郄 瑩,付曉飛,孟令東,許 鵬
東北石油大學(xué)CNPC斷裂控藏實驗室/非常規(guī)油氣成藏與開發(fā)省部共建國家重點實驗室培育基地,黑龍江 大慶 163318
碳酸鹽巖內(nèi)斷裂帶結(jié)構(gòu)及其與油氣成藏
郄 瑩,付曉飛,孟令東,許 鵬
東北石油大學(xué)CNPC斷裂控藏實驗室/非常規(guī)油氣成藏與開發(fā)省部共建國家重點實驗室培育基地,黑龍江 大慶 163318
以野外觀察描述為手段,系統(tǒng)研究了碳酸鹽巖斷裂變形機制的影響因素及斷裂帶結(jié)構(gòu)演化過程,剖析了碳酸鹽巖地層中斷裂帶結(jié)構(gòu)與流體運移的關(guān)系。研究表明,影響碳酸鹽巖內(nèi)斷裂變形機制的因素包括巖性、孔隙度、變形深度、溫度、膠結(jié)作用、先存裂縫等,控制斷裂帶結(jié)構(gòu)形成的因素包括滑動位移和破裂模式等。低孔隙度碳酸鹽巖以裂縫發(fā)育為主,高孔隙度碳酸鹽巖變形早期產(chǎn)生變形帶,帶內(nèi)裂縫聯(lián)接逐漸發(fā)育成斷層帶。隨著埋藏深度的增加,斷裂帶結(jié)構(gòu)不同:埋藏深度小于3 km,斷層核主要發(fā)育無內(nèi)聚力的斷層角礫巖和斷層泥;埋藏深度大于3 km,斷層核普遍發(fā)育有內(nèi)聚力的斷層角礫巖和碎裂巖,破碎帶發(fā)育多種成因的裂縫。隨著位移的增加,破裂模式從早期的破裂作用變?yōu)楹笃诘乃榱炎饔?,最終形成碎裂流。斷裂帶演化是一個四維過程,斷層核和破碎帶發(fā)育情況直接影響斷層對油氣的運移和封閉的作用。斷裂變形機制、斷裂帶內(nèi)部結(jié)構(gòu)以及與流體運移關(guān)系的研究,都可為封閉性提供重要的理論依據(jù)。
碳酸鹽巖;斷裂帶結(jié)構(gòu);物性特征;控制流體成藏
碳酸鹽巖油氣藏是世界油氣重要的勘探領(lǐng)域。美國《油氣雜志》于2009年12月發(fā)布世界年度儲量調(diào)查報告顯示,在全世界226個可采儲量超過7 000×104t的大油氣田中有116個是碳酸鹽巖油氣藏,占統(tǒng)計總數(shù)的44%,其可采儲量占61%。根據(jù)新一輪全國油氣資源評價結(jié)果,我國近300×104km2古生界海相碳酸鹽巖石油、天然氣資源分別約為135×108t和22.4×1012m3,分別約占我國石油、天然氣總資源量的13.0%和47.6%,其中探明儲量13.4×108t和1.42×1012m3,資源探明率分別為10.0%和6.3%。上述實際資料和統(tǒng)計數(shù)據(jù)充分說明了我國古生界海相碳酸鹽巖油氣資源潛力巨大;同時也說明了我國海相碳酸鹽巖油氣的探明率較低,尚不足總體探明率的一半。因此,加大海相碳酸鹽巖油氣研究和勘探力度,對實現(xiàn)油氣資源的接替具有重要的意義。
斷裂作為油氣系統(tǒng)中重要因素之一,其變形機制及斷裂帶結(jié)構(gòu)影響油氣的富集情況。目前,國內(nèi)外主要集中研究碎屑巖儲層斷裂變形機制及斷裂帶內(nèi)部結(jié)構(gòu)對油氣運聚的影響,但對于碳酸鹽巖的研究較為薄弱[1-2],國內(nèi)也是鮮有報道[3-4]。因此,筆者以野外觀察描述為手段,系統(tǒng)總結(jié)了斷裂帶內(nèi)部結(jié)構(gòu)的形成過程以及類型,明確了影響碳酸鹽巖斷裂變形的機制及斷裂帶結(jié)構(gòu)形成的因素,剖析了碳酸鹽巖內(nèi)斷裂帶結(jié)構(gòu)與流體運移的關(guān)系,從而為研究斷裂對碳酸鹽巖中油氣富集的控制作用提供理論依據(jù)。
圖1 秦皇島柳江盆地秋子裕背斜西翼逆沖斷層斷裂帶結(jié)構(gòu)Fig.1 Thrust fault zone strcture at west edge of Qiuziyu anticline,Liujiang basin,Qinhuangdao
斷裂變形機制及斷裂帶內(nèi)部結(jié)構(gòu)是斷層封閉性和流體沿斷裂運移規(guī)律研究的基礎(chǔ)[5]。在含油氣盆地范圍內(nèi),多數(shù)碳酸鹽巖在斷裂過程中發(fā)生脆性變形,變形機制主要包括破裂作用[6]、碎裂作用[7-15]和碎裂流作用[16],少數(shù)巖性發(fā)生塑性變形,形成涂抹結(jié)構(gòu)[17-22]。與其他非孔隙性巖石不同,由于碳酸鹽巖礦物易于溶解和遷移,壓溶作用明顯[23-27]。影響斷裂變形機制的因素既有內(nèi)因(巖性、礦物成分、成巖階段、孔隙度和滲透率),也有外因(溫度、圍壓和變形深度)[28-39]。低-非孔隙性巖石主要發(fā)生脆性變形,形成滲透性較高的斷裂帶。但隨著泥質(zhì)含量增加,塑性變形越來越明顯,泥巖、泥灰?guī)r、膏泥巖和鹽巖發(fā)生塑性變形,產(chǎn)生泥巖涂抹。如秦皇島地區(qū)柳江盆地秋子裕背斜西翼兩條逆沖斷層(圖1),背斜核部為張夏組鮞?;?guī)r,頂部發(fā)育厚度為1 m的泥灰?guī)r,逆沖斷層伴隨背斜拱起而形成,斷裂在鮞?;?guī)r層發(fā)生典型的脆性變形,形成初角礫巖帶,而在泥灰?guī)r層產(chǎn)生明顯的泥巖涂抹。一般來說,按著孔隙度大小可將巖石分為3類:一是高孔隙度巖石,F(xiàn)isher等認為孔隙度大于等于15%,為多種類型的砂巖;二是低孔隙度巖石,孔隙度小于15%,多為處于超固結(jié)成巖段的礫巖、砂巖和黏土巖[30];三是非孔隙性巖石,孔隙度普遍小于5%,包括碳酸鹽巖、火山巖、變質(zhì)巖、埋藏抬升后的硫酸鹽巖和鹵化物巖。高孔隙度碳酸鹽巖(孔隙度≥15%)的主要變形機制與高孔隙度純凈砂巖相似,主要為碎裂作用和碎裂流作用,形成的微構(gòu)造類型為變形帶[31],如意大利亞平寧山脈Orfent碳酸鹽巖地層中的變形帶[32]。低孔隙度碳酸鹽巖(孔隙度<15%)巖石變形,當(dāng)埋藏深度小于3 km時,多為破裂作用,在破裂之初形成膨脹的裂縫,裂縫的聯(lián)接將巖石切割破碎,形成無內(nèi)聚力的斷層角礫巖,如秦皇島山亮甲山高角度正斷層在抬升期形成,斷裂帶可見無內(nèi)聚力斷層角礫巖。當(dāng)埋深超過3 km時,沿著裂縫發(fā)生摩擦滑動并伴隨顆粒的滾動,逐漸形成碎裂流,形成無內(nèi)聚力的斷層角礫巖和碎裂巖[28],并出現(xiàn)大量的斷層泥。希臘Corinth裂谷碳酸鹽巖地層中Pirgaki斷裂帶結(jié)構(gòu)發(fā)育有內(nèi)聚力的碎裂巖和超碎裂巖,埋藏深度大于5 km[33](圖2)。當(dāng)?shù)貙勇癫毓探Y(jié)成巖后抬升所發(fā)生的斷裂變形,由于應(yīng)力松弛和壓力釋放[28]導(dǎo)致張性裂縫大量發(fā)育,裂縫聯(lián)接形成無內(nèi)聚力的斷層角礫巖。斷裂生長過程中,流體-巖石的相互作用使裂隙膠結(jié)和封閉,可改變斷裂帶的強度和性質(zhì)[34-38],增加巖石的內(nèi)聚力。由于斷層巖應(yīng)變硬化作用,斷層再次滑動并非追蹤早期的斷層面,新產(chǎn)生的斷層面造成斷裂帶寬度逐漸增大。
圖2 希臘Corinth海灣地區(qū)碳酸鹽巖地層中Pirgaki斷裂帶結(jié)構(gòu)[33]Fig.2 Structure of Pirgaki fault zone in carbonate layer, the Gulf of Corinth, Greece[33]
斷層不是一個單獨的面,而是一個有一定寬度且包含不同特征斷層巖的“帶”,具有典型二分結(jié)構(gòu):斷層核和破碎帶[39-40]。斷層核主要包括主滑動面和其周圍發(fā)育的斷層巖,斷層巖主要類型包括斷層角礫巖、碎裂巖、斷層泥、灰泥涂抹和膠結(jié)的斷層巖。破碎帶靠近斷層核,是由多組不同類型的裂縫、小斷層和變形帶組成的具有一定寬度的帶,沒有完全破壞圍巖結(jié)構(gòu)[41]。微構(gòu)造數(shù)量隨著斷層核距離增加而逐漸減小,當(dāng)密度與區(qū)域裂縫或變形帶密度一致時,標志著破碎帶結(jié)束[42](圖3)。斷裂帶結(jié)構(gòu)的復(fù)雜性取決于母巖的巖性、位移、先存構(gòu)造、變形深度和應(yīng)力場特征等[43-44]。依據(jù)斷裂變形機制決定的斷層、核中斷層巖類型和破碎帶微構(gòu)造類型,可將碳酸鹽巖內(nèi)斷裂帶結(jié)構(gòu)劃分為3種類型:
圖3 希臘Corinth海灣地區(qū)Aigion斷層的裂縫發(fā)育情況Fig.3 Fracture development condition of Aigion fault in the Gulf of Corinth,Greece
一是母巖為高孔隙性碳酸鹽巖,在固結(jié)成巖階段形成斷裂,斷層核主要由碎裂巖、透鏡體和滑動面構(gòu)成,破碎帶主要發(fā)育碎裂帶。斷層核滲透率比母巖低1~6個數(shù)量級,破碎帶滲透率比母巖低1~3個數(shù)量級[31]。這種類型斷裂帶相對較少。
二是埋深小于3 km,或埋深超過3 km后抬升至近地表,或埋深超過3 km、但變形過程有高壓流體參與,低孔隙性碳酸鹽巖發(fā)生斷裂變形,主要發(fā)生破裂作用,斷層核包括無內(nèi)聚力的斷層角礫巖、斷層泥、透鏡體和滑動面,破碎帶發(fā)育大量裂縫。斷層核滲透率比母巖高1~3個數(shù)量級,破碎帶滲透率比母巖高1~6個數(shù)量級[45](圖4)。
mD(毫達西)為非法定計量單位,1 mD=10-3μm2。圖4 Venere盆地邊界斷層斷裂帶結(jié)構(gòu)及物性變化[45]Fig.4 Structure and physical properties of fault zone in boundary fault, Venere basin[45]
三是埋深大于3 km,低孔隙性碳酸鹽巖內(nèi)形成斷裂,形成有內(nèi)聚力斷層角礫巖、碎裂巖、斷層泥、構(gòu)造透鏡體和滑動面組成的斷層核,破碎帶發(fā)育大量的裂縫。斷層核滲透率表現(xiàn)為很強的非均質(zhì)性,有內(nèi)聚力斷層角礫巖和初碎裂巖比母巖高1~2個數(shù)量級,超碎裂巖滲透率比母巖低1~3個數(shù)量級,破碎帶比母巖滲透率高1~6個數(shù)量級[46]。
基于小規(guī)模斷裂代表大規(guī)模斷裂發(fā)育的早期階段[29],因此研究不同規(guī)模斷裂可以分析斷裂帶內(nèi)部結(jié)構(gòu)的形成演化過程。碳酸鹽巖內(nèi)斷裂帶內(nèi)部結(jié)構(gòu)演化模式大致分為3種類型。
3.1 碎裂帶-斷層核:“二元”結(jié)構(gòu)斷裂帶
高孔隙性碳酸鹽巖中的斷裂源于碎裂帶形成和發(fā)展[32,47-48],開始形成單個碎裂帶,由于應(yīng)變硬化作用[50],碎裂帶強度高于圍壓,進一步變形會形成簇狀變形帶;當(dāng)有流體參與或形成斷層泥后會發(fā)生應(yīng)變軟化,進一步變形會形成滑動面并發(fā)育成斷層(圖5)。部分簇狀變形帶成為斷裂破碎帶的一部分,伴隨著斷裂活動,在破碎帶中會新生一部分碎裂帶。因此,斷層核主要由碎裂帶和滑動面組成,破碎帶發(fā)育大量的碎裂帶[49],隨著距離斷層核距離增加,碎裂帶密度逐漸減小[31,50]。
圖5 亞平寧山脈中部Majella山脈白堊紀高孔隙度碳酸鹽巖變形帶、簇狀變形帶[32]Fig.5 Deformation band, cluster deformation band in high porosity Cretaceous carbonate rock,Majella Moutain,middle part of Apeennines[32]
3.2 破碎帶-斷層核:“二元”結(jié)構(gòu)斷裂帶
Micarelli等[51]研究發(fā)現(xiàn)(圖6a-c):位移小于1 m的斷層缺少斷層核和碎裂巖,存在單獨的滑動面和破碎帶,且朝向斷層面破碎帶裂縫密度增加;當(dāng)位移為1~5 m時,斷層發(fā)育一個不連續(xù)的斷層核,主要由破碎的角礫巖和碎裂巖組成;大位移的斷層發(fā)育連續(xù)的斷層核,斷層核包含碎裂巖、透鏡體和斷層泥等。一旦斷層核發(fā)育顆粒結(jié)構(gòu)(如初角礫巖),它的進一步演化類似于碎屑巖變形帶的發(fā)育[47,50,52],發(fā)生顆粒的轉(zhuǎn)動與磨蝕,導(dǎo)致顆粒破碎。伴隨斷層核的形成,變形集中在斷層核上,破碎帶寬度不再明顯增加(圖6d)。在不同埋深的條件下,斷層核部的組構(gòu)隨著位移的變化而變化。
圖6 意大利地區(qū)碳酸鹽巖內(nèi)斷裂演化模式[51]Fig.6 Evolution model of carbonate rock fault in Italian regions[51]
3.3 壓溶縫-斷層核:“二元”結(jié)構(gòu)斷裂帶
在碳酸鹽巖斷層開始和發(fā)育的過程中,壓溶縫占主導(dǎo)地位。美國Somerset三疊紀和侏羅紀石灰?guī)r中的走滑斷層,開始發(fā)育似雁行式的張性裂縫,通過壓溶縫連接,沿著壓溶縫發(fā)生剪切連接轉(zhuǎn)動的巖脈,使巖脈和壓溶縫連接部分發(fā)育。隨著位移的增加,最后發(fā)育為貫通的斷層[53]。Graham等研究了意大利Maiella山脈逆沖前緣白堊紀碳酸鹽巖正斷層開始和生長過程[45](圖7),記錄了位移從幾毫米到50 m斷層發(fā)育的詳細結(jié)構(gòu)并提出了理想的概念模型,通過壓溶縫的生長、剪切、聯(lián)接,最后形成一個成熟的斷裂帶。Agosta等[54]同樣研究了中生代地臺碳酸鹽巖盆地邊界正斷層的斷層演化過程,并對各階段壓溶縫與裂縫以及巖脈的相互關(guān)系、不同負荷條件下多時期的溶解作用和脆性裂縫作用進行了詳細的描述。
圖7 意大利Maiella山脈前陸沖斷帶白堊紀碳酸鹽巖正斷層的理想概念模型[45]Fig.7 Ideal conceptual model of normal fault in Cretaceous carbonate rock of foreland thrust belt, Maiella Mountain,Italy[45]
3.4 斷裂帶厚度隨位移的變化規(guī)律
斷裂帶厚度變化分為2種情況:一是如果連續(xù)的變形導(dǎo)致應(yīng)變集中,從而形成狹窄的活動滑動帶,整個斷裂帶厚度保持恒定;二是大規(guī)模分叉斷層產(chǎn)生和交叉斷裂帶作用,大規(guī)模凸起的切割,均導(dǎo)致母巖弱化并卷入斷裂帶中,使斷裂帶變寬。前人研究脆性斷裂帶厚度-位移關(guān)系后認為,由于斷層巖石流變學(xué)和應(yīng)變硬化與軟化等作用的影響[55-56],厚度隨著位移呈現(xiàn)線性增加,對不同規(guī)模的斷層來說,厚度-位移關(guān)系相似[57-60]。Bastesen[60]對3個不同區(qū)域不同規(guī)模的103條碳酸鹽巖斷層核的厚度和位移的423個數(shù)據(jù)進行統(tǒng)計發(fā)現(xiàn),厚度-位移具有明顯的正相關(guān)關(guān)系,厚度隨位移的增加而增大(圖8)。數(shù)據(jù)偏離正常趨勢的原因主要有:斷裂帶斷層核和破碎帶的界限模糊或露頭限制導(dǎo)致測量錯誤;由于地層力學(xué)特征差異導(dǎo)致斷層分段生長,從而使疊覆帶和連接處寬度增大。
圖8 Sinai,Svalbard 和Oman地區(qū)103條張性斷層的斷層核位移-厚度關(guān)系圖[60]Fig.8 Displacement-thickness relationship of 103 normal faults in Sinai,Svalbard and Oman[60]
不同的巖性組合具有不同的斷裂帶內(nèi)部結(jié)構(gòu),物性特征差異也很大,在油氣運聚成藏中的作用明顯不同,主要體現(xiàn)在4個方面。
4.1 高孔隙性碳酸鹽巖中斷裂導(dǎo)致油氣差異充注
高孔隙性碳酸鹽巖內(nèi)斷裂具有碎裂巖填充的斷層核和碎裂帶發(fā)育的破碎帶“二元”結(jié)構(gòu),斷層核為碎裂巖,滲透率比母巖低1~6個數(shù)量級,破碎帶中發(fā)育大量的碎裂帶,滲透率比母巖低1~3個數(shù)量級,滑動面滲透率比母巖高1~3個數(shù)量級?;瑒用鏋橛蜌獯瓜蜻\移通道(圖9),沿著斷裂垂向運移的油氣向儲層分流過程中受到碎裂帶阻止,母巖孔隙度越大,破碎帶中發(fā)育的碎裂帶密度越大,滲透率越低,因此油氣越不容易向高孔隙性儲層中充注,往往孔隙度較低的儲層中含油氣性越好。
圖9 高孔隙度碳酸鹽巖斷裂油氣差異充注模式圖Fig.9 Different hydrocarbon charging mode in high porsity carbonate rock fault
4.2 低-非孔隙性碳酸鹽巖內(nèi)斷裂為油氣優(yōu)勢運移通道
從碳酸鹽巖斷裂帶內(nèi)部結(jié)構(gòu)的形成過程來看,油氣垂向運移通道有3種類型:一是小位移斷層,缺少斷層核和碎裂巖帶,破碎帶較為發(fā)育,高密度裂縫連接增加了油氣的垂向運移(圖6a)。二是當(dāng)變形發(fā)生在3 km以內(nèi)特別是抬升期時,斷層核主要發(fā)育無內(nèi)聚力的斷層角礫巖和斷層泥,為高滲透性流體運移的通道;當(dāng)變形發(fā)生在3 km以下時,斷層核主要為碎裂巖和超碎裂巖(圖2),碎裂巖的物性相對于母巖和超碎裂巖較好,為流體垂向運移的通道[61]。三是斷裂變形過程中,一旦伴隨高壓流體注入,無論埋藏深度多大,均可形成無內(nèi)聚力角礫巖,為油氣垂向運移的通道。這三類斷裂的破碎帶均發(fā)育大量的裂縫,有效改善儲層物性,為油氣側(cè)向運移提供了通道。
4.3 斷層核滲透性決定側(cè)向封閉能力及油氣分布模式
斷層核如果為低滲透性斷層泥帶或超碎裂巖帶,或者無內(nèi)聚力角礫巖被后期膠結(jié)物膠結(jié),斷裂帶本身具有很強的封閉能力,能夠封閉住一定的烴柱高度(圖2)。如果斷層核為高滲透性斷層角礫巖和碎裂巖,斷層巖不具有封閉能力,斷層側(cè)向封閉靠巖性對接[62],油氣分布具有3個典型特征:一是油氣緊鄰區(qū)域性蓋層分布;二是圈閉范圍內(nèi)最小斷距決定烴柱高度和烴-水界面分布;三是油氣主要分布在斷裂的上升盤。
4.4 斷裂帶結(jié)構(gòu)差異與“運移”和“封閉”的耦合關(guān)系
碳酸鹽巖主要發(fā)生脆性變形,形成高滲透性斷裂帶,為油氣運移提供優(yōu)勢運移通道;若頂部的區(qū)域性蓋層發(fā)生塑性變形,可產(chǎn)生泥巖或泥灰?guī)r涂抹,當(dāng)泥灰?guī)r在斷裂帶中保持連續(xù),可起到頂部封閉的作用(圖1)。多數(shù)學(xué)者[19-20,63-72]認為,泥巖涂抹的連續(xù)性受控于斷距與泥巖厚度的比率(SSF值)大小,F(xiàn)aerseth認為:小規(guī)模斷層(斷距小于15 m),即亞地震斷層,泥巖涂抹連續(xù)SSF值為1~50;SSF值達到20~50時泥巖涂抹保持連續(xù),通常泥巖層厚度為幾毫米至10 cm,斷距為幾分米至4 cm[18-29, 48,72-74]。對于規(guī)模較大的斷層(斷距大于15 m),泥巖涂抹保持連續(xù)性的臨界值較小,一般為4~8[20,63-64,66-68,72]。高溫高壓物理模擬表明:有效正應(yīng)力為30 MPa,當(dāng)SSF大于4.9時,粉砂巖形成的涂抹失去連續(xù)性;有效應(yīng)力提高到40 MPa,涂抹保持連續(xù)性的臨界SSF值為6.6[69]。因此,相同泥巖隨著埋深增加,泥巖涂抹越發(fā)育,且容易保持連續(xù)性。
1)低孔隙度碳酸鹽巖,在溫度小于100 ℃、圍壓小于100 MPa條件下,主要以破裂作用、碎裂作用、碎裂流為主。斷層巖包括無內(nèi)聚力斷層角礫巖、斷層泥和碎裂巖。高孔隙度碳酸鹽巖中可發(fā)育變形帶。
2)當(dāng)埋藏深度小于3 km時,斷裂以破裂作用為主,主要形成無內(nèi)聚力的斷層角礫巖。當(dāng)埋深超過3 km時,顆粒發(fā)生摩擦、滑動和滾動形成碎裂流,形成無內(nèi)聚力的斷層角礫巖和碎裂巖,并出現(xiàn)大量的斷層泥。
3)碳酸鹽巖斷裂帶物性結(jié)構(gòu)特征為:高孔隙性碳酸鹽巖,在固結(jié)成巖階段形成斷裂,斷層核、破碎帶滲透率均比母巖低。這種類型斷裂帶均可起到封閉作用。埋藏小于3 km,或埋深超過3 km后抬升至近地表,斷層核、破碎帶滲透率均比母巖高,斷層核和破碎帶均起到輸導(dǎo)作用;埋藏大于3 km,斷層核滲透率表現(xiàn)為很強的非均質(zhì)性,有內(nèi)聚力斷層角礫巖、初碎裂巖和破碎帶比母巖高,超碎裂巖滲透率比母巖低,斷層核可起到封閉作用,破碎帶起到垂向輸導(dǎo)作用。
4)膠結(jié)的斷層巖或為低滲透性斷層泥帶或超碎裂巖帶,斷裂帶本身具有很強的封閉能力,能夠封閉住一定的烴柱高度。如果斷層核為高滲透性斷層角礫巖和碎裂巖,斷裂帶本身不具備封閉能力,主要靠巖性對接進行封閉,油氣緊鄰區(qū)域性蓋層分布,且主要分布在斷裂的上升盤。
[1] Micarelli L,Moretti I,Daniel J M.Structural Properties of Rift-Related Normal Faults: The Case Study of the Gulf of Corinth, Greece[J]. Journal of Geodynamics,2003,36:275-303.
[2] Storti F,Billi A,Salvini F.Particle Size Distributions in Natural Carbonate Fault Rocks: Insights for Non-Self-Similar Cataclasis[J]. Earth and Planetary Science Letters, 2003, 206: 173-186.
[3] 屈泰來,鄔光輝,劉加良,等. 碳酸鹽巖斷裂相分類特征:以新疆塔里木盆地柯坪露頭為例[J].地球?qū)W報,2011,32(5):541-548. Qu Tailai, Wu Guanghui, Liu Jialiang,et al. The Classification and Characteristics of Carbonate Fault Facies: A Case Study of the Outcrop of Kalpin Area, Tarim Basin in Xinjiang[J].Geoscientica Sinica,2011,32(5):541-548.
[4] 鄔光輝,陳志勇,屈泰來,等. 塔里木盆地走滑帶碳酸鹽巖斷裂相特征及其與油氣關(guān)系[J].地質(zhì)學(xué)報,2012,86(2):219-227. Wu Guanghui,Chen Zhiyong,Qu Tailai,et al.Characteristics of the Strik-Slip Fault Facies in Ordovician Carbonate in the Tarim Basin, and Its Relations to Hydrocarbon[J].Geologica Sinica, 2012,86(2):219-227.
[5] 付曉飛,溫海波,呂延防,等. 勘探早期斷層封閉性快速評價方法及應(yīng)用[J].吉林大學(xué)學(xué)報:地球科學(xué)版,2011,41(3):615-621. Fu Xiaofei, Wen Haibo, Lü Yanfang. Quick Evaluation Method and Its Application of Fault Seal During Early Exploration Period[J]. Journal of Jilin University:Earth Science Edition, 2011,41(3):615-621.
[6] Blenkinsop T G.Deformation Microstructures and Mechanisms in Minerals and Rocks[M]. Kluwer: Kluwer Academic Publisher, 2000:1-80.
[7] Aydin A, Johnson A M.Development of Faults as Zones of Deformation Bands and as Slip Surfaces in Sandstones[J]. Pure and Applied Geophysics,1978,116:931-942.
[8] Aydin A,Johnson A M.Analysis of Faulting in Porous Sandstones[J]. Journal of Structural Geology,1983,5:19-31.
[9] Beach A,Welborn A I,Brockbank P, et al. Reservoir Damage Around Faults:Outcrop Examples from the Suez Rift[J]. Petroleum Geoscience,1999,5:109-116.
[10] Du Bernard X,Labaume P,Darcel C.Cataclastic Slip Band Distribution in Normal Fault Damage Zones,Nubian Sandstones,Suez Rift[J].Journal of Geophy-sical Research,2002,107:21-41.
[11] Wibberley C A J,Petit J P,Rives T.Mechanics of Cataclastic ‘Deformation Band’ Faulting in High-Porosity Sandstone,Provence[J]. Science,2000,331:419-425.
[12] Underhill J R,Woodcock N H. Faulting Mechanisms in High-Porosity Sandstones:New Red Sandstone,Arran,Scotland[J].Geological Society London,1987,29:91-105.
[13] Beach A,Brown J L,Welbon A I. Characteristics of Fault Zones in Sandstones from NW England: Application to Fault Transmissibility[J].Geological Society,1997,124:315-324.
[14] Knott S D. Fault Seal Analysis in the North Sea[J]. AAPG,1993,77:778-792.
[15] Fisher Q J,Knipe R J. The Permeability of Faults Within Siliciclastic Petroleum Reservoir of the North Sea and Norwegian Continental Shelf[J]. Marine and Petroleum Geology,2001,18:1063-1081.
[16] Fossen. Structural geology[M]. Cambridge:Cambridge University Press,2010:119-185.
[17] Bouvier J D, Kaars-Sijpesteijn C H, Kluesner D F, et al.Three-Dimensional Seismic Interpretation and Fault Sealing Inwestigation,Nun River Field,Nigeria[J].AAPG,1989,73:1397-1414.
[18] Knipe R J.Faulting Processes and Fault Seal[C]//Larsen R M, Brekke H, Larsen B T. Structural and Tectonic Modelling and Its Application to Petroleum Geology. Amsterdam:Norwegian Petroleum Society,1992: 325-342.
[19] Lindsay N G,Murphy F C,Walsh J J,et al. Outcrop Studies of Shale Smear on Fault Surface[J].International Association of Sedimentologists Special Publication, 1993,15:113-123.
[20] Gibson R G. Fault-Zone Seals in Siliciclastic Strata of the Columbus Basin, Offshore Trinidad[J]. AAPG,1994,78:1372-1385.
[21] Lehner F K,Pilaar W F. The Emplacement of Clay Smears in Synsedimentary Normal Faults:Inferences from Field Observations near Frechen, Germany[C]//Moller-Pederson P,Koestler A G.Hydrocarbon Seals: Importance for Exploration and Production. Amsterdam: Norwegian Petroleum Society, 1997:15-38.
[22] Ottesen-Ellevset S,Knipe R J,Svavao. Fault Controlled Communication in the Sleipner Field,Norwegian North Sea: Detail, Quantitative Input for Reservoir Simulation and Well Planning[C]//Jones G, Fisher Q J, Knipe R J. Faulting, Fault Sealing and Fluid Flow in Hydrocarbon Reservoir.London:Geology Society,1998: 283-297.
[23] Wanless H R.Limestone Response to Stress:Pressure Solution and Dolomitization[J]. Sedim Petrol, 1979,49: 437-462.
[24] Bathurst R G C. Carbonate Sediments and Their Diagenesis[M]. New York: Sedimentol,1980.
[25] Scholle P A,Halley R B.Burial Diagenesis: Out of Sight,Out of Mind[J]. Mineral,1985, 36: 135-160.
[26] Ricken W. Diagenetic Bedding[M].Berlin: Earth Sciences, 1986.
[27] Moore C H. Carbonate Diagenesis and Porosity[M]. Amsterdam:Sedimental Science, 1989.
[28] Fossen H R A.Structural Geology[M].Cambridge:Cambridge University Press,2010:119-185.
[29] Fisher Q J,Knipe R J.The Permeability of Faults Within Siliciclastic Petroleum Reservoir of the North Sea and Norwegian Continental Shelf[J].Marine and Petroleum Geology,2001,18:1063-1081.
[30] Fisher Q J,Casey M,Harris S D.Fluild Flow Properties of Faults in Sandstone:The Importance of Temperature History[J].Geology, 2003, 31:965-968.
[31] Fossen H R A,Schultz Z K,Shiptonl. Deformation Bands in Sandstone: A Review[J].Journal of the Geological Society(London),2007,164:755-769.
[32] Tondi E, Antonellini M, Aydin A,et al. The Roles of Deformation Bands and Pressure Solution Seams in Fault Development in Carbonate Grainstones of the Majella Mountain, Italy[J]. Journal of Structural Geology,2006, 28: 376-391.
[33] Geraud Y, Diraison M, Orellana N.Fault Zone Geometry of a Mature Active Normal Fault: A Potential High Permeability Channel (Pirgaki fault, Corinth Rift,Greece)[J]. Tectonophysics, 2006, 426:61-76.
[34] Sibson R H.Structural Permeability of Fluid-Driven Fault-Fracture Meshes[J]. Journal of Structural Geology,1996,18(8):1031-1042.
[35] Tenthorey E, Cox S F, Toff H F. Evolution of Strength Recovery and Permeability During Fluid-Rock Reaction in Experimental Fault Zones[J]. Earth and Planetary Science Letters,2003,206:161-172.
[36] Tarasewicz J P T, Woodcock N H, Dickson J A D. Carbonate Dilation Breccias: Examples from the Damage Zone to the Dent Fault, Northwest England[J]. Geological Society of America Bulletin, 2005,117: 736-745.
[37] Collettini C, De Paola N, Holdsworth R E, et al .The Development and Behaviour of Low-Angle Normal Faults During Cenozoic Asymmetric Extension in the Northern Apennines, Italy[J]. Journal of Structural Geology, 2006,28:333-352.
[38] Woodcock N H, Dickson J A D, Tarasewicz J P T. Transient Permeability and Reseal Hardening in Fault Zones:Evidence from Dilation Breccia Textures[J]. Geological Society of London Special Publications,2007,270:43-53.
[39] Chester F M, Evans J P, Biegel R L. Internal Structure and Weakening Mechanisms of the San Andreas Faults[J]. Journal of Geophysical Research,1993,98:771-786.
[40] Caine J S,Evans J P,Forster C B.Fault Zone Architecture and Permeability Structure[J]. Geology,1996,24:1025-1028.
[41] Cowie P A, Scholz C H.Growth of Faults by Accumulation of Seismic Slip[J].Journal of Geophysical Research,1992,97:11085-11095.
[42] Micarelli L,Moretti I,Jaubert M,et al. Fracture Analysis in the South-Western Corinth Rift (Greece) and Implications on Fault Hydraulic Behavior[J].Tectonophysics, 2006,426:31-59.
[43] Sibson R H. Fault Rocks and Fault Mechanisms[J]. Journal of the Geological Society of London,1977,133:191-213.
[44] Butler C A,Holdsworth R E,Strachan R A. Evidence for Caledonian Sinistral Strike-Slip Motion and Associated Fault Zone Weakening,Outer Hebrides Fault Zone,Scotland[J]. Journal of the Geological Society,1995,152: 743-746.
[45] Graham B, Antonellini M, Aydin A. Formation and Growth of Normal Faults in Carbonates Within a Compressive Environment[J]. Geology,2003,31:11-14.
[46] Brosch F J,Kurz W. Fault Damage Zones Dominated by High-Angle Fractures Within Layer-Parallel Brittle Shear Zones: Examples from the Eastern Alps[C]//Wibberley C A J,Kurz W,Imber J R E,et al. The Internal Structure of Fault Zones.London: Geological Society, 2008:75-95.
[47] Aydin A,Johnson A M.Development of Faults as Zones of Deformation Bands and as Slip Surfaces in Sandstones[J].Pure and Applied Geophysics,1978,116:931-942.
[48] Hesthammer J,Fossen H.Uncertainties Associated with Fault Sealing Analysis[J].Petroleum Geo-science,2000,6:37-45.
[49] Pittman E D.Effect of Fault-Related Granulation on Porosity and Permeability of Quarts Sandstones,Simpson Group(Ordovician),Oklahoma[J].AAPG,1981,65:2381-2387.
[50] Aydin A,Johnson A M.Analysis of Faulting in Porous Sandstones[J].Journal of Structural Geology,1983,5:19-31.
[51] Micarelli L,Benedicto A C,Wibberley A J.Structural Evolution and Permeability of Normal Fault Zones in Highly Porous Carbonate Rocks[J].Journal of Structural Geology,2006,28:1214-1227.
[52] Antonellini M,Aydin A.Effect of Faulting on Fluid Flow in Porous Sandstones:Petrophysicial Properties[J].AAPG,1994,78:355-377.
[53] Peacock D C P, Fisher Q J, Willemse E J M.The Relationship Between Faults and Pressure Solution Seams in Carbonate Rock and the Implications for Fluid Flow[J].Geological Society, 1998,147:105-115.
[54] Agosta F,Aydin A. Architecture and Deformation Mechanism of a Basin-Bounding Normal Fault in Mesozoic Platform Carbonates, Central Italy[J].Journal of Structural Geology,2006,28:1445-1467.
[55] Scholz C H. Wear and Gouge Formation in Brittle Faulting[J]. Geology,1987,15: 493-495.
[56] Hull J.Thicknesse Displacement Relationships for Deformation Zones[J]. Journal of Structural Geology,1988,10:431-435.
[57] Otsuki K. On the Relationship Between the Width of Shear Zone and the Displacement Along Fault[J]. Journal of the Geological Society of Japan,1978,84:661-669.
[58] Robertson E C. Relationship of Fault Displacement to Gouge and Breccias Thickness[J]. Mining Enginee-ring,1983,35:1426-1432.
[59] Walsh J,Watterson J,Heath A E,et al. Representation and Scaling of Faults in Fluid Flow Models[J]. Petroleum Geoscience,1998,4:241-251.
[60] Bastesen E,Braathen A.Extensional Fault Cores in Micritic Carbonate:Case Studies from the Gulf of Corinth, Greece[J]. Journal of Structural Geology,2009,31:403-420.
[61] Micarelli L,Benedicto A,Wibberley C A J. Structural Evolution and Permeability of Normal Fault Zones in Highly Porous Carbonate Rocks[J]. Journal of Structural Geology,2006,28:1214-1227.
[62] 付曉飛,潘國強,賀向陽,等.大慶長垣南部黑帝廟油層淺層生物氣斷層側(cè)向封閉性研究[J].石油學(xué)報,2009,30(5):678-684. Fu Xiaofei, Pan Guoqiang, He Xiangyang, et al. Lateral Sealing of Faults for Shallow Biogas in Heidimiao Formation of the Southern Daqing Placanticline[J]. Acta Petrolei Sinica, 2009,30(5):678-684.
[63] Yielding G,Freeman B,Needham T.Quantitative Fault Seal Prediction[J].AAPG Bulletin,1997,81(6):897-917.
[64] Younes A I,Aydin A. Comparison of Fault Sealing by Single and Multiple Layers of Shale:Outcrop Examples from the Gulf of Suez,Egypt[J]AAPG Annual Meeting Program,2001,10:222.
[65] Sperrevik S, Faerseth R B, Gabrielsen R H. Experiments on Clay Smear Formation Along Faults[J]. Petroleum Geoscience, 2000, 6:113-123.
[66] Yielding G. Shale Gouge Ratio: Calibration by Geohistory[C]//Koestler A G, Hunsdale R.Hydrocarbon Seal Quantification. Amsterdam: Norwegian Petroleum Society,2002:1-15.
[67] Doughty P T. Clay Smear Seals and Fault Sealing Potential of an Exhumed Growth Fault[J].AAPG,2003,87(3):427-444.
[68] Kim J W,Berg R R,Watkins J S,et al. Trapping Capacity of Faults in the Eocene Yegua Formation, East Sour Lake Field, Southeast Texas[J].AAPG,2003,87(3):415-425.
[69] Takahashi M.Permeability Change During Experimental Fault Smearing[J].Journal of Geophysical Research,2002,108(B5):1-15.
[70] Sorkhabi R,Tsuji Y. The Place of Faults in Petro-leum Traps, Faults, Fluid Flow, and Petroleum Traps[J]. AAPG,2005,85(1):1-31.
[71] Eichhubl P,D’Onfro P S,Aydin A,et al. Structure,Petrophysics,and Diagenesis of Shale Entrained Along a Normal Fault at Black Diamond Mines,California-Implicationsfor Fault Seal[J]. AAPG,2005,89(9):1113-1137.
[72] Faerseth R B. Shale Smear Along Large Faults: Continuity of Smear and the Fault Seal Capacity[J]. Journal of the Geological Society, 2006, 163:741-751.
[73] Speksnijder A. The Structural Configuration of Cormorant Block IV in Context of the Northern Viking Graben Structural Framework[J]. Geologie en Mijnbouw,1987,65:357-379.
[74] Gibson R G. Physical Character and Fluid-Flow Properties of Sandstone-Derived Fault Zones[J]. Geological Society, 1998,127:83-97.
Fault Zone Structure and Hydrocarbon Accumulation in Carbonates
Qie Ying,F(xiàn)u Xiaofei,Meng Lingdong,Xu Peng
CNPC Fault Controlling Reservoirs Laboratory, Northeast Petroleum University/Unconventional Hydrocarbon Accumulation and Development Provincial Department of State Key Laboratory of Constructing Cultivation Base,Daqing 163318,Heilongjiang,China
Based on the field observation and description, the factors relevant to the mechanism of fault deformation and the process of fault zone structure evolution in carbonate rock are systematically discussed, and the relationship between fault zone structure and fluid flow in the carbonate formation is analyzed. The research shows that the relevant factors to the mechanism of fault deformation in carbonate rock include lithology, porosity, deformation depth, temperature, cementation, pre-existing fractures and so on, and the factors controlling the formation of fault zone structure include sliding displacement and fracture mode. Low-porosity carbonate rock is characterized by fracture, while for high-porosity carbonate rock, deformation zone developed in the early time of deformation, fractures gradually connected and developed into fault zone. With burial depth increasing the structure of fracture zone is changing: when the burial depth is less than 3 km, the core of fault mainly develop into fault breccias and fault gouge without cohesion; when the burial depth is more than 3 km, the core of fault mainly develop into fault breccias and cataclasite with cohesion and fractures of various causes developed in the fracture zone. With the depth increasing, fracture mode changes from early fracturing into late cataclasis, eventually cataclastic flow. Fracture zone evolution is a four-dimensional process, the development of fault core and fracture zone, directly affects faults on hydrocarbon migration and seal. The research on the mechanism of fault deformation, the internal structure of fault zones and the fluid migration, can provide important theoretical basis for seal.
carbonates;fault zone structure; physical characteristics;control fluid accumulation
10.13278/j.cnki.jjuese.201403104.
2013-12-13
中國石油科技創(chuàng)新基金研究項目(2012D-5006-0107);教育部科學(xué)技術(shù)研究重點項目(212041)
郄瑩(1987-),女,碩士,主要從事斷層封閉性及流體運移方面的研究,Tel:0459-6504955,E-mail:qieying2009@126.com
付曉飛(1973-),男,教授,主要從事斷裂變形機制、封閉性及流體運移方面的研究,Tel:0459-6503740, E-mail:fuxiaofei2008@sohu.com。
10.13278/j.cnki.jjuese.201403104
P618.130.2
A
郄瑩,付曉飛,孟令東,等. 碳酸鹽巖內(nèi)斷裂帶結(jié)構(gòu)及其與油氣成藏.吉林大學(xué)學(xué)報:地球科學(xué)版,2014,44(3):749-761.
Qie Ying,F(xiàn)u Xiaofei,Meng Lingdong,et al.Fault Zone Structure and Hydrocarbon Accumulation in Carbonates.Journal of Jilin University:Earth Science Edition,2014,44(3):749-761.doi:10.13278/j.cnki.jjuese.201403104.