王 冠,孫豐月,李碧樂(lè),李世金,趙俊偉,楊啟安
1.吉林大學(xué)地球科學(xué)學(xué)院,長(zhǎng)春 1300612.青海省地質(zhì)調(diào)查局,西寧 8100013.青海省第五地質(zhì)礦產(chǎn)勘查院,西寧 810008
東昆侖夏日哈木礦區(qū)閃長(zhǎng)巖鋯石U-Pb年代學(xué)、地球化學(xué)及其地質(zhì)意義
王 冠1,孫豐月1,李碧樂(lè)1,李世金2,趙俊偉3,楊啟安3
1.吉林大學(xué)地球科學(xué)學(xué)院,長(zhǎng)春 1300612.青海省地質(zhì)調(diào)查局,西寧 8100013.青海省第五地質(zhì)礦產(chǎn)勘查院,西寧 810008
夏日哈木礦區(qū)的閃長(zhǎng)質(zhì)巖體呈巖株?duì)畛雎队诘V區(qū)南東,巖性主要為石英閃長(zhǎng)巖和閃長(zhǎng)巖。年代學(xué)研究表明,石英閃長(zhǎng)巖中巖漿鋯石LA-ICP-MS U-Pb諧和年齡為(243±1 ) Ma,MSWD=0.013,屬早三疊世晚期。巖石學(xué)及化學(xué)成分顯示其屬于準(zhǔn)鋁質(zhì)、高鉀鈣堿性系列閃長(zhǎng)巖。稀土配分曲線(xiàn)呈現(xiàn)輕稀土元素相對(duì)富集的右傾分布特征((La/Yb)N=8.7~12.7),無(wú)明顯的Eu負(fù)異常(δEu=0.84~1.01)。巖石富集Rb、Ba、K等元素,而相對(duì)虧損Nb、Ta、P和Ti。巖石具有不均一的εHf(T)值(-9.0~-1.0)和古老的二階段Hf模式年齡(1.34~1.84 Ga)。結(jié)合試驗(yàn)巖石學(xué)資料判別,閃長(zhǎng)巖主要起源于中元古代玄武質(zhì)下地殼脫水部分熔融,富集地幔組分的加入可能是導(dǎo)致εHf(T)值和Hf模式年齡不均一的主要原因。微量元素及特征比值顯示巖體形成于安第斯型活動(dòng)大陸邊緣的構(gòu)造環(huán)境。綜合分析認(rèn)為,早三疊世晚期東昆中隆起帶整體處于俯沖晚期的安第斯型活動(dòng)大陸邊緣背景。
閃長(zhǎng)巖;鋯石U-Pb年齡;地球化學(xué);構(gòu)造環(huán)境;東昆侖;夏日哈木
東昆侖造山帶隸屬于中央造山帶中西段,為一巨型的構(gòu)造巖漿巖帶,顯生宙以來(lái)經(jīng)歷了多旋回造山作用的影響[1]。時(shí)間上,以晚古生代-早中生代造山旋回形成的巖漿巖分布最廣,空間上各期巖漿巖以昆中斷裂帶以北的東昆中隆起帶出露最多,反映出昆中帶在東昆侖構(gòu)造演化歷史中的特殊地位。目前,眾多的研究者都強(qiáng)調(diào)華力西晚期至印支早期東昆侖地區(qū)存在安第斯型巖漿弧[2-4]。但是,前人的研究主要集中于東部花崗質(zhì)巖石的成因,鮮有對(duì)中西部閃長(zhǎng)質(zhì)巖石的詳細(xì)研究,在一定程度上限制了對(duì)東昆侖地區(qū)華力西晚期至印支期早期邊緣造山過(guò)程的整體認(rèn)識(shí)。研究區(qū)為位于昆中隆起帶中部、烏圖美仁鄉(xiāng)以南約60 km、夏日阿哈木日河下游地區(qū)的夏日哈木礦區(qū)。2011年青海省第五地質(zhì)礦產(chǎn)勘查院在該區(qū)發(fā)現(xiàn)了夏日哈木銅鎳硫化物礦床,這是東昆侖成礦帶首次發(fā)現(xiàn)的銅鎳硫化物礦床,鎳儲(chǔ)量已達(dá)超大型規(guī)模,引起國(guó)內(nèi)學(xué)者的廣泛關(guān)注。然而礦區(qū)基礎(chǔ)地質(zhì)工作十分薄弱,特別是礦區(qū)內(nèi)不同巖石類(lèi)型的形成時(shí)代和成巖構(gòu)造環(huán)境等問(wèn)題急需解決。本文選取礦區(qū)出露的閃長(zhǎng)質(zhì)巖石進(jìn)行年代學(xué)和地球化學(xué)研究,探討巖石成因及成巖構(gòu)造環(huán)境。這不但有助于構(gòu)建礦區(qū)內(nèi)巖漿作用的時(shí)空格架,還可以為東昆侖造山帶的巖漿演化、邊緣造山類(lèi)型及時(shí)限提供重要的依據(jù)。
東昆侖造山帶位于青藏高原北部,柴達(dá)木盆地南緣,區(qū)內(nèi)構(gòu)造線(xiàn)總體呈近東西向展布,由北向南發(fā)育昆北、昆中和昆南3條近東西向的區(qū)域性深大斷裂帶[5-6]。前人以上述3條斷裂帶為界,將東昆侖造山帶自北向南劃分為昆北、昆中和昆南3個(gè)不同的構(gòu)造帶[7]。孫豐月等*孫豐月,陳國(guó)華,遲效國(guó),等.新疆-青海東昆侖成礦帶成礦規(guī)律和找礦方向綜合研究報(bào)告.長(zhǎng)春:吉林大學(xué)地質(zhì)調(diào)查研究院,2003.研究認(rèn)為東昆侖地區(qū)3個(gè)構(gòu)造帶實(shí)際上為昆北弧后裂陷帶、昆中基底隆起花崗巖帶和昆南復(fù)合拼接帶,再向南為阿尼瑪卿蛇綠混雜巖帶和巴顏喀拉造山帶(圖1a)。
1.第四系;2.元古宙金水口巖群白沙河組;3.早三疊世中細(xì)粒閃長(zhǎng)巖;4.早泥盆世中細(xì)粒正長(zhǎng)花崗巖;5.晚志留世-早泥盆世鎂鐵質(zhì)-超鎂鐵質(zhì)雜巖;6.輝長(zhǎng)巖;7.正長(zhǎng)花崗巖;8.二長(zhǎng)花崗巖;9.含石榴石花崗質(zhì)片麻巖;10.石榴石輝石巖;11.逆斷層;12.左行平移斷層;13.性質(zhì)不明斷層;14.鎳礦床;15.樣品采集地。圖1 夏日哈木礦區(qū)地質(zhì)簡(jiǎn)圖(據(jù)文獻(xiàn)[8]修編)Fig. 1 Sketch geological map of the Xiarihamu ore district(modified after reference[8])
研究區(qū)位于昆中構(gòu)造帶中部,區(qū)內(nèi)出露地層主要為金水口群白沙河組,巖性為黑云斜長(zhǎng)片麻巖、云母二長(zhǎng)片麻巖、斜長(zhǎng)角閃巖、大理巖等(圖1b)[8]。近年來(lái)對(duì)東昆侖東段白沙河組的研究結(jié)果顯示其形成于太古宙-古元古代[9-10]或中元古代[11-12]。區(qū)內(nèi)斷裂構(gòu)造發(fā)育,以近EW、NW向和NE向?yàn)橹?。其中:近EW向斷裂規(guī)模最大貫穿整個(gè)研究區(qū),類(lèi)型以壓性逆斷層為主,并在地表形成了寬約50 m的破碎帶,帶內(nèi)巖石破碎,高嶺土化、硅化、褐鐵礦化發(fā)育。NW向和NE斷裂形成時(shí)間晚于近EW向斷裂,類(lèi)型以壓性逆斷層和左行平移斷層為主。區(qū)內(nèi)巖漿活動(dòng)強(qiáng)烈,主要巖石類(lèi)型有鎂鐵質(zhì)-超鎂鐵質(zhì)雜巖、輝長(zhǎng)巖、正長(zhǎng)花崗巖、二長(zhǎng)花崗巖和閃長(zhǎng)巖。其中,銅鎳硫化物礦床主要產(chǎn)于研究區(qū)北西的鎂鐵質(zhì)-超鎂鐵質(zhì)雜巖體中,雜巖體出露面積約0.6 km2,主要由方輝橄欖巖、橄欖輝石巖、輝石巖、輝長(zhǎng)巖組成,地表出露的輝石巖鋯石U-Pb年齡為(393.5±3.4 ) Ma[8]。輝長(zhǎng)巖體呈小巖株?duì)钋治挥诎咨澈咏M變質(zhì)巖系之中,并顯示有較好的銅鎳礦化。正長(zhǎng)花崗巖主要分布于研究區(qū)北部,區(qū)域上呈近東西向巖株?duì)钋治挥诮鹚谌旱貙又校喪疷-Pb年齡為(391.1±1.4) Ma[13]。閃長(zhǎng)質(zhì)巖體主要分布于研究區(qū)東南部,巖性主要為石英閃長(zhǎng)巖和閃長(zhǎng)巖,二者漸變過(guò)渡,巖體呈脈狀、巖株?duì)钋治挥诎咨澈咏M變質(zhì)巖系中,出露面積約為1 km2,具有成群分布的特征,巖脈走向總體呈北西向。區(qū)域上該套閃長(zhǎng)巖呈巖株?duì)町a(chǎn)出,出露面積約為7.5 km2。
用于巖石地球化學(xué)及年代學(xué)測(cè)試的9件樣品采自夏日哈木礦區(qū)南東蘇海圖河西岸的閃長(zhǎng)巖體不同位置的新鮮露頭。本區(qū)閃長(zhǎng)巖體包括2種巖石類(lèi)型:1)中細(xì)粒石英閃長(zhǎng)巖:巖石呈灰色,中細(xì)粒半自形結(jié)構(gòu)(d=0.5~2.5 mm)(圖2a),塊狀構(gòu)造;主要由斜長(zhǎng)石(65%~70%)、普通角閃石(10%~15%)、石英(5%~10%)及少量鉀長(zhǎng)石組成;副礦物為鋯石、磷灰石、磁鐵礦等。其中,斜長(zhǎng)石自形程度好,呈長(zhǎng)柱狀,可見(jiàn)聚片雙晶及卡鈉聯(lián)合雙晶,根據(jù)Np′∧(010)最大消光角法測(cè)定其An≈30~35,為更-中長(zhǎng)石;普通角閃石多呈長(zhǎng)柱狀,單偏光下綠-淺綠色多色性明顯,最高干涉色為二級(jí)藍(lán),部分已轉(zhuǎn)變?yōu)榫G泥石和綠簾石,石英呈他形分布于斜長(zhǎng)石晶隙間(圖2b)。2)中細(xì)粒閃長(zhǎng)巖:巖石呈灰-深灰色,中細(xì)粒半自形結(jié)構(gòu)(d=0.5~2.5 mm),主要礦物為斜長(zhǎng)石(65%~70%)、普通角閃石(10%~15%)、黑云母(5%~10%);副礦物為鋯石和磁鐵礦。其中,斜長(zhǎng)石自形程度好,呈寬板狀、長(zhǎng)柱狀,可見(jiàn)聚片雙晶及卡鈉聯(lián)合雙晶,An≈40~45,為中長(zhǎng)石;普通角閃石雙晶發(fā)育(圖2c);巖體由中部至邊部黑云母逐漸增多,逐漸過(guò)渡為黑云母閃長(zhǎng)巖(圖2d)。
a.中細(xì)粒石英閃長(zhǎng)巖中角閃石轉(zhuǎn)變?yōu)榫G簾石;b.中細(xì)粒石英閃長(zhǎng)巖中石英呈他形充填于斜長(zhǎng)石顆粒之間(XRHM-DB-Y1);c.中細(xì)粒閃長(zhǎng)巖中角閃石雙晶發(fā)育(XRHM-DB-Y5);d.中細(xì)粒黑云母閃長(zhǎng)巖;a、b、c、d均為正交偏光。礦物代號(hào):Qtz.石英;Pl.斜長(zhǎng)石;Am.角閃石;Bi.黑云母;Ep.綠簾石;Chl.綠泥石。圖2 夏日哈木閃長(zhǎng)巖鏡下特征照片F(xiàn)ig. 2 Characteristic microscope photos of Xiarihamu diorite
3.1 鋯石LA-ICP-MS定年及Hf同位素測(cè)試
鋯石分選在河北省廊坊區(qū)域地質(zhì)調(diào)查研究所實(shí)驗(yàn)室利用標(biāo)準(zhǔn)重礦物分離技術(shù)完成。經(jīng)過(guò)雙目鏡下仔細(xì)挑選表面平整光潔且具不同長(zhǎng)寬比例、不同柱錐面特征、不同顏色的鋯石顆粒,再將這些鋯石粘在雙面膠上,用無(wú)色透明環(huán)氧樹(shù)脂固定,待環(huán)氧樹(shù)脂固化之后對(duì)其表面拋光至鋯石中心。在原位分析之前,通過(guò)反射光和CL圖像詳細(xì)研究鋯石的晶體形貌和內(nèi)部結(jié)構(gòu)特征,以選擇同位素分析的最佳點(diǎn)。鋯石制靶、反射光、陰極發(fā)光以及鋯石U-Pb年齡測(cè)定和微量元素分析均在西北大學(xué)大陸動(dòng)力學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室進(jìn)行。本次測(cè)試采用的激光剝蝕斑束直徑為32 μm,激光剝蝕樣品的深度為20~40 μm;激光剝蝕過(guò)程中采用氦氣作載氣、氬氣為補(bǔ)償氣以調(diào)節(jié)靈敏度。U-Pb同位素定年中采用標(biāo)準(zhǔn)鋯石91500作外標(biāo)進(jìn)行同位素分餾校正,每分析5個(gè)樣品點(diǎn),分析2次91500標(biāo)樣。元素含量采用NIST SRM610作為外標(biāo),29Si作為內(nèi)標(biāo)元素,具體分析方法見(jiàn)文獻(xiàn)[14];普通鉛校正采用Andersen推薦的方法[15];樣品的同位素比值及元素含量計(jì)算采用ICP-MS-DATECAL程序[16],年齡計(jì)算及諧和圖的繪制采用Ludwig[17]編寫(xiě)的Isoplot程序。
鋯石Hf同位素測(cè)試在天津地質(zhì)礦產(chǎn)研究所同位素實(shí)驗(yàn)室完成,使用儀器為Neptune多接收器電感耦合等離子體質(zhì)譜儀,利用193 nm FX激光器對(duì)鋯石進(jìn)行剝蝕,實(shí)驗(yàn)中采用高純He作為剝蝕物質(zhì)的載氣,分析時(shí)激光剝蝕的斑束直徑為50 μm,能量密度為10 ~ 11 J/cm2,頻率為8~10 Hz,測(cè)定時(shí)用標(biāo)準(zhǔn)鋯石GJ-1作為外標(biāo),分析點(diǎn)與U-Pb定年分析點(diǎn)為同一位置。相關(guān)的儀器運(yùn)行條件和詳細(xì)分析流程參見(jiàn)文獻(xiàn)[18]。
3.2 巖石地球化學(xué)測(cè)試
樣品的主量、微量和稀土元素測(cè)試均由廣州澳實(shí)礦物實(shí)驗(yàn)室中心完成。首先將待測(cè)樣品在65 ℃左右低溫干燥24 h,之后破碎,經(jīng)多次手工縮分出300 g均勻樣品在振動(dòng)研磨機(jī)上研磨至200目以備分析測(cè)試。主量元素由荷蘭PANalytical生產(chǎn)的Axios儀器采用熔片X-射線(xiàn)熒光光譜ME-XRF06法測(cè)定,并采用等離子光譜和化學(xué)法測(cè)定進(jìn)行互相檢測(cè)。微量元素和稀土元素采用美國(guó)Perkin Elmer公司生產(chǎn)的Elan 9000型電感耦合等離子質(zhì)譜儀采用ME-MS81法測(cè)定。主量元素分析精度和準(zhǔn)確度優(yōu)于5%,微量和稀土元素分析精度和準(zhǔn)確度優(yōu)于10% 。
圖3 夏日哈木石英閃長(zhǎng)巖中鋯石陰極發(fā)光(CL)圖像Fig. 3 Cathode luminescence (CL) images of zircons from Xiarihamu quartz diorite
4.1 鋯石LA-ICP-MS年代學(xué)
樣品XRHM-DB-N(中細(xì)粒石英閃長(zhǎng)巖)中挑選的鋯石多呈無(wú)色透明,金剛光澤,晶體多為長(zhǎng)柱狀,少數(shù)為短柱狀,個(gè)別為粒狀。多數(shù)鋯石顆粒自形程度較好,部分呈斷頭晶出現(xiàn)。經(jīng)統(tǒng)計(jì),鋯石長(zhǎng)100~300 μm,寬50~150 μm,長(zhǎng)寬比約為2∶1;由陰極發(fā)光(CL)圖像(圖3)可見(jiàn),鋯石具有清晰的韻律環(huán)帶結(jié)構(gòu),具巖漿結(jié)晶鋯石特征。16個(gè)分析點(diǎn)測(cè)試結(jié)果(表1)顯示,Th、U質(zhì)量分?jǐn)?shù)分別為(54~537)×10-6和(58~320)×10-6,Th/U值為0.93~1.96,均大于0.40,為巖漿成因的鋯石特征[19-20]。16個(gè)鋯石分析點(diǎn)比較集中,均落在諧和線(xiàn)上,16個(gè)鋯石206Pb/238U分析數(shù)據(jù)的加權(quán)平均年齡為 (243±2)Ma,MSWD=0.150;諧和年齡值為 (243±1)Ma,MSWD=0.013,二者十分接近(圖4)。因此,閃長(zhǎng)巖的侵位年齡為(243±1)Ma,屬印支早期。
圖4 夏日哈木石英閃長(zhǎng)巖鋯石U-Pb年齡諧和線(xiàn)圖Fig. 4 Zircon U-Pb concordia diagram of Xiarihamu quartz diorite
4.2 地球化學(xué)
4.2.1 主量元素
夏日哈木閃長(zhǎng)巖主量元素含量及特征值列于表2。樣品的w(SiO2)為53.91%~60.24%,屬中性巖,w(Na2O+K2O)為5.48%~7.01%,K2O/Na2O值為0.44~0.67,顯示出富鈉特征。Mg#值為44~53。在w(Na2O+K2O)-w(MgO)-w(TFeO)(AFM)圖解(圖略)中,全部落入鈣堿性區(qū)域;在w(SiO2)-w(K2O)圖解(圖5)上,全部落入高鉀鈣堿性區(qū)域。w(Al2O3)為16.73%~18.16%,在A(yíng)/CNK-A/NK圖解(圖6)上,全部落入準(zhǔn)鋁質(zhì)區(qū)域。主量元素顯示其屬準(zhǔn)鋁質(zhì)、高鉀鈣堿性系列巖石。結(jié)合鏡下石英、長(zhǎng)石等礦物實(shí)際含量將其定名為閃長(zhǎng)巖和石英閃長(zhǎng)巖。
圖5 閃長(zhǎng)巖的w(SiO2)-w(K2O)關(guān)系圖(底圖據(jù)文獻(xiàn)[21])Fig. 5 w(SiO2)-w(K2O) diagram of diorite(base map after reference[21])
圖6 閃長(zhǎng)巖的A/CNK-A/NK圖解Fig. 6 A/CNK-A/NK diagram of diorite
4.2.2 微量元素
夏日哈木閃長(zhǎng)巖稀土總量為(114~172)×10-6(平均值141×10-6)。稀土元素配分曲線(xiàn)明顯右傾(圖7a),(La/Yb)N=8.7~12.7,表現(xiàn)為輕稀土富集和重稀土虧損。δEu=0.84~1.01,負(fù)Eu異常不明顯。原始地幔標(biāo)準(zhǔn)化微量元素蛛網(wǎng)圖(圖7b)顯示,閃長(zhǎng)巖富集大親石元素(Rb、Ba、K),相對(duì)虧損高場(chǎng)強(qiáng)元素(Nb、Ta、P、Ti)。樣品Zr/Y=8.3~13.2(平均值10.6),La/Nb=3.0~3.2(平均值3.1)。
4.3 鋯石Hf同位素
5.1 巖漿源區(qū)性質(zhì)
夏日哈木閃長(zhǎng)巖屬準(zhǔn)鋁質(zhì)、高鉀鈣堿性系列巖石,富集大離子親石元素(Rb、Ba、K),相對(duì)虧損高場(chǎng)強(qiáng)元素(Nb、Ta、P、Ti),顯示出活動(dòng)大陸邊緣弧巖漿巖的地球化學(xué)特征[29]。弧巖漿巖一般可通過(guò)以下幾個(gè)過(guò)程形成:1)俯沖板片的部分熔融[30];2)被交代地幔楔的部分熔融[31];3)基性下地殼的部分熔融[32];4)巖漿混合作用[33]。閃長(zhǎng)巖樣品Nb、Ta相對(duì)虧損,無(wú)明顯負(fù)Eu異常暗示巖漿源區(qū)與熔體平衡的殘留相礦物為富Ti礦物(如金紅石)或角閃石,基本無(wú)斜長(zhǎng)石[34]。而較低的(La/Yb)N值和較高的YbN值及Y含量,與典型的埃達(dá)克巖明顯不同[35-36],因此,基本上可排除由俯沖板片部分熔融形成本區(qū)閃長(zhǎng)巖的可能性。閃長(zhǎng)巖體呈巖株?duì)町a(chǎn)出,巖體周?chē)匆?jiàn)同時(shí)期的基性巖石,所以直接由地幔部分熔融形成本區(qū)閃長(zhǎng)巖的可能性也不大。實(shí)驗(yàn)巖石學(xué)研究表明,下地殼玄武質(zhì)巖石脫水部分熔融可以形成鐵鎂質(zhì)熔體,它們具有低SiO2、高Al2O3、高Na2O/K2O、弱或無(wú)Eu負(fù)異常等特征[37-38]。這些特征與夏日哈木閃長(zhǎng)巖的元素地球化學(xué)特征非常一致。本區(qū)樣品在由實(shí)驗(yàn)巖石學(xué)資料建立的判別圖解[39]上(圖8)均落入變質(zhì)玄武巖或變質(zhì)英云閃長(zhǎng)巖部分熔融區(qū)域,顯示其源巖涉及下地殼變質(zhì)玄武巖。但實(shí)驗(yàn)巖石學(xué)研究同時(shí)也表明,由變質(zhì)玄武巖脫水熔融形成的低Si準(zhǔn)鋁質(zhì)鐵鎂質(zhì)熔體需要較高的溫度(>1 100 ℃),并且無(wú)論部分熔融程度如何,熔體一般具有較低Mg#值(Mg#<44)、高Na2O(>4.3%)的特征[37-38,40]。本區(qū)閃長(zhǎng)巖的Mg#值較高(44~53)、Na2O較低(<4.26%),暗示源區(qū)必須有高M(jìn)g低Na物質(zhì)的混入。
表2 夏日哈木閃長(zhǎng)巖的主量元素、稀土元素和微量元素含量及有關(guān)參數(shù)
注: A/CNK=Al2O3/(CaO+Na2O+K2O),分子比;K2O/Na2O,質(zhì)量比;Mg#=100×[Mg2+/(Mg2++TFe2+)] 。主量元素質(zhì)量分?jǐn)?shù)單位為%,微量元素質(zhì)量分?jǐn)?shù)單位為10-6。
圖7 閃長(zhǎng)巖的稀土元素配分曲線(xiàn)圖(a,標(biāo)準(zhǔn)化值據(jù)文獻(xiàn)[22])和微量元素蛛網(wǎng)圖(b,標(biāo)準(zhǔn)化值據(jù)文獻(xiàn)[23])Fig. 7 Chondrite-normalized REE pattern(a,chondrite values after reference[22])and primitive mantle-normalized element spider diagram of Xiarihamu diorite(b,primitive mantle values after reference[23])
測(cè)點(diǎn)號(hào)T/Ma176Yb/177Hf176Lu/177Hf176Hf/177Hf2σ(176Hf/177Hf)iεHf(0)εHf(T)TDM/GaTCDM/GafLu/HfXRHM-DB-N-12440.0632740.0018050.2825870.0000140.282578-6.6-1.50.961.37-0.95XRHM-DB-N-22450.0624250.0017790.2825070.0000120.282499-9.4-4.31.081.55-0.95XRHM-DB-N-32420.0589030.0016480.2824990.0000120.282491-9.7-4.61.081.56-0.95XRHM-DB-N-42450.0594550.0015430.2825160.0000150.282509-9.1-3.91.061.52-0.95XRHM-DB-N-52430.0398720.0010960.2825350.0000130.282530-8.4-3.21.021.48-0.97XRHM-DB-N-62410.0325620.0008480.2825220.0000140.282518-8.9-3.71.031.51-0.97XRHM-DB-N-72450.0519210.0014350.2825980.0000130.282591-6.2-1.00.941.34-0.96XRHM-DB-N-82430.0696160.0018950.2824810.0000160.282472-10.3-5.31.121.61-0.94XRHM-DB-N-92410.0541010.0015460.2825290.0000170.282522-8.6-3.51.041.50-0.95XRHM-DB-N-102430.0515110.0014500.2825080.0000270.282501-9.3-4.21.071.54-0.96XRHM-DB-N-112430.0547950.0014920.2825450.0000170.282539-8.0-2.91.011.46-0.96XRHM-DB-N-122440.0447760.0012850.2825030.0000180.282497-9.5-4.41.071.55-0.96XRHM-DB-N-132390.0589130.0015430.2824540.0000170.282447-11.2-6.21.141.67-0.95XRHM-DB-N-142410.0477800.0012930.2825330.0000170.282528-8.4-3.41.031.48-0.96XRHM-DB-N-152400.0763870.0019550.2824300.0000200.282421-12.1-7.11.201.72-0.94XRHM-DB-N-162420.0820470.0022580.2823790.0000210.282369-13.9-9.01.281.84-0.93
圖8 閃長(zhǎng)巖的n(CaO)/n(MgO+TFeO)-n(Al2O3/n(MgO+TFeO)圖解(底圖據(jù)文獻(xiàn)[39])Fig. 8 n(CaO)/n(MgO+TFeO)-n(Al2O3/n(MgO+TFeO) diagram for the diorite(base map after reference[39])
圖9 夏日哈木石英閃長(zhǎng)巖鋯石Hf同位素特征Fig. 9 Zircon Hf isotopic features for the Xiarihamu quartz diorite
5.2 構(gòu)造環(huán)境
夏日哈木地區(qū)閃長(zhǎng)巖在Bailey(1981)的w(La)-w(K2O)和w(La)-w(P2O5判別圖解[49](圖10)中,主要落在安第斯型弧火山巖區(qū)域。此外,樣品Zr/Y值(8.3~13.2)平均為10.6,介于活動(dòng)大陸邊緣安山巖的范圍之內(nèi)(Zr/Y=4.0~12.0)[50]。La/Nb值(3.0~3.2)平均為3.1,與活動(dòng)大陸邊緣區(qū)La/Nb值高(>2.0)的特征吻合[51]。樣品高的La/Yb值(12.8~18.8)平均為15.4,同樣顯示出安第斯型弧火山巖的特征[49]。由上述特征判斷,本區(qū)閃長(zhǎng)巖形成于安第斯型活動(dòng)大陸邊緣的構(gòu)造環(huán)境。
已有研究[2]表明,東昆侖地區(qū)顯生宙以來(lái)主要經(jīng)歷了加里東期、華力西期-印支期的邊緣造山作用,為一疊加的造山帶。加里東期造山旋回主要經(jīng)歷了俯沖-碰撞拼貼-碰撞后伸展3個(gè)階段。其中,俯沖作用起始于中寒武世[1,52],并一直持續(xù)到晚奧陶世,該階段原特提斯洋沿昆中斷裂附近向北側(cè)的柴達(dá)木地塊俯沖,在昆北斷裂以北形成弧后裂陷槽,局部擴(kuò)張為小洋盆并接受了灘間山群的火山巖和碎屑巖沉積,昆中斷裂以南的大洋環(huán)境中主要為中晚元古代形成的萬(wàn)寶溝群大洋玄武巖高原*孫豐月,陳國(guó)華,遲效國(guó),等.新疆-青海東昆侖成礦帶成礦規(guī)律和找礦方向綜合研究報(bào)告.長(zhǎng)春:吉林大學(xué)地質(zhì)調(diào)查研究院,2003.。青海省地質(zhì)調(diào)查院*王秉璋,王瑾,葉占福,等.1∶25萬(wàn)布喀達(dá)坂峰幅區(qū)域地質(zhì)調(diào)查報(bào)告.西寧:青海省地質(zhì)調(diào)查院,2004.在祁曼塔格地區(qū)的土木勒克西南發(fā)現(xiàn)晚奧陶世藍(lán)閃石片巖,與其伴生的輝長(zhǎng)巖Ar-Ar年齡為(444.5±1.5) Ma,可能代表俯沖的結(jié)束和碰撞的開(kāi)始。許榮華等[53]在東昆侖萬(wàn)寶溝溝頭獲得碰撞型二云母花崗巖鋯石U-Pb一致線(xiàn)年齡為412.6 Ma,說(shuō)明晚志留世-早泥盆世原特提斯洋盆已經(jīng)閉合,該時(shí)期昆南帶的大洋玄武巖高原已經(jīng)與昆中隆起帶發(fā)生碰撞拼貼,并導(dǎo)致昆北弧后裂陷帶的閉合。本區(qū)與鎳礦有關(guān)的基性-超基性雜巖體中輝石巖鋯石U-Pb年齡為(393.5±3.4) Ma[8],屬早泥盆世,其形成可能與碰撞后伸展環(huán)境下的幔源巖漿作用有關(guān)。礦區(qū)北部出露的造山后A2型正長(zhǎng)花崗巖鋯石U-Pb年齡為(391.1±1.4) Ma[13],基本代表了本區(qū)加里東造山旋回結(jié)束的時(shí)限。在經(jīng)歷了加里東造山旋回之后,東昆侖地區(qū)南北三分的構(gòu)造格局基本形成。
東昆侖地區(qū)華力西期-印支期的構(gòu)造演化是一個(gè)連續(xù)的過(guò)程,大致可分為早期的俯沖造山階段和晚期洋盆閉合后的陸內(nèi)造山階段[1,2,54]。東昆侖地區(qū)在晚古生代由于拉張作用出現(xiàn)阿尼瑪卿二疊紀(jì)小洋盆,屬于古特提斯洋的一部分。姜春發(fā)等[6]獲得瑪積雪山蛇綠巖中的火山巖同位素年齡260 Ma,代表洋殼玄武巖形成時(shí)間。中晚二疊世-早三疊世(260~240 Ma)是主要的俯沖造山期[1]。在東昆侖造山帶西段,王秉璋等[55]獲得昆北帶灘北雪峰地區(qū)似斑狀二長(zhǎng)花崗巖鋯石U-Pb年齡為(241.7±1.4) Ma和(250±2) Ma,昆中帶楚拉克阿干地區(qū)斑狀二長(zhǎng)花崗巖黑云母Ar-Ar年齡為240.6~254.1 Ma,認(rèn)為晚二疊世-早三疊世高硅高鉀的酸性巖形成于成熟度高的安第斯型陸緣弧環(huán)境。在東昆侖造山帶東段,楊經(jīng)綏等[56]測(cè)得位于德?tīng)柲岢V鐵質(zhì)巖北側(cè)的德恰花崗質(zhì)雜巖的單顆粒鋯石U-Pb年齡為(250±20) Ma,并認(rèn)為與洋殼俯沖有關(guān)。熊富浩等[57]獲得白日其利角閃輝長(zhǎng)巖的鋯石U-Pb年齡為(248.9±4.2) Ma,形成于阿尼瑪卿洋俯沖階段。李碧樂(lè)等[4]報(bào)道了溝里地區(qū)阿斯哈閃長(zhǎng)巖鋯石U-Pb年齡為(243.9±0.59) Ma,認(rèn)為該期巖漿活動(dòng)具有安第斯型巖漿弧的特征,同時(shí)指出該年齡代表阿尼瑪卿洋向北俯沖的晚期。隨后,同碰撞花崗巖的出現(xiàn)表明本區(qū)已由俯沖階段進(jìn)入到陸內(nèi)造山階段,如卡而卻卡花崗閃長(zhǎng)巖鋯石U-Pb 年齡為(237±2) Ma[58],哈日扎花崗閃長(zhǎng)斑巖鋯石U-Pb 年齡為(234.5±4.8)Ma[59]。根據(jù)豐成友等[60]對(duì)祁漫塔格中、晚三疊世花崗巖的研究顯示,在220~228 Ma,該地區(qū)存在A(yíng)型富鉀高分異花崗巖,表明該時(shí)期本區(qū)構(gòu)造體制已由陸內(nèi)造山的擠壓體制轉(zhuǎn)變?yōu)榕鲎埠蟮纳煺贵w制。
對(duì)于研究區(qū)而言,始于華力西晚期的阿尼瑪卿洋的俯沖作用持續(xù)至印支早期,洋殼沿現(xiàn)今的東昆南斷裂帶附近俯沖至東昆中隆起帶。俯沖帶流體交代地幔楔并誘發(fā)其部分熔融形成具富集地幔特征的幔源巖漿,幔源巖漿運(yùn)移至下地殼底部發(fā)生大規(guī)模的底侵作用。由底侵巖漿提供熱動(dòng)力,促使中元古代下地殼玄武質(zhì)巖石脫水部分熔融同時(shí)與少量幔源巖漿發(fā)生混合后侵位,最終形成本區(qū)閃長(zhǎng)巖。閃長(zhǎng)巖體侵位年齡為(243±1) Ma,屬早三疊世晚期,巖石學(xué)和地球化學(xué)特征上具有俯沖晚期高鉀鈣堿性巖石的特征,形成于安第斯型活動(dòng)大陸邊緣的構(gòu)造環(huán)境。
LI.大洋島弧低鉀安山巖;CI.大陸島弧和大洋島弧其他安山巖;AI.安第斯型安山巖。圖10 閃長(zhǎng)巖的w(La)-w(K2O)和w(La)-w(P2O5)圖解(底圖據(jù)文獻(xiàn)[49])Fig. 10 w(La)-w(K2O)和w(La)-w(P2O5)diagrams of diorite(base map after reference[49])
1)夏日哈木地區(qū)閃長(zhǎng)巖巖漿鋯石LA-ICP-MS U-Pb加權(quán)平均年齡為 (243±2)Ma,MSWD=0.150;諧和年齡值為 (243±1)Ma,MSWD=0.013,屬早三疊世晚期。
2)夏日哈木地區(qū)閃長(zhǎng)巖屬準(zhǔn)鋁質(zhì)、高鉀鈣堿性系列巖石。其具有低SiO2、高Al2O3、高Na2O/K2O,富集大離子親石元素(Rb、Ba、K)、虧損高場(chǎng)強(qiáng)元素(Nb、Ta),無(wú)明顯負(fù)Eu異常的地球化學(xué)特征。不均一的εHf(T)值(-9.0~-1.0)和古老的二階段Hf同位素模式年齡(1.34~1.84 Ga)表明,巖漿源區(qū)應(yīng)主要為中元古代下地殼玄武質(zhì)巖石同時(shí)有幔源物質(zhì)的混入。
3)夏日哈木地區(qū)閃長(zhǎng)巖形成于俯沖晚期安第斯型活動(dòng)大陸邊緣的構(gòu)造環(huán)境。
[1] 莫宣學(xué),羅照華,鄧晉福,等.東昆侖造山帶花崗巖及地殼生長(zhǎng)[J].高校地質(zhì)學(xué)報(bào),2007,13(3):403-414. Mo Xuanxue,Luo Zhaohua,Deng Jinfu,et al.Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt[J].Geological Journal of China Universitites,2007,13(3):403-414.
[2] 羅照華,鄧晉福,曹永清,等.青海省東昆侖地區(qū)晚古生代-早中生代火山活動(dòng)與區(qū)域構(gòu)造演化[J].現(xiàn)代地質(zhì),1999,13(1):51-56. Luo Zhaohua,Deng Jinfu,Cao Yongqing,et al.On Late Paleozoic-Early Mesozoic Volcanism and Regional Tectonic Evolution of Eastern Kunlun,Qinghai Province[J].Geoscience,1999,13(1):51-56.
[3] 袁萬(wàn)明,莫宣學(xué),喻學(xué)惠,等.東昆侖印支期區(qū)域構(gòu)造背景的花崗巖記錄[J].地質(zhì)論評(píng),2000,46(2):203-211. Yuan Wanming,Mo Xuanxue,Yu Xuehui,et al.The Record of Indosinian Tectonic Setting from the Granotoid of Eastern Kunlun Mountains[J].Geological Review,2000,46(2):203-211.
[4] 李碧樂(lè),孫豐月,于曉飛,等.東昆中隆起帶東段閃長(zhǎng)巖U-Pb年代學(xué)和巖石地球化學(xué)研究[J].巖石學(xué)報(bào),2012,28(4):1163-1172. Li Bile,Sun Fengyue,Yu Xiaofei,et al.U-Pb Dating and Geochemistry of Diorite in the Eastern Section from Eastern Kunlun Middle Uplifted Basement and Granitic Belt[J].Acta Petrologica Sinica,2012,28(4):1163-1172.
[5] 黃汲清,陳國(guó)銘,陳炳蔚.特提斯-喜馬拉雅構(gòu)造域初步分析[J].地質(zhì)學(xué)報(bào),1984,58(1):1-17. Huang Jiqing,Chen Guoming,Chen Bingwei.Preliminary Analysis of the Tethys-Himalayan Tectonic Domain[J].Acta Geologica Sinica,1984,58(1):1-17.
[6] 姜春發(fā),楊經(jīng)綏,馮秉貴,等.昆侖開(kāi)合構(gòu)造[M].北京:地質(zhì)出版社,1992:183-217. Jiang Chunfa,Yang Jingsui,F(xiàn)eng Binggui,et al.Opening-Closing Tectonics of Kunlun Mountains[M].Beijing:Geological Publishing House,1992:183-217.
[7] 袁萬(wàn)明,莫宣學(xué),喻學(xué)惠,等.東昆侖印支期區(qū)域構(gòu)造背景的花崗巖記錄[J].地質(zhì)論評(píng),2000,46(2):203-211. Yuan Wanming,Mo Xuanxue,Yu Xuehui,et al.The Record of Indosinian Tectonic Setting from the Granotoid of Eastern Kunlun Mountains[J].Geological Review,2000,46(2):203-211.
[8] 李世金,孫豐月,高永旺,等.小巖體成大礦理論指導(dǎo)與實(shí)踐:青海東昆侖夏日哈木銅鎳礦找礦突破的啟示及意義[J].西北地質(zhì),2012,45(4):185-191. Li Shijin,Sun Fengyue,Gao Yongwang,et al.The Theoretical Guidance and the Practice of Small Intrusions Forming Large Deposits:The Enlightenment and Significance for Searching Breakthrough of Cu-Ni Sulfide Deposit in Xiarihamu,East Kunlun,Qinghai[J].Northwestern Geology,2012,45(4):185-191.
[9] 王云山,陳基娘.青海省及毗鄰地區(qū)變質(zhì)地帶與變質(zhì)作用[M].北京:地質(zhì)出版社,1987:1-248. Wang Yunshan,Chen Jiniang.Metamorphic Zone and Metamorphism in Qinghai Province and Its Adjacent Areas[M].Beijing:Geological Publishing House,1987:1-248.
[10] 王國(guó)燦,魏?jiǎn)s,賈春興,等.關(guān)于東昆侖地區(qū)前寒武紀(jì)地質(zhì)的幾點(diǎn)認(rèn)識(shí)[J].地質(zhì)通報(bào),2007,26(8):929-937. Wang Guocan,Wei Qirong,Jia Chunxing,et al.Some Ideas of Precambrian Geology in the East Kunlun,China[J].Geological Bulletin of China,2007,26(8):929-937.
[11] 陳能松,李曉彥,張克信,等.東昆侖山香日德南部白沙河巖組的巖石組合特征和形成年代的鋯石Pb-Pb定年啟示[J].地質(zhì)科技情報(bào),2006,25(6):1-7. Chen Nengsong,Li Xiaoyan,Zhang Kexin,et al.Lithological Characteristics of the Baishahe Formation to the South of Xiangride Town,Eastern Kunlun Mountains and Its Age Constrained from Zircon Pb-Pb Dating[J].Geological Science and Technology Information,2006,25(6):1-7.
[12] 陸松年,李懷坤,王惠初,等.秦-祁-昆造山帶元古宙副變質(zhì)巖層碎屑鋯石年齡譜研究[J].巖石學(xué)報(bào),2009,25(9):2195-2208. Lu Songnian,Li Huaikun,Wang Huichu,et al.Detrital Zircon Population of Proterozoic Meta-Sedimentary Strata in the Qinling-Qilian-Kunlun Orogen[J].Acta Petrologica Sinica,2009,25(9):2195-2208.
[13] 王冠,孫豐月,李碧樂(lè),等.東昆侖夏日哈木礦區(qū)早泥盆世正長(zhǎng)花崗巖鋯石U-Pb年代學(xué)、地球化學(xué)及其動(dòng)力學(xué)意義[J].大地構(gòu)造與成礦學(xué),2013,37(4):685-697. Wang Guan,Sun Fengyue,Li Bile,et al.Zircon U-Pb Geochronology and Geochemistry of the Early Devonian Syenogranite in the Xiarihamu Ore District from East Kunlun,with Implications for the Geodynamic Setting[J].Geotectonica et Metallogenia,2013,37(4):685-697.
[14] Yuan H L,Gao S,Liu X M,et al.Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation Inductively Coupled Plasma Mass Spectrometry[J].Geostandards and Geoanalytical Research,2004,28(3):353-370.
[15] Andersen T.Correction of Common Lead in U-Pb Analyses that do not Report204Pb[J].Chemical Geology,2002,192(1/2):59-79.
[16] Liu Y S,Hu Z C,Gao S,et al.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard[J].Chemical Geology,2008,257(1/2):34-43.
[17] Ludwig K R.User’s Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel[M].Berkeley: Geochronology Center,2003:1-70.
[18] 耿建珍,李懷坤,張健,等.鋯石Hf同位素組成的LA-MC-ICP-MS測(cè)定[J].地質(zhì)通報(bào),2011,30(10):1508-1513. Geng Jianzhen,Li Huaikun,Zhang Jian,et al.Zircon Hf Isotope Analysis by LA-MC-ICP-MS[J].Geological Bulletin of China,2011,30(10):1508-1513.
[19] Belousova E A,Griffin W,L O’Reilly S Y,et al.Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type[J].Contributions to Mineralogy and Petrology,2002,143(5):602-622.
[20] Hoskin P W O,Schaltegger U.The Composition of Zircon and Igneous and Metamorphic Petrogenesis[J].Reviews in Mineralogy and Geochemistry,2003,53(1):27-62.
[21] Rickwood P C.Boundary Lines Within Petrologic Diagrams Which Use Oxides of Minor Elements[J].Lithos,1989,22:247-263.
[22] Boynton W V.Geochemistry of the Rare Earth Elements:Meteorite Studies[M]//Henderson P.Rare Earth Element Geochemistry.Amsterdam:Elsevier,1984:63-114.
[23] Sun S S,McDonough W F.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[C]//Saunders A D,Norry M J.Magmatism in the Ocean Basins.London:Geological Society,1989:313-345.
[24] Soderlund U,Patchett P J,Vervoort J D,et al.The176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions[J].Earth and Planetary Science Letters,2004,219:311-324.
[25] Blichert-Toft J,Albarede F.The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System[J].Earth and Planetary Science Letters,1997,148:243-258.
[26] Griffin W L,Pearson N J,Belousova E,et al.The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICP-MS Analysis of Zircon Megacrysts in Kimberlites[J].Geochim Cosmochim Acta,2000,64:133-147.
[27] Griffin W L,Wang X,Jackson S E,et al.Zircon Chemistry and Magma Genesis,SE China:In-Situ Analysis of Hf Isotopes,Tonglu and Pingtan Igneous Complexes[J].Lithos,2002,61:237-269.
[28] 吳福元,李獻(xiàn)華,鄭永飛,等.Lu-Hf同位素體系及其巖石學(xué)應(yīng)用[J].巖石學(xué)報(bào),2007,23(2):185-220. Wu Fuyuan,Li Xianhua,Zheng Yongfei,et al.Lu-Hf Isotopic Systematics and Their Application in Petrology[J].Acta Petrologica Sinica,2007,23(2):185-220.
[29] Brown G C,Thorpe R S,Webb P C.The Geochemical Characteristics of Granitoids in Contrasting Arcs and Comments on Magma Sources[J].Journal of the Geological Society,1984,141(3):413-426.
[30] Defant M J,Drummond M S.Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere[J].Nature,1990,347:662-665.
[31] Rogers G,Hawkesworth C J.A Geochemical Traverse Across the North Chilean Andes:Evidence for Crust Generation from the Mantle Wedge[J].Earth and Planetary Science Letters,1989,91(3):271-285.
[32] Atherton M P,Petford N.Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust[J].Nature,1993,362:144-146.
[33] Barbarin B.A Review of the Relationships Between Granitoid Types,Their Origins and Their Geodynamic Environments[J].Lithos,1999,46(3):605-626.
[34] 張旗,金惟俊,李承東,等.再論花崗巖按照Sr-Yb的分類(lèi):標(biāo)志[J].巖石學(xué)報(bào),2010,26(4):985-1015. Zhang Qi,Jin Weijun,Li Chengdong,et al.Revisiting the New Classification of Granitic Rocks Based on Whole-Rock Sr and Yb Contents:Index[J].Acta Petrologica Sinica,2010,26(4):985-1015.
[35] Defant M J,Jackson T E,Drummond M S,et al.The Geochemistry of Young Volcanism Throughout Western Panama and Southeastern Costa Rica:An Overview[J].Journal of the Geological Society,1992,149(4):569-579.
[36] 朱章顯,楊振強(qiáng),向文帥,等.兩類(lèi)埃達(dá)克巖的含礦性和成因:東南亞地區(qū)與東太平洋帶對(duì)比[J].吉林大學(xué)學(xué)報(bào):地球科學(xué)版,2012,42(增刊1):237-246. Zhu Zhangxian,Yang Zhenqiang,Xiang Wenshuai,et al.Metallogeny and Origin for Two Types of Cenozoic Adakites:Southeastern Asia Region Versus East Pacific Zone[J].Journal of Jilin University:Earth Science Edition,2012,42(Sup.1):237-246.
[37] Wolf M B,Wyllie P J.Dehydration-Melting of Amphi-bolite at 10 kbar:The Effects of Temperature and Time[J].Contributions to Mineralogy and Petrology,1994,115(4):369-383.
[38] Rapp R P,Watson E B.Dehydration Melting of Meta-basalt at 8-32 kbar:Implications for Continental Growth and Crust-Mantle Recycling[J].Journal of Petrology,1995,36(4):891-931.
[39] Altherr R,Holl A,Hegner E,et al.High-Potassium,Calc-Alkaline I-Type Plutonism in the European Variscides:Northern Vosges (France) and Northern Schwarzwald (Germany)[J].Lithos,2000,50(1):51-73.
[40] Rapp R P.Amphibole-Out Phase Boundary in Par-tially Melted Metabasalt,Its Control over Liquid Fraction and Composition,and Source Permeability[J].Journal of Geophysical Research,1995,100:15601-15610.
[41] Ameilin Y,Lee D C,Halliiday A N,et al.Nature of the Earth’s Earliest Crust from Hafninm Isotopes in Single Detrital Zircons[J].Nature,1999,399:252-255.
[42] Kemp A I S,Hawkesworth C J,F(xiàn)oster G L,et al.Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon[J].Science,2007,16:980-983.
[43] Zhu D C,Pan G T,Zhao Z D,et al.Early Cretaceous Subduction Related Adakite-Like Rocks in the Gangdese,South Tibet:Products of Slab Melting and Subsequent Melt-Peridotite Interaction?[J].Journal of Asian Earth Sciences,2009,34:298-309.
[44] Ravikant V,Wu F Y,Ji W Q,et al.U-Pb Age and Hf Isotopic Constraints of Detrital Zircons from the Himalayan Foreland Subathu Sub-Basin on the Tertiary Palaeogeography of the Himalaya[J].Earth and Planetary Science Letters,2011,304:356-368.
[45] 秦海鵬,吳才來(lái),武秀萍,等.秦嶺蟒嶺高Sr 花崗巖的鋯石Lu-Hf 同位素特征及其成因[J].吉林大學(xué)學(xué)報(bào):地球科學(xué)版,2012,42(增刊1):254-266. Qin Haipeng,Wu Cailai,Wu Xiuping,et al.Zircon Lu-Hf Isotopic Compositions and Petrogenesis of Strontium-Rich Granite from Mangling,Qinling Orogen Belt[J].Journal of Jilin University:Earth Science Edition,2012,42(Sup.1):254-266.
[46] 劉成東,莫宣學(xué),羅照華,等.東昆侖造山帶花崗巖類(lèi)Pb-Sr-Nd-O同位素特征[J].地球?qū)W報(bào),2003,24(6):584-588. Liu Chengdong,Mo Xuanxue,Luo Zhaohua,et al.Pb-Sr-Nd-O Isotope Characteristics of Granitoids in East Kunlun Orogenic Belt[J].Acta Geoscientica Sinica,2003,24(6):584-588.
[47] Xiong F H,Ma C Q,Zhang J Y,et al.The Origin of Mafic Microgranular Enclaves and Their Host Granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau:Implications for Magma Mixing During Subduction of Paleo-Tethyan Lithosphere[J].Mineralogy and Petrology,2012,104(3/4):211-224.
[48] 熊富浩,馬昌前,張金陽(yáng),等.東昆侖造山帶早中生代鎂鐵質(zhì)巖墻群LA-ICP-MS鋯石U-Pb 定年、元素和Sr-Nd-Hf 同位素地球化學(xué)[J].巖石學(xué)報(bào),2011,27(11):3350-3364. Xiong Fuhao,Ma Changqian,Zhang Jinyang,et al.LA-ICP-MS Zircon U-Pb Dating,Elements and Sr-Nd-Hf Isotope Geochemistry of the Early Mesozoic Mafic Dyke Swarms in East Kunlun Orogenic Belt[J].Acta Petrologica Sinica,2011,27(11):3350-3364.
[49] Bailey J C.Geochemical Criteria for a Refined Tectonic Discrimination of Orogenic Andesites[J].Chemical Geology,1981,32:139-154.
[50] Condie K C.Geochemical Changes in Basalts and Andesites Across the Archean-Proterozoic Boundary:Identification and Significance[J].Lithos,1989,23:1-18.
[51] Salters V J M,Hart S R.The Mantle Sources of Ocean Ridges,Islands and Arcs:The Hf-Isotope Connection[J].Earth and Planetary Science Letters,1991,104:364-380.
[52] 張亞峰,裴先治,丁仨平,等.東昆侖都蘭縣可可沙地區(qū)加里東期石英閃長(zhǎng)巖鋯石LA-ICP-MS U-Pb年齡及其意義[J].地質(zhì)通報(bào),2010,29(1):79-85. Zhang Yafeng,Pei Xianzhi,Ding Saping,et al.LA-ICP-MS Zircon U-Pb Age of Quartz Diorite at the Kekesha Area of Dulan County,Eastern Section of the East Kunlun Orogenic Belt,China and Its Significance[J].Geological Bulletin of China,2010,29(1):79-85.
[53] 許榮華,Harris N B W,Lewis C L,等.拉薩至格爾木的同位素地球化學(xué)[C]//中英青藏高原綜合地質(zhì)考察隊(duì).青藏高原地質(zhì)演化.北京:科學(xué)出版社,1990:282-302. Xu Ronghua,Harris N B W,Lewis C L,et al.Isotopic Geochemistry of the 1985 Tibet Geotraverse,Lhasa to Golmud[C]//Chinese-British Tibet Plateau Geological Expedition.The Geological Evolution of the Tibetan Plateau.Beijing:Science Press,1990:282-302.
[54] 郭正府,鄧晉福,許志琴,等.青藏東昆侖晚古生代末-中生代中酸性火成巖與陸內(nèi)造山過(guò)程[J].現(xiàn)代地質(zhì),1998,12(3):345-352. Guo Zhengfu,Deng Jinfu,Xu Zhiqin,et al.Late Palaeozoic-Mesozoic in Intracontinental Orogenic Procless and Intermedate-Acidic Igneous Rock from the Eastern Kunlun Mountains of Northwestern China[J].Geoscience,1998,12(3):345-352.
[55] 王秉璋.祁漫塔格地質(zhì)走廊域古生代-中生代火成巖巖石構(gòu)造組合研究[D].北京:中國(guó)地質(zhì)大學(xué)(北京),2011:1-229. Wang Bingzhang.The Study and Investigation on the Assembly and Coupling Petrotectonic Assemblage During Paleozoic-Mesozoic Period at Qimantage Geological Corridor Domain[D].Beijing:China University of Geosciences,2011:1-229.
[56] 楊經(jīng)綏,許志琴,李海兵,等.東昆侖阿尼瑪卿地區(qū)古特提斯火山作用和板塊構(gòu)造體系[J].巖石礦物學(xué)雜志,2005,24(5):369-379. Yang Jingsui,Xu Zhiqin,Li Haibing,et al.The Paleo-Tethyan Volcanism and Plate Tectonic Regime in the A’nyemaqen Region of East Kunlun,Northern Tibet Plateau[J].Acta Petrologica et Mineralogica,2005,24(5):369-379.
[57] 熊富浩,馬昌前,張金陽(yáng),等.東昆侖造山帶白日其利輝長(zhǎng)巖LA-ICP-MS鋯石U-Pb年齡及地質(zhì)意義[J].地質(zhì)通報(bào),2011,30(8):1196-1202. Xiong Fuhao,Ma Changqian,Zhang Jinyang,et al.Zircon LA-ICP-MS U-Pb Dating of Bairiqili Gabbro Pluton in East Kunlun Orogenic Belt and Its Geological Significance[J].Geological Bulletin of China,2011, 30(8):1196-1202.
[58] 王松,豐成友,李世金,等.青海祁漫塔格卡爾卻卡銅多金屬礦區(qū)花崗閃長(zhǎng)巖鋯石SHRIMP U-Pb測(cè)年及其地質(zhì)意義[J].中國(guó)地質(zhì),2009,36(1):74-84. Wang Song,F(xiàn)eng Chengyou,Li Shijin,et al.Zircon SHRIMP U-Pb Dating of Granodiorite in the Kaerqueka Polymetallic Ore Deposit,Qimantage Mountain,Qinghai Province,and Its Geological Implications[J].Geology in China,2009,36(1):74-84.
[59] 宋忠寶,張雨蓮,陳向陽(yáng),等.東昆侖哈日扎含礦花崗閃長(zhǎng)斑巖LA-ICP-MS鋯石U-Pb定年及地質(zhì)意義[J].礦床地質(zhì),2013,32(1):157-168. Song Zhongbao,Zhang Yulian,Chen Xiangyang,et al.Geochemical Characteristics of Harizha Granite Diorite-Porphyry in East Kunlun and Their Geological Implications[J].Mineral Deposits,2013,32(1):157-168.
[60] 豐成友,王松,李國(guó)臣,等.青海祁漫塔格中晚三疊世花崗巖年代學(xué)、地球化學(xué)及成礦意義[J].巖石學(xué)報(bào),2012,28(2):665-678. Feng Chengyou,Wang Song,Li Guochen,et al.Middle to Late Triassic Granitoids in the Qimantage Area,Qinghai Province,China: Chronology,Geochemistry and Metallogenic Significances[J]. Acta Petrologica Sinica,2012,28(2):665-678.
Zircon U-Pb Geochronology and Geochemistry of Diorite in Xiarihamu Ore District from East Kunlun and Its Geological Significance
Wang Guan1,Sun Fengyue1,Li Bile1,Li Shijin2,Zhao Junwei3,Yang Qi’an3
1.College of Earth Sciences,Jilin University,Changchun 130061,China2.Qinghai Geological Survey,Xining 810001,China3.No.5 Geologic Exploration and Mineral Resource Institute of Qinghai Province,Xining 810008,China
diorite; zircon U-Pb age; geochemistry; tectonic setting; east Kunlun; Xiarihamu
10.13278/j.cnki.jjuese.201403113.
2013-11-08
中國(guó)地質(zhì)調(diào)查局地質(zhì)大調(diào)查項(xiàng)目(12120111086020);國(guó)家自然科學(xué)基金項(xiàng)目(41272093)
王冠(1984-),男,博士研究生,主要從事礦床學(xué)研究,E-mail:red_moon2002@163.com
孫豐月(1963-),男,教授,博士生導(dǎo)師,主要從事熱液礦床成礦理論與預(yù)測(cè)、區(qū)域成礦作用研究,E-mail:sfy@jlu.edu.cn。
10.13278/j.cnki.jjuese.201403113
P588.12
A
王冠,孫豐月,李碧樂(lè),等.東昆侖夏日哈木礦區(qū)閃長(zhǎng)巖鋯石U-Pb年代學(xué)、地球化學(xué)及其地質(zhì)意義.吉林大學(xué)學(xué)報(bào):地球科學(xué)版,2014,44(3):876-891.
Wang Guan,Sun Fengyue,Li Bile,et al.Zircon U-Pb Geochronology and Geochemistry of Diorite in Xiarihamu Ore District from East Kunlun and Its Geological Significance.Journal of Jilin University:Earth Science Edition,2014,44(3):876-891.doi:10.13278/j.cnki.jjuese.201403113.
吉林大學(xué)學(xué)報(bào)(地球科學(xué)版)2014年3期