluogou fault
走滑斷層特征有別于正斷層和逆斷層,由于其主要作平行于斷層走向的水平運(yùn)動(dòng)[1],基本特征為平直的斷線(xiàn)、陡立的斷面及較窄的斷層帶[2],剖面上常呈“花狀”[5],平面上常形成派生或伴生構(gòu)造,組成復(fù)雜的斷層體系。
2.1 地表露頭特征
大侏羅溝斷層切斷并錯(cuò)開(kāi)扎伊爾山,且斷層帶附近巖石破碎嚴(yán)重,經(jīng)長(zhǎng)期風(fēng)化剝蝕作用,地表上形成一沖溝,被定名為大侏羅溝,該斷層由此得名。大侏羅溝斷層限制或切斷石炭系、三疊系、侏羅系、白堊系及花崗巖侵入體,被第四系覆蓋(圖2(a))。就盆地蓋層而言,克拉瑪依盤(pán)(側(cè))出露三疊系(小泉溝組(T3x),相當(dāng)于白堿灘組(T3b))、侏羅系(八道灣組(J1b),三工河組(J1s),西山窯組(J2x)及齊古組(J3q))與白堊系(吐谷魯群(K1tg)),而白堿灘盤(pán)(側(cè))僅出露白堊系吐谷魯群(K1tg),且克拉瑪依盤(pán)三疊系與侏羅系通過(guò)大侏羅溝斷層直接與白堿灘盤(pán)石炭系接觸,且由于差異風(fēng)化剝蝕作用,斷面出露,在白堿灘盤(pán)形成斷層崖(圖2(b))。依據(jù)白堿灘盤(pán)山前缺失三疊系與侏羅系,白堊系直接覆蓋在石炭系之上推測(cè),大侏羅溝斷層應(yīng)該控制了三疊系與侏羅系的沉積,燕山運(yùn)動(dòng)末期的再活動(dòng)錯(cuò)開(kāi)了白堊系。野外觀(guān)察,該斷裂斷面近于直立,傾角約為83°,沿?cái)嗝姘l(fā)育片理化巖石,擦痕、鏡面及階步發(fā)育,且擦痕近于水平,與階步垂直。根據(jù)山體、地層錯(cuò)斷情況,結(jié)合擦痕由深變淺指向和階步陡坎傾向(圖2(c))指示對(duì)盤(pán)運(yùn)動(dòng)方向,綜合判定大侏羅溝斷層為右旋平移走滑斷層。
圖2 大侏羅溝斷層地表特征Fig.2 Characteristics on ground surface of Dazhuluogou fault
2.2 地震剖面特征
“花狀構(gòu)造”是地震剖面上識(shí)別和判斷走滑斷層的關(guān)鍵依據(jù)[15]。邵雨等[10]、張?jiān)竭w等[16]通過(guò)對(duì)準(zhǔn)噶爾盆地西北緣地震資料的解釋,分別證實(shí)了“花狀構(gòu)造”的存在。大侏羅溝斷層橫向切穿整個(gè)西北緣,徐懷民等[9]、徐朝暉等[17]曾利用二維地震資料,在超剝帶和斷褶帶解釋出“花狀構(gòu)造”,推斷大侏羅溝斷層具有走滑性質(zhì)。為進(jìn)一步證實(shí)大侏羅溝斷層的規(guī)模、性質(zhì),新疆油田公司在單斜帶,即瑪湖斜坡區(qū)部署了高精度三維地震區(qū)塊。通過(guò)對(duì)地震資料的處理與精細(xì)解釋,在以往認(rèn)為構(gòu)造簡(jiǎn)單的斜坡區(qū)發(fā)現(xiàn)了明顯的斷層痕跡。根據(jù)斷點(diǎn)的組合分析與閉合校正,在剖面上解釋出明顯的“花狀構(gòu)造”,且“花枝”較多、產(chǎn)狀陡、同相軸錯(cuò)動(dòng)規(guī)模小、多具逆斷距,發(fā)育在三疊系和侏羅系,向下匯聚于二疊系;主斷層地震反射清楚、近于直立、同相軸錯(cuò)動(dòng)明顯,切穿深度大,從二疊系切至白堊系,其兩側(cè)分支斷層傾向相反,整體顯示“正花狀構(gòu)造”特征(圖3(a), (b)),與區(qū)域壓扭性應(yīng)力場(chǎng)相吻合。平面上(時(shí)間切片上),大侏羅溝斷層派生出多條斷層,組成斷裂體系,分支斷層位于主斷層兩側(cè),呈羽狀,兩側(cè)不對(duì)稱(chēng)(圖3(c))。根據(jù)地震反射特征,進(jìn)一步判定大侏羅溝斷層為走滑斷層,且活動(dòng)強(qiáng)度較大。
3.1 受力分析
準(zhǔn)噶爾盆地西北緣走向NE,處于西準(zhǔn)噶爾褶皺造山系前緣,構(gòu)造環(huán)境極為復(fù)雜。由于NW向受哈薩克斯坦板塊的碰撞,NE向受西伯利亞板塊的擠壓[12,14],西準(zhǔn)噶爾地區(qū)處于壓扭環(huán)境,形成了多條規(guī)模宏大的走滑斷層。自西向東發(fā)育NE-SW向巴爾雷克走滑斷層、托里走滑斷層和達(dá)爾布特走滑斷層[16]。達(dá)爾布特?cái)鄬邮蔷辔鞅本壸罱囊粭l巨型走滑斷層,延伸長(zhǎng)度約400 km,與西北緣走向平行,中間隔著低矮的扎伊爾山和哈拉阿拉特山,相距約30 km。該斷層形成于二疊紀(jì)晚期,以大規(guī)模右行走滑為主[18-19]。印支期,西準(zhǔn)噶爾地區(qū)受到NW和NE兩個(gè)方向的主應(yīng)力作用,以NE方向?yàn)橹鱗20]。在此應(yīng)力作用下,北部古老的阿爾泰造山帶重新活動(dòng),和什托洛蓋盆地開(kāi)始形成,同時(shí)準(zhǔn)噶爾盆地北緣的紅巖斷階帶呈疊瓦狀向盆內(nèi)逆沖,形成烏倫古坳陷。受此影響,達(dá)爾布特?cái)鄬影l(fā)生左行走滑,克拉瑪依北部的973花崗巖體和紅山花崗巖體被左旋錯(cuò)斷5~10 km[21-22]。
圖3 大侏羅溝斷層地震反射特征Fig.3 Seismic reflection features of Dazhuluogou fault
大型走滑斷層常形成派生構(gòu)造,構(gòu)成復(fù)雜的斷裂系統(tǒng)[2,4-5]。根據(jù)Sylvester簡(jiǎn)單剪切模式[1],主位移帶(PDZ)活動(dòng)早期,將發(fā)育兩組共軛剪切破裂面, R(也稱(chēng)同向或羽狀走滑斷層或里德?tīng)柤羟袛鄬?與R′(也稱(chēng)反向或共輒走滑斷層),R剪切面與主位移帶夾角小(Φ/2,Φ為內(nèi)摩擦角),R′剪切面與主位移帶夾角大(90°-Φ/2);中期發(fā)育一組P剪切破裂(與R破裂對(duì)稱(chēng));晚期,R、P斷層逐漸歸于主斷層,形成大型的走滑斷層帶,同時(shí)出現(xiàn)雁列式派生構(gòu)造。根據(jù)準(zhǔn)噶爾盆地西北緣斷層平面組合關(guān)系,本次研究采用簡(jiǎn)單剪切模式解釋大侏羅溝斷層的成因(圖4)。達(dá)爾布特走滑斷層相當(dāng)于主位移帶;位于達(dá)爾布特?cái)鄬觾蓚?cè),包括烏蘭林格斷層等呈小角度相交,近于對(duì)稱(chēng)分布的斷層,相當(dāng)于P和R剪裂面;大侏羅溝斷層,包括推測(cè)的克81井?dāng)鄬优c達(dá)爾布特?cái)鄬咏诖怪毕嘟?相當(dāng)于R′剪切面,且大侏羅溝斷層錯(cuò)動(dòng)方向(右旋)與達(dá)爾布特?cái)鄬渝e(cuò)動(dòng)方向(左旋)相反,符合Sylvester簡(jiǎn)單剪切模式。
圖4 大侏羅溝斷層力學(xué)成因Fig.4 Mechanical cause of Dazhuluogou fault
在斷裂形成過(guò)程中,巖石膨脹,體積增大,孔隙度、滲透率增加,造成斷裂破碎帶中流體壓力下降,成為相對(duì)低流體勢(shì)區(qū),圍巖中的流體運(yùn)移進(jìn)入巖石的裂隙中,在斷裂及其附近作大規(guī)模的運(yùn)移[23-25]。流體進(jìn)入斷裂帶中壓力和溫度降低,必然產(chǎn)生水巖相互作用,導(dǎo)致熱液礦物的沉淀結(jié)晶而愈合破裂和角礫巖,造成斷裂帶裂縫的充填[26-29]。因此,可以利用裂縫充填物中流體包裹體均一溫度,結(jié)合埋藏史,大致推算斷裂形成時(shí)間。針對(duì)大侏羅溝斷裂帶裂縫充填物,取流體包裹體樣品5塊,鏡下確定12個(gè)次生包裹體,通過(guò)均一溫度測(cè)試(表1),主要存在60~75℃和115~125℃兩個(gè)區(qū)間,結(jié)合該區(qū)埋藏史推算,對(duì)應(yīng)三疊紀(jì)末期和白堊紀(jì)中期,再根據(jù)地震剖面上切割的深度(“花狀構(gòu)造”主要發(fā)育在三疊系與侏羅系)及平面上對(duì)三疊系與侏羅系分布的限制,推測(cè)大侏羅溝斷裂形成于印支期,在燕山期有強(qiáng)烈活動(dòng)。
表1 大侏羅溝斷裂流體包裹體均一溫度Table 1 Homogeneous temperature of fluid inclusions in Dazhuluogou fault
3.2 物理模擬
大侏羅溝斷層平面延伸長(zhǎng)度大于30 km,在走滑錯(cuò)動(dòng)過(guò)程中,產(chǎn)生次級(jí)應(yīng)力場(chǎng),也能形成對(duì)應(yīng)的派生構(gòu)造。地震資料解釋顯示(圖3),大侏羅溝斷層主走滑位移帶附近,發(fā)育眾多小規(guī)模斷層,兩側(cè)近對(duì)稱(chēng),呈羽狀相交,構(gòu)成典型的走滑斷裂體系。為進(jìn)一步驗(yàn)證主斷層與分支斷層之間的成生關(guān)系,采用特制的走滑構(gòu)造模擬儀進(jìn)行物理模擬。模擬材料主要采用石英砂與黏土,根據(jù)準(zhǔn)噶爾盆地西北緣三疊系和侏羅系砂泥比,設(shè)置實(shí)驗(yàn)?zāi)P?。?shí)驗(yàn)?zāi)M過(guò)程中,大侏羅溝斷層形成伊始,僅有1條分支斷層(圖5 (a)),隨著走滑錯(cuò)動(dòng)進(jìn)行,兩側(cè)又派生出多條分支斷層(圖5(b)),形成走滑構(gòu)造體系,也進(jìn)一步證實(shí)了大侏羅溝斷層的走滑性質(zhì)。
圖5 大侏羅溝斷層體系物理模擬Fig.5 Physical simulation of Dazhuluogou fault
西北緣為準(zhǔn)噶爾盆地油氣最為富集的地區(qū),雖然面積不足盆地的1/10,但探明的油氣儲(chǔ)量占整個(gè)盆地的60%以上[30],原油產(chǎn)量占全盆地的40%以上[31],勘探潛力巨大[10]。早期的油氣勘探主要集中在中、淺層的超剝帶和斷褶帶,隨著勘探的深入,重點(diǎn)逐漸轉(zhuǎn)移到埋藏較深的單斜帶。單斜帶緊鄰瑪湖凹陷,油源充足,但構(gòu)造簡(jiǎn)單,圈閉難以落實(shí),近年來(lái)走滑構(gòu)造的解釋與發(fā)現(xiàn),為西北緣油氣勘探打開(kāi)了新的局面[10],特別是大侏羅溝斷層及其派生構(gòu)造的發(fā)現(xiàn),對(duì)斜坡區(qū)的油氣勘探具有開(kāi)創(chuàng)性,由隱蔽圈閉的尋找,轉(zhuǎn)為構(gòu)造目標(biāo)的評(píng)價(jià)。
圖6 三疊系百口泉組構(gòu)造圖Fig.6 Structure of Baikouquan Formation
大侏羅溝斷層在活動(dòng)過(guò)程中,產(chǎn)生大量次級(jí)斷層,這些斷層呈羽列狀位于主位移帶兩側(cè),并與之相交,在三疊系形成近10個(gè)三角形斷塊,總面積近50 km2,單個(gè)最大面積近10 km2的目標(biāo)區(qū)(圖6)。斷塊圈閉是否有效決定于斷層靜止后的封閉性[32]。對(duì)達(dá)爾布特及大侏羅溝斷層野外露頭觀(guān)察發(fā)現(xiàn),由于受壓扭應(yīng)力作用,斷裂帶巖石碎裂嚴(yán)重,有的呈糜棱化、片理化趨勢(shì),這些斷層巖在斷層活動(dòng)停止后,將表現(xiàn)出很強(qiáng)的致密性。為進(jìn)一步落實(shí)大侏羅溝斷裂體系的封閉性,在地震資料精細(xì)解釋確定斷距,測(cè)井資料(瑪湖1井)精細(xì)分析落實(shí)地層的基礎(chǔ)上,建立了目的層三疊系百口泉組(T1b)的巖性配置關(guān)系圖(圖7),并采用斷面應(yīng)力(P)、泥質(zhì)充填(Rm)、泥巖涂抹(SGR)等參數(shù),定量評(píng)價(jià)其封閉性。圖7中①號(hào)為主斷層(大侏羅溝斷層),②和③號(hào)為分支斷層。通過(guò)單因素計(jì)算和多因素綜合評(píng)價(jià),三疊系百口泉組主要砂體封閉性均處于好至較好之間(表2)。在斷塊區(qū)鉆探的瑪湖1井,獲得日產(chǎn)油39.4 t、氣2500 m3的高產(chǎn)工業(yè)油氣流;瑪湖2井由于鉆探構(gòu)造部位偏低,處于油水邊界附近,見(jiàn)顯示;而在大侏羅溝斷裂體系之外,以隱蔽圈閉為目標(biāo)的瑪湖3井未見(jiàn)任何顯示,近一步證實(shí)斷層對(duì)該區(qū)油氣成藏的控制作用。
圖7 大侏羅溝斷層體系封閉性評(píng)價(jià)Fig.7 Evaluation of fault sealing of Dazhuluogou in Triassic faults
表2 斷層封閉性綜合評(píng)價(jià)Table 2 Comprehensive evaluation of fault sealing
(1)地貌上,大侏羅溝斷層錯(cuò)斷山體;露頭上,斷面直立,發(fā)育水平擦痕和豎直階步;地震剖面上,同相軸反射雜亂,發(fā)育明顯的“花狀構(gòu)造”,平面上形成典型的扭動(dòng)斷裂體系,證實(shí)其具有走滑性質(zhì)。該斷裂形成于印支期,在燕山期有強(qiáng)烈活動(dòng)。
(2)大侏羅溝斷層形成于壓扭環(huán)境,屬達(dá)爾布特大型走滑斷層的派生構(gòu)造,沿Sylvester簡(jiǎn)單剪切模式中的R′剪裂面發(fā)育,是右行平移斷層。該斷層平移錯(cuò)動(dòng)過(guò)程中也能形成派生構(gòu)造,組成走滑斷裂體系,并得到物理模擬實(shí)驗(yàn)證實(shí)。
(3)大侏羅溝斷層橫向切穿西北緣,與瑪湖生烴凹陷直接相連,同時(shí),在斜坡區(qū)與次級(jí)斷層形成多個(gè)三角形斷塊。斜坡區(qū)主走滑帶及其分支斷層封閉能力均較強(qiáng),能夠形成良好的斷塊圈閉,并且鉆井已獲得高產(chǎn)工業(yè)油氣流,揭示走滑斷層對(duì)西北緣油氣成藏具有明顯控制作用,也為下一步油氣勘探提供了極為重要的指導(dǎo)。
[1] SYLVESTER A G.Strike-slip faults[J].Geol Soc Am Bull,1988,100:1666-1703.
[2] 徐嘉偉.論走滑斷層作用的幾個(gè)主要問(wèn)題[J].地學(xué)前緣,1995,2(1/2):125-135.
XU Jiawei.Some major problems on strike-slip fault[J].Earth Science Frontiers,1995,2(1/2):125-135.
[3] 劉和甫.沉積盆地地球動(dòng)力學(xué)分類(lèi)及構(gòu)造樣式分析[J].地球科學(xué)——中國(guó)地質(zhì)大學(xué)學(xué)報(bào),1993,18(6): 699-724.
LIU Hefu.Dynamic classification of sedimentary basins and their structural styles[J].Earth Science—Journal of China University of Geosciences,1993,18(6):699-724.
[4] MOODY J D,HILL M J.Wrench-fault tectonics[J].Geological Society of America Bulletin,1956,67(9):1207-1246.
[5] HARDING T P.Petroleum traps associated with wrench fault[J].AAPG Bulletin,1974,58(7):1290-1304.
[6] HARDING T P.Seismic characteristics and identification of negative flower structures,positive flower structures and positive structural inversion[J].AAPG Bulletin, 1985,69(4):1016-1058.
[7] 夏義平,劉萬(wàn)輝,徐禮貴,等.走滑斷層的識(shí)別標(biāo)志及其石油地質(zhì)意義[J].中國(guó)石油勘探,2007,1:17-23.
XIA Yiping,LIU Wanhui,XU Ligui,et al.Identification of strike-slip fault and its petroleum geology significance[J].China Petroleum Exploration,2007,1:17-23.
[8] 張延玲,楊長(zhǎng)春,賈曙光,等.遼河油田東部凹陷中段走滑斷層與油氣的關(guān)系[J].地質(zhì)通報(bào),2006,25(9/ 10):1152-1155.
ZHANG Yanling,YANG Changchun,JIA Shuguang,et al.Relationship between strike-slip faults and petroleum in the central segment of the eastern subbasin of the Liaohe Oilfield,China[J].Geological Bulletin of China, 2006,25(9/10):1152-1155.
[9] 徐懷民,徐朝暉,李震華,等.準(zhǔn)噶爾盆地西北緣走滑斷層特征及油氣地質(zhì)意義[J].高校地質(zhì)學(xué)報(bào),2008, 14(2):217-222.
XU Huaimin,XU Zhaohui,LI Zhenhua,et al.Characteristics of strike-slip faults in the northwestern margin of Junggar Basin and their geological significance for petroleum[J].Geological Journal of China Universities,2008, 14(2):217-222.
[10] 邵雨,汪仁富,張?jiān)竭w,等.準(zhǔn)噶爾盆地西北緣走滑構(gòu)造與油氣勘探[J].石油學(xué)報(bào),2011,32(6):976-984.
SHAO Yu,WANG Renfu,ZHANG Yueqian,et al.Strike-slip structures and oil-gas exploration in the NW margin of the Junggar Basin,China[J].Acta Petroleum Sinica,2011,32(6):976-984.
[11] 吳孔友,查明,曲江秀,等.博格達(dá)山隆升對(duì)北三臺(tái)地區(qū)構(gòu)造形成與演化的控制作用[J].石油大學(xué)學(xué)報(bào):自然科學(xué)版,2004,28(2):1-5.
WU Kongyou,ZHA Ming,QU Jiangxiu,et al.Control of Bogeda mountains uplift on the structural formation and evolution in Beisantai region[J].Journal of the University of Petroleum,China(Edition of Natural Science),2004,28(2):1-5.
[12] 陳新,盧華復(fù),舒良樹(shù),等.準(zhǔn)噶爾盆地構(gòu)造演化分析新進(jìn)展[J].高校地質(zhì)學(xué)報(bào),2002,8(3):257-267.
CHEN Xin,LU Huafu,SHU Liangshu,et al.Study on tectonic evolution of Junggar Basin[J].Geological Journal of China Universities,2002,8(3):257-267.
[13] WU Kongyou,DOUGLAS P,ZHA Ming.Unconformity structures controllingstratigraphicreservoirsinthe north-west margin of Junggar Basin,North-West China [J].Front Earth Sci,2013,7(1):55-64.
[14] 馬宗晉,曲國(guó)勝,李濤,等.準(zhǔn)噶爾盆地盆山構(gòu)造耦合與分段性[J].新疆石油地質(zhì),2008,29(3):271-277.
MA Zongjin,QU Guosheng,LI Tao,et al.Tectonic coupling and segmentation of marginal structural belt in Junggar Basin[J].Xinjiang Petroleum Geology,2008, 29(3):271-277.
[15] HARDING T P.Identification of wrench faults using subsurface structural data:criteria and pitfalls[J].AAPG Bulletin,1990,75(11):1779-1788.
[16] 張?jiān)竭w,汪新,劉繼山,等.準(zhǔn)噶爾盆地西北緣烏夏走滑構(gòu)造及油氣勘探意義[J].新疆石油地質(zhì),2011,32 (5):447-450.
ZHANG Yueqian,WANG Xin,LIU Jishan,et al.Wuerhe-Xiazijie Strike-slip structure and petroleum exploration significance in northwestern margin of Junggar Basin[J].Xinjiang Petroleum Geology,2011,32(5): 447-450.
[17] 徐朝暉,徐懷民,林軍,等.準(zhǔn)噶爾盆地西北緣256走滑斷層帶特征及地質(zhì)意義[J].新疆石油地質(zhì), 2008,29(3):309-310.
XU Zhaohui,XU Huaimin,LIN Jun,et al.256 Strikeslip fault zone characte-ristic and its geological significance in northwestern margin of Junggar Basin[J].Xinjiang Petroleum Geology,2008,29(3):309-310.
[18] FENG Y M,COLEMAN R G,TILTON G,et al.Tectonic evolution of the west Junggar region,Xinjiang, China[J].Tectonics,1989,8(4):729-752.
[19] ALLEN M B,SENGOR A M C,NATALIN B A.Junggar,Turfan and Alakol Basins as Late Permian to Early Triassic extensional structures in a sinistral shear zone in the Altaid Orogenic Collage,Central-Asia[J].Journal of the Geological Society,1995,152(2):327-338.
[20] 王偉鋒,王毅,陸詩(shī)闊,等.準(zhǔn)噶爾盆地構(gòu)造分區(qū)和變形樣式[J].地震地質(zhì),1999,21(4):324-333.WANG Weifeng,WANG Yi,LU Shikuo,et al.Structural belts and deformation features of the Junggar Basin [J].Seismology and Geology,1999,21(4):324-333.
[21] 孫自明,洪太元,張濤.新疆北部哈拉阿拉特山走滑-沖斷復(fù)合構(gòu)造特征與油氣勘探方向[J].地質(zhì)科學(xué), 2008,43(2):309-320.
SUN Ziming,HONG Taiyuan,ZHANG Tao.Strike-slipthrust composite structures and its relationships to hydrocarbon in Hala'alate mountains,northern Xinjiang[J].Chinese Journal of Geology,2008,43(2):309-320.
[22] 孟家峰,郭召杰,方世虎.準(zhǔn)噶爾盆地西北緣沖斷構(gòu)造新解[J].地學(xué)前緣,2009,16(3):171-180.
MENG Jiafeng,GUO Zhaojie,FANG Shihu.A new insight into the thrust structures at the northwestern margin of Junggar Basin[J].Earth Science Frontiers,2009,16 (3):171-180.
[23] HOOPER E C.Fluid migration along growth faults in compacting sediments[J].Journal of Petroleum Geology,1991,4(2):161-180.
[24] 華保欽.構(gòu)造應(yīng)力場(chǎng)、地震泵和油氣運(yùn)移[J].沉積學(xué)報(bào),1995,13(2):77-85.
HUA Baoqin.Stress field,seismic pumping and oil-gas migration[J].Acta Sedimentologica Sinica,1995,13 (2):77-85.
[25] STEVEN L,LORRAINE E,MARTIN S,et al.Vertical and lateral fluid flow related to a large growth fault, south Eugene island block 330 field,offshore Louisiana [J].AAPG Bulletin,1999,283(2):244-276.
[26] COX S F.Faulting process of high fluid pressure an example of fault valve behavior from the water gully fault [J].Journal of Geophysical Research,1996,100(7): 12841-12859.
[27] 劉亮明.斷層帶中超壓流體及其在地震和成礦中的作用[J].地球科學(xué)進(jìn)展,2001,16(2):238-243.
LIU Liangming.Overpressured fluids in fault zones and their roles in earth quake and hydrothermal metallogeny [J].Advance in Earth Sciences,2001,16(2):238-243.
[28] 劉立,于均民,孫曉明,等.熱對(duì)流成巖作用的基本特征與研究意義[J].地球科學(xué)進(jìn)展,2000,15(5): 583-585.
LIU Li,YU Junming,SUN Xiaoming,et al.Basic characteristics of thermal convection diagenesis and its research significance[J].Advance in Earth Sciences, 2000,15(5):583-585.
[29] 李忠,費(fèi)衛(wèi)紅,壽建峰,等.華北東濮凹陷異常高壓與流體活動(dòng)及其對(duì)儲(chǔ)集砂巖成巖作用的制約[J].地質(zhì)學(xué)報(bào),2003,77(1):126-134.
LI Zhong,FEI Weihong,SHOU Jianfeng,et al.Overpressure and fluid flow in the Dongpu Depression,North China:their constrains on diagenesis of reservoir sandstones[J].Acta Geologica Sinica,2003,77(1):126-134.
[30] 王來(lái)斌,查明,陳建平,等.準(zhǔn)噶爾盆地西北緣風(fēng)城組含油氣系統(tǒng)三疊紀(jì)末期油氣輸導(dǎo)體系[J].石油大學(xué)學(xué)報(bào):自然科學(xué)版,2004,28(2):16-19.
WANG Laibin,ZHA Ming,CHEN Jianping,et al.Hydrocarbon passage systems of Fengcheng petroliferous system of later Triassic in northwestern part of Junggar Basin[J].Journal of the University of Petroleum,China (Edition of Natural Science),2004,28(2):16-19.
[31] 陶國(guó)亮,胡文瑄,張義杰,等.準(zhǔn)噶爾盆地西北緣北西向橫斷層與油氣成藏[J].石油學(xué)報(bào),2006,27(4): 23-28.
TAO Guoliang,HU Wenxuan,ZHANG Yijie,et al.NW-trending transverse faults and hydrocarbon accumulation in the northwestern margin of Junggar Basin[J].Acta Petroleum Sinica,2006,27(4):23-28.
[32] 吳孔友,查明.柴達(dá)木盆地北部塊斷帶斷層控?zé)N作用[J].石油學(xué)報(bào),2007,28(3):17-22.
WU Kongyou,ZHA Ming.Hydrocarbon controlling function of fault in the North Block-faulted Belt of Qaidam Basin[J].Acta Petroleum Sinica,2007,28(3):17-22.
(編輯 徐會(huì)永)
Strike-slip characteristics,forming mechanisms and controlling reservoirs of Dazhuluogou fault in Junggar Basin
WU Kongyou1,QU Jianhua2,WANG Hehua1
(1.School of Geosciences in China University of Petroleum,Qingdao 266580,China; (2.Research Institute of Exploration and Development,Xinjiang Oilfield Company,PetroChina, Karamay 834000,China)
Using the shear structural theory and physical simulation experiments,this study focuses on the strike-slip characteristics,forming mechanisms and controlling reservoirs of Dazhuluogou fault in the northwestern margin of Junggar Basin.Comprehensive analyses of the field outcrops are combined with high precision 3D seismic data in the framework of simple shear model.The results show that the Dazhuluogou fault which was formed in a twist-compression environment is a dextral strike-slip fault,which belongs to the derived structure of Daerbute fault.It is suggested from the stratigraphic distribution relationship and fluid inclusion information that the Dazhuluogou fault was initialized during the Indosinian movement and was active in the Yanshan movement.The development of the fault was along the R'shearing plane in the simple shear model of Sylvester,where secondary structures were evolved before the strike-slip fault system was formed.Rocks in the Dazhuluogou fault zone were severely ruptured and broken,and some evolved into mylonites and schists.The closure in the main and secondary faults in strike-slip fault system is strong,resulting in the forming of a series of faulted block traps.The shear struc-tures which developed in the northwestern margin of Junggar Basin are relevant to the oil and gas accumulation obviously.
Dazhuluogou fault;strike-slip structure;forming mechanism;controlling reservoirs;northwestern margin
TE 121.2
A
1673-5005(2014)05-0041-07
10.3969/j.issn.1673-5005.2014.05.006
2014-01-19
國(guó)家“973”計(jì)劃項(xiàng)目(2014CB239005);國(guó)家自然科學(xué)基金項(xiàng)目(41272142);國(guó)家科技重大專(zhuān)項(xiàng)(2011ZX05001);山東省自然科學(xué)基金項(xiàng)目(ZR2012DM011)
吳孔友(1971-),男,教授,博士,主要從事地質(zhì)構(gòu)造與油氣成藏研究。E-mail:wukongyou@163.com。
吳孔友,瞿建華,王鶴華.準(zhǔn)噶爾盆地大侏羅溝斷層走滑特征、形成機(jī)制及控藏作用[J].中國(guó)石油大學(xué)學(xué)報(bào):自然科學(xué)版,2014,38(5):41-47.
WU Kongyou,QU Jianhua,WANG Hehua.Strike-slip characteristics,forming mechanisms and controlling reservoirs of Dazhuluogou fault in Junggar Basin[J].Journal of China University of Petroleum(Edition of Natural Science),2014,38(5): 41-47.