国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

全光Cs原子磁力儀的溫度特性研究

2014-07-08 20:33:28劉強卓艷男黃強張軍海孫偉民
光學(xué)儀器 2014年2期
關(guān)鍵詞:工作溫度

劉強++卓艷男++黃強++張軍海+孫偉民+

文章編號: 10055630(2014)02015204

收稿日期: 20131008

摘要: 全光銫(Cs)原子磁力儀是一種高靈敏度弱磁檢測儀,核心器件Cs原子氣室的工作溫度直接決定了原子磁力儀的靈敏度。實驗系統(tǒng)中采用頻率鎖定在Cs原子D1線F=3→F′=4共振線的圓偏振光極化Cs原子,檢測光采用頻率鎖定在Cs原子D2線F=4→F′=5共振線的線偏振光,檢測介質(zhì)的圓二向色性。實驗發(fā)現(xiàn),隨著Cs原子氣室工作溫度的升高,磁力儀輸出信號幅度先增加然后逐漸衰減,而磁力儀的線寬近似線性增加。實驗測試了溫度由25 ℃升高至45 ℃時的磁力儀輸出信號,結(jié)果表明:當(dāng)溫度為37.6 ℃時,原子磁力儀達(dá)到最佳靈敏度。

關(guān)鍵詞: 原子磁力儀; 工作溫度; 原子氣室; 圓二向色性

中圖分類號: O 433.5文獻(xiàn)標(biāo)志碼: Adoi: 10.3969/j.issn.10055630.2014.02.013

Temperature dependence of all optical Cs atomic magnetometer

LIU Qiang1, ZHUO Yannan1, HUANG Qiang2, ZHANG Junhai2, SUN Weimin2

(1.College of Electronic Science, Northeast Petroleum University, Daqing 163318, China;

2.College of Science, Harbin Engineering University, Harbin 150001, China)

Abstract: All optical atomic magnetometer with high sensitivity is an important device to detect weak magnetic field. The sensitivity of the atomic magnetometer will be influenced by the operating temperature of Cs vapor cell. As the frequency of circularly polarized pump light and the linearly polarized probe light are locked to Cs D1 transition F=3→F′=4 and Cs D2 transition F=4→F′=5 respectively, linearly polarized probe light will rotate a small angle due to circular dichroic medium. With the increase of the operating temperature of Cs vapor cell, the output peak signal will increase first and then decrease, but the bandwidth has been increasing. The output signal of magnetometer was measured as the operating temperature varied from 25 ℃ to 45 ℃. The result shows that 37.6 ℃ is the optimal temperature to achieve the highest sensitivity.

Key words: atomic magnetometer; operating temperature; atomic vapor cell; circular dichroism

引言磁場測量方法種類繁多[1],而原子磁力儀是近年出現(xiàn)的一種高靈敏度弱磁場檢測技術(shù),磁測量靈敏度已經(jīng)優(yōu)于超導(dǎo)磁力儀達(dá)到0.16fT/Hz1/2 [2],并且這種磁力儀結(jié)構(gòu)簡單,更易于小型化使其成為近年研究的熱點。目前,已經(jīng)采用原子磁力儀在實驗室條件下進(jìn)行爆炸危險物品檢測,醫(yī)學(xué)領(lǐng)域的心磁、腦磁測量等相關(guān)領(lǐng)域的前期研究工作,同時還用于研究物理學(xué)中的基本對稱性[35]。原子磁力儀的基本原理是利用線偏振光檢測被極化的原子在磁場中的拉莫進(jìn)動頻率[6]。參與作用的原子數(shù)對原子磁力儀的靈敏度通常起著決定性作用,基于無自旋互換弛豫效應(yīng)的原子磁力儀通常將原子氣室加熱至100 ℃以上來消除自旋互換碰撞弛豫[78];而利用非線性磁光旋轉(zhuǎn)效應(yīng)的原子磁力儀卻通常將原子氣室置于常溫環(huán)境下[9];基于相干布居囚禁技術(shù)的87Rb原子磁力儀中原子氣室的工作溫度為70 ℃[10]。由此可見,為達(dá)到極限磁測量靈敏度,基于不同原理的原子磁力儀均存在最佳的工作溫度值。本文研究了一種高靈敏度全光Cs原子磁力儀,在Cs原子氣室內(nèi)充入13 332.2 Pa的He緩沖氣體。將泵浦光頻率鎖定在Cs原子D1線F=3→F′=4共振線,檢測光頻率鎖定在Cs原子D2線F=4→F′=5共振線,測量了Cs原子氣室工作溫度由25 ℃升高至45 ℃時的磁力儀輸出信號,通過對實驗結(jié)果進(jìn)行分析發(fā)現(xiàn),當(dāng)Cs原子氣室工作溫度為37.6 ℃時,原子磁力儀達(dá)到最佳靈敏度。圖1原子磁力儀原理圖

Fig.1Principle of atomic magnetometer1基本原理全光Cs原子磁力儀的工作過程可分成三部分[11],如圖1所示:(1)圓偏振泵浦光極化Cs原子,極化方向沿泵浦光的傳播方向;(2)被極化的原子繞著磁場的方向作拉莫進(jìn)動;(3)線偏振光檢測被極化的原子在檢測光方向上的投影,偏振面產(chǎn)生旋轉(zhuǎn)。檢測光偏振面旋轉(zhuǎn)角θ為[12]θ∝lcrenfDPxL(ν)(1)其中:l為泵浦光與檢測光交叉區(qū)長度,c為光速,re為經(jīng)典電子半徑,n為粒子數(shù)密度,fD為振子強度,Px為原子極化在檢測光方向的投影,L(ν)為洛倫茲線型。光學(xué)儀器第36卷

第2期劉強,等:全光Cs原子磁力儀的溫度特性研究

原子磁力儀的靈敏度可表示為δB=ΔBS/N(2)其中:ΔB為原子磁力儀信號的線寬,S/N為偏振面旋轉(zhuǎn)角檢測的信號與噪聲之比。提高原子磁力儀的靈敏度的直接方法是減小磁力儀線寬,同時增大系統(tǒng)信噪比。由式(1)可知,提高Cs原子氣室工作溫度可使粒子數(shù)密度n顯著增加,輸出信噪比增大。然而Cs原子粒子數(shù)增加會導(dǎo)致自旋破壞碰撞和自旋互換碰撞幾率的增大,使原子磁力儀特性曲線的線寬增加。因此,由式(2)可知存在最佳的工作溫度,使磁力儀靈敏度達(dá)到最優(yōu)值。圖2原子磁力儀實驗原理圖

Fig.2Experimental schematic diagram of atomic magnetometer2實驗裝置全光Cs原子磁力儀實驗系統(tǒng)如圖2所示。直徑為30 mm的球型Cs原子氣室置于三層磁屏蔽筒中,氣室內(nèi)充入13 332.2 Pa的He緩沖氣體,亥姆霍茲線圈在y方向產(chǎn)生待測磁場。泵浦光選用輸出波長為894.6 nm的外腔半導(dǎo)體激光器,采用飽和吸收譜技術(shù)可將頻率鎖定在Cs原子D1線的F=3→F′=4超精細(xì)共振線處,經(jīng)準(zhǔn)直擴(kuò)束后采用電光幅度調(diào)制器(EOAM)對光強進(jìn)行方波調(diào)制。被調(diào)制的泵浦光進(jìn)入磁屏蔽筒后,經(jīng)偏振片和λ/4波帶片將其變成圓偏振光極化Cs原子。檢測光選用波長為852.3 nm的外腔半導(dǎo)體激光器,利用飽和吸收譜將激光器頻率鎖定在Cs原子D2線F=4→F′=5共振線處,經(jīng)偏振片后變成線偏振光通過Cs原子氣室檢測介質(zhì)的圓二向色性,出射后由λ/4和PBS組成的光學(xué)系統(tǒng)進(jìn)行檢測,經(jīng)光電轉(zhuǎn)換、放大、做差、濾波后送入鎖相放大器和示波器,實現(xiàn)磁場測量,同時估算原子磁力儀的靈敏度。3實驗結(jié)果與分析將Cs原子氣室置于亥姆霍茲線圈中心,產(chǎn)生100nT待測磁場,泵浦光強Ip=6 mW/cm2,頻率鎖定在Cs原子D1線F=3→F′=4共振線,檢測光強Id=0.2 mW/cm2,頻率鎖定在Cs原子D2線F=4→F′=5共振線,Cs原子氣室工作溫度為37.6 ℃,測量到的原子磁力儀響應(yīng)特性曲線如圖3所示。橫軸表示泵浦光強的調(diào)制頻率,縱軸表示鎖相放大器的同相輸出信號,其幅值為線偏振檢測光偏振面的旋轉(zhuǎn)角度。當(dāng)泵浦光的調(diào)制頻率與被極化原子繞磁場的拉莫進(jìn)動頻率相等時,檢測光偏振面旋轉(zhuǎn)角出現(xiàn)極大值,即同相輸出信號幅值達(dá)到峰值,此時峰值對應(yīng)的橫坐標(biāo)頻率為350 Hz。根據(jù)拉莫進(jìn)動頻率與磁場的關(guān)系 ω=γB(對于Cs原子γ=3.5 Hz/nT)可知,Cs原子氣室所在位置的磁場值為100 nT,從而實現(xiàn)磁場測量。為分析溫度對原子磁力儀靈敏度的影響,實驗中首先固定泵浦光強和檢測光強,測量了原子磁力儀響應(yīng)特性曲線的峰值隨溫度的變化關(guān)系,如圖4中離散點所示。隨著溫度的增加,Cs原子粒子數(shù)密度增加導(dǎo)致磁力儀輸出信號的增大,在40 ℃左右達(dá)到極值,然后逐漸減小。產(chǎn)生這種現(xiàn)象的原因是:(1)隨著溫度的升高,Cs原子將由光學(xué)薄介質(zhì)向光學(xué)厚介質(zhì)轉(zhuǎn)變,而泵浦光與檢測光的交叉區(qū)域并未覆蓋整個氣室(如圖2所示),導(dǎo)致泵浦光在與檢測光交叉前會被Cs原子強烈吸收,有效泵浦光強減小。(2)與泵浦光類似,處于Cs原子共振線的檢測光也會在與泵浦光交叉前后的區(qū)域中被Cs原子吸收,檢測光強通常都比較小,如果這種吸收較強將直接影響輸出信號的幅度,等價于在公式(1)的基礎(chǔ)上乘吸收項exp(-nσl)。其中,n為粒子數(shù)密度,σ為吸收截面,l為泵浦光與檢測光的非交叉區(qū)長度。理論計算結(jié)果如圖4實線所示,與實驗結(jié)果基本一致。

圖3原子磁力儀響應(yīng)特性曲線

Fig.3Output signal of atomic

magnetometer圖4不同溫度下的輸出信號幅度

Fig.4Output amplitude of atomic

magnetometer at different temperature

為了估算磁力儀獲得最佳靈敏度時的Cs原子氣室工作溫度,除了考慮磁力儀特性曲線的峰值幅度外,還需考慮曲線線寬。為此,在不同的溫度下,測量得到的磁力儀特性曲線的峰值如圖5所示,隨著泵浦光強的增加輸出信號峰值先迅速增加然后逐漸趨緩,說明泵浦光強逐漸達(dá)到原子極化所需的飽和光強。各溫度下曲線峰值隨泵浦光強的變化具有相同的變化趨勢,說明非交叉區(qū)Cs原子對泵浦光的吸收可通過增加泵浦光強進(jìn)行補償。圖6給出不同溫度下,磁力儀特性曲線的線寬隨泵浦光強的變化關(guān)系。在某一固定溫度下,泵浦光強的增加將導(dǎo)致曲線線寬非線性增加。然而,當(dāng)泵浦光強固定的條件下,隨著溫度的升高,線寬將近似線性增加,如圖7所示,在此溫度范圍內(nèi),擬合函數(shù)為ΔB=0.6T+13.5。由此可見,溫度的變化不僅影響曲線峰值,同時影響曲線線寬。忽略Cs原子氣室工作溫度的變化導(dǎo)致的磁力儀噪聲,將此式與圖4的仿真結(jié)果帶入式(2),計算結(jié)果如圖8所示,可知Cs原子氣室的最佳工作溫度為37.6 ℃。

圖5不同溫度下響應(yīng)特性曲線峰值與泵浦光強的關(guān)系

Fig.5Dependence of amplitude on pumping

intensity at different temperature圖6不同溫度下泵浦光強與線寬的關(guān)系

Fig.6Dependence of bandwidth on pumping

intensity at different temperature

圖7不同溫度下的曲線線寬

Fig.7Bandwidth of inphase signal at

different temperature圖8不同溫度下原子磁力儀的相對靈敏度

Fig.8The relative sensitivity of atomic

magnetometer at different temperature

4結(jié)論本文介紹了一種高靈敏度全光Cs原子磁力儀,指出Cs原子氣室的工作溫度直接決定了原子磁力儀的靈敏度。當(dāng)泵浦光頻率鎖定在Cs原子D1線F=3→F′=4共振線,檢測光頻率鎖定在Cs原子D2線F=4→F′=5共振線時,分別測量了Cs原子氣室工作溫度對輸出信號幅度和線寬的影響。發(fā)現(xiàn)隨著Cs原子氣室工作溫度的升高,磁力儀輸出信號幅度先增加然后逐漸衰減,而磁力儀的線寬近似線性增加。分析結(jié)果表明,當(dāng)Cs原子氣室的工作溫度為37.6 ℃時,原子磁力儀可獲得最佳靈敏度。這項工作對進(jìn)一步優(yōu)化磁力儀結(jié)構(gòu),提高測磁靈敏度具有重要意義。參考文獻(xiàn):

[1]王關(guān)德,李艷敏,李孟超,等.受控等效光速減緩及其在磁場強度測量中的應(yīng)用[J].光學(xué)儀器,2008,30(2):48.

[2]DANG H B,MALOOF A C,ROMALIS M V.Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J].Applied Physics Letters,2010,97(15):15111011511103.

[3]XIA H,BENAMAR BARANGA A,HOFFMAN D,et al.Magnetoencephalography with an atomic magnetometer[J].Applied Physics Letters,2006,89(21):21110412111043.

[4]LEE S K,SAUER K L,SELTZER S J,et al.Subfemtotesla radiofrequency atomic magnetometer for detection of nuclear quadrupole resonance[J].Applied Physics Letters,2006,89(21):21410612141063.

[5]BROWN J M,SMULLIN S J,KORNACK T W,et al.New limit on Lorentz and CPTViolating neutron spin interactions[J].Physical Review Letters,2010,105(15):15160411516044.

[6]KOMINIS I K,KORNACK T W,ALLRED J C,et al.A subfemtotesla multichannel atomic magnetometer[J].Nature,2003,422(6932):596599.

[7]SHAH V,VASILAKIS G,ROMALIS M V.High bandwidth atomic magnetometery with continuous quantum nondemolition measurements[J].Physical Review Letters,2010,104(1):136011136014.

[8]SHAH V,ROMALIS M V.Spinexchange relaxationfree magnetometry using elliptically polarized light[J].Physical Review A,2009,80(1):134161134166.

[9]HOVDE C,PATTON B,CORSINI E,et al.Sensitive optical atomic magnetometer based on nonlinear magnetooptical rotation[C]∥Conference on Unattended Ground,Sea,and Air Sensor Technologies and Applications XII.Orlando:SPIE,2010,7693,769313176931310.

[10]LIU G B,GU S H.Experimental study of the CPT magnetometer worked on atomic energy level modulation[J].Journal of Physics B:Atomic,Molecular and Optical Physics,2010,43(3):350041350044.

[11]BUDKER D,ROMALIS M V.Optical magnetometry[J].Nature Physical,2007,3(4):227234.

[12]Seltzer S J.Developments in alkalimetal atomic magnetometry[D].Princeton:Princeton University,2008.第36卷第2期2014年4月光學(xué)儀器OPTICAL INSTRUMENTSVol.36, No.2April, 2014

[3]XIA H,BENAMAR BARANGA A,HOFFMAN D,et al.Magnetoencephalography with an atomic magnetometer[J].Applied Physics Letters,2006,89(21):21110412111043.

[4]LEE S K,SAUER K L,SELTZER S J,et al.Subfemtotesla radiofrequency atomic magnetometer for detection of nuclear quadrupole resonance[J].Applied Physics Letters,2006,89(21):21410612141063.

[5]BROWN J M,SMULLIN S J,KORNACK T W,et al.New limit on Lorentz and CPTViolating neutron spin interactions[J].Physical Review Letters,2010,105(15):15160411516044.

[6]KOMINIS I K,KORNACK T W,ALLRED J C,et al.A subfemtotesla multichannel atomic magnetometer[J].Nature,2003,422(6932):596599.

[7]SHAH V,VASILAKIS G,ROMALIS M V.High bandwidth atomic magnetometery with continuous quantum nondemolition measurements[J].Physical Review Letters,2010,104(1):136011136014.

[8]SHAH V,ROMALIS M V.Spinexchange relaxationfree magnetometry using elliptically polarized light[J].Physical Review A,2009,80(1):134161134166.

[9]HOVDE C,PATTON B,CORSINI E,et al.Sensitive optical atomic magnetometer based on nonlinear magnetooptical rotation[C]∥Conference on Unattended Ground,Sea,and Air Sensor Technologies and Applications XII.Orlando:SPIE,2010,7693,769313176931310.

[10]LIU G B,GU S H.Experimental study of the CPT magnetometer worked on atomic energy level modulation[J].Journal of Physics B:Atomic,Molecular and Optical Physics,2010,43(3):350041350044.

[11]BUDKER D,ROMALIS M V.Optical magnetometry[J].Nature Physical,2007,3(4):227234.

[12]Seltzer S J.Developments in alkalimetal atomic magnetometry[D].Princeton:Princeton University,2008.第36卷第2期2014年4月光學(xué)儀器OPTICAL INSTRUMENTSVol.36, No.2April, 2014

[3]XIA H,BENAMAR BARANGA A,HOFFMAN D,et al.Magnetoencephalography with an atomic magnetometer[J].Applied Physics Letters,2006,89(21):21110412111043.

[4]LEE S K,SAUER K L,SELTZER S J,et al.Subfemtotesla radiofrequency atomic magnetometer for detection of nuclear quadrupole resonance[J].Applied Physics Letters,2006,89(21):21410612141063.

[5]BROWN J M,SMULLIN S J,KORNACK T W,et al.New limit on Lorentz and CPTViolating neutron spin interactions[J].Physical Review Letters,2010,105(15):15160411516044.

[6]KOMINIS I K,KORNACK T W,ALLRED J C,et al.A subfemtotesla multichannel atomic magnetometer[J].Nature,2003,422(6932):596599.

[7]SHAH V,VASILAKIS G,ROMALIS M V.High bandwidth atomic magnetometery with continuous quantum nondemolition measurements[J].Physical Review Letters,2010,104(1):136011136014.

[8]SHAH V,ROMALIS M V.Spinexchange relaxationfree magnetometry using elliptically polarized light[J].Physical Review A,2009,80(1):134161134166.

[9]HOVDE C,PATTON B,CORSINI E,et al.Sensitive optical atomic magnetometer based on nonlinear magnetooptical rotation[C]∥Conference on Unattended Ground,Sea,and Air Sensor Technologies and Applications XII.Orlando:SPIE,2010,7693,769313176931310.

[10]LIU G B,GU S H.Experimental study of the CPT magnetometer worked on atomic energy level modulation[J].Journal of Physics B:Atomic,Molecular and Optical Physics,2010,43(3):350041350044.

[11]BUDKER D,ROMALIS M V.Optical magnetometry[J].Nature Physical,2007,3(4):227234.

[12]Seltzer S J.Developments in alkalimetal atomic magnetometry[D].Princeton:Princeton University,2008.

[3]XIA H,BENAMAR BARANGA A,HOFFMAN D,et al.Magnetoencephalography with an atomic magnetometer[J].Applied Physics Letters,2006,89(21):21110412111043.

[4]LEE S K,SAUER K L,SELTZER S J,et al.Subfemtotesla radiofrequency atomic magnetometer for detection of nuclear quadrupole resonance[J].Applied Physics Letters,2006,89(21):21410612141063.

[5]BROWN J M,SMULLIN S J,KORNACK T W,et al.New limit on Lorentz and CPTViolating neutron spin interactions[J].Physical Review Letters,2010,105(15):15160411516044.

[6]KOMINIS I K,KORNACK T W,ALLRED J C,et al.A subfemtotesla multichannel atomic magnetometer[J].Nature,2003,422(6932):596599.

[7]SHAH V,VASILAKIS G,ROMALIS M V.High bandwidth atomic magnetometery with continuous quantum nondemolition measurements[J].Physical Review Letters,2010,104(1):136011136014.

[8]SHAH V,ROMALIS M V.Spinexchange relaxationfree magnetometry using elliptically polarized light[J].Physical Review A,2009,80(1):134161134166.

[9]HOVDE C,PATTON B,CORSINI E,et al.Sensitive optical atomic magnetometer based on nonlinear magnetooptical rotation[C]∥Conference on Unattended Ground,Sea,and Air Sensor Technologies and Applications XII.Orlando:SPIE,2010,7693,769313176931310.

[10]LIU G B,GU S H.Experimental study of the CPT magnetometer worked on atomic energy level modulation[J].Journal of Physics B:Atomic,Molecular and Optical Physics,2010,43(3):350041350044.

[11]BUDKER D,ROMALIS M V.Optical magnetometry[J].Nature Physical,2007,3(4):227234.

[12]Seltzer S J.Developments in alkalimetal atomic magnetometry[D].Princeton:Princeton University,2008.第36卷第2期2014年4月光學(xué)儀器OPTICAL INSTRUMENTSVol.36, No.2April, 2014

[3]XIA H,BENAMAR BARANGA A,HOFFMAN D,et al.Magnetoencephalography with an atomic magnetometer[J].Applied Physics Letters,2006,89(21):21110412111043.

[4]LEE S K,SAUER K L,SELTZER S J,et al.Subfemtotesla radiofrequency atomic magnetometer for detection of nuclear quadrupole resonance[J].Applied Physics Letters,2006,89(21):21410612141063.

[5]BROWN J M,SMULLIN S J,KORNACK T W,et al.New limit on Lorentz and CPTViolating neutron spin interactions[J].Physical Review Letters,2010,105(15):15160411516044.

[6]KOMINIS I K,KORNACK T W,ALLRED J C,et al.A subfemtotesla multichannel atomic magnetometer[J].Nature,2003,422(6932):596599.

[7]SHAH V,VASILAKIS G,ROMALIS M V.High bandwidth atomic magnetometery with continuous quantum nondemolition measurements[J].Physical Review Letters,2010,104(1):136011136014.

[8]SHAH V,ROMALIS M V.Spinexchange relaxationfree magnetometry using elliptically polarized light[J].Physical Review A,2009,80(1):134161134166.

[9]HOVDE C,PATTON B,CORSINI E,et al.Sensitive optical atomic magnetometer based on nonlinear magnetooptical rotation[C]∥Conference on Unattended Ground,Sea,and Air Sensor Technologies and Applications XII.Orlando:SPIE,2010,7693,769313176931310.

[10]LIU G B,GU S H.Experimental study of the CPT magnetometer worked on atomic energy level modulation[J].Journal of Physics B:Atomic,Molecular and Optical Physics,2010,43(3):350041350044.

[11]BUDKER D,ROMALIS M V.Optical magnetometry[J].Nature Physical,2007,3(4):227234.

[12]Seltzer S J.Developments in alkalimetal atomic magnetometry[D].Princeton:Princeton University,2008.

[3]XIA H,BENAMAR BARANGA A,HOFFMAN D,et al.Magnetoencephalography with an atomic magnetometer[J].Applied Physics Letters,2006,89(21):21110412111043.

[4]LEE S K,SAUER K L,SELTZER S J,et al.Subfemtotesla radiofrequency atomic magnetometer for detection of nuclear quadrupole resonance[J].Applied Physics Letters,2006,89(21):21410612141063.

[5]BROWN J M,SMULLIN S J,KORNACK T W,et al.New limit on Lorentz and CPTViolating neutron spin interactions[J].Physical Review Letters,2010,105(15):15160411516044.

[6]KOMINIS I K,KORNACK T W,ALLRED J C,et al.A subfemtotesla multichannel atomic magnetometer[J].Nature,2003,422(6932):596599.

[7]SHAH V,VASILAKIS G,ROMALIS M V.High bandwidth atomic magnetometery with continuous quantum nondemolition measurements[J].Physical Review Letters,2010,104(1):136011136014.

[8]SHAH V,ROMALIS M V.Spinexchange relaxationfree magnetometry using elliptically polarized light[J].Physical Review A,2009,80(1):134161134166.

[9]HOVDE C,PATTON B,CORSINI E,et al.Sensitive optical atomic magnetometer based on nonlinear magnetooptical rotation[C]∥Conference on Unattended Ground,Sea,and Air Sensor Technologies and Applications XII.Orlando:SPIE,2010,7693,769313176931310.

[10]LIU G B,GU S H.Experimental study of the CPT magnetometer worked on atomic energy level modulation[J].Journal of Physics B:Atomic,Molecular and Optical Physics,2010,43(3):350041350044.

[11]BUDKER D,ROMALIS M V.Optical magnetometry[J].Nature Physical,2007,3(4):227234.

[12]Seltzer S J.Developments in alkalimetal atomic magnetometry[D].Princeton:Princeton University,2008.第36卷第2期2014年4月光學(xué)儀器OPTICAL INSTRUMENTSVol.36, No.2April, 2014

[3]XIA H,BENAMAR BARANGA A,HOFFMAN D,et al.Magnetoencephalography with an atomic magnetometer[J].Applied Physics Letters,2006,89(21):21110412111043.

[4]LEE S K,SAUER K L,SELTZER S J,et al.Subfemtotesla radiofrequency atomic magnetometer for detection of nuclear quadrupole resonance[J].Applied Physics Letters,2006,89(21):21410612141063.

[5]BROWN J M,SMULLIN S J,KORNACK T W,et al.New limit on Lorentz and CPTViolating neutron spin interactions[J].Physical Review Letters,2010,105(15):15160411516044.

[6]KOMINIS I K,KORNACK T W,ALLRED J C,et al.A subfemtotesla multichannel atomic magnetometer[J].Nature,2003,422(6932):596599.

[7]SHAH V,VASILAKIS G,ROMALIS M V.High bandwidth atomic magnetometery with continuous quantum nondemolition measurements[J].Physical Review Letters,2010,104(1):136011136014.

[8]SHAH V,ROMALIS M V.Spinexchange relaxationfree magnetometry using elliptically polarized light[J].Physical Review A,2009,80(1):134161134166.

[9]HOVDE C,PATTON B,CORSINI E,et al.Sensitive optical atomic magnetometer based on nonlinear magnetooptical rotation[C]∥Conference on Unattended Ground,Sea,and Air Sensor Technologies and Applications XII.Orlando:SPIE,2010,7693,769313176931310.

[10]LIU G B,GU S H.Experimental study of the CPT magnetometer worked on atomic energy level modulation[J].Journal of Physics B:Atomic,Molecular and Optical Physics,2010,43(3):350041350044.

[11]BUDKER D,ROMALIS M V.Optical magnetometry[J].Nature Physical,2007,3(4):227234.

[12]Seltzer S J.Developments in alkalimetal atomic magnetometry[D].Princeton:Princeton University,2008.

猜你喜歡
工作溫度
提高汽車水泵效率的主要措施探討
配件耐溫排行榜
電腦愛好者(2021年5期)2021-03-10 08:57:48
SC2310T/SC4210T CMOS圖像傳感器
傳感器世界(2019年8期)2019-10-28 01:08:02
鋯釩鐵在亞真空領(lǐng)域凈化的應(yīng)用
科技視界(2019年15期)2019-07-23 01:51:16
工作溫度對ZrO2基NOx傳感器泵電流影響測試分析
中國測試(2019年2期)2019-07-10 07:44:01
基于浮子運動的三浮陀螺儀工作溫度標(biāo)定方法
半導(dǎo)體氫傳感器工作溫度特性
發(fā)動機冷卻系統(tǒng)常見故障的診斷與排除
新能源馕坑的工作原理及最佳工作狀態(tài)的試驗研究
英飛凌旗下IR HiRel發(fā)布專為用于石油和天然氣勘探的井下工具而優(yōu)化的額定工作溫度為185°C的緊湊式直流-直流電源
莎车县| 榕江县| 贵定县| 隆德县| 丰原市| 遂宁市| 东乡县| 铁岭市| 保靖县| 沅陵县| 蛟河市| 工布江达县| 林州市| 南郑县| 大兴区| 防城港市| 涞水县| 金华市| 仙游县| 淮阳县| 广水市| 同江市| 邯郸市| 九寨沟县| 砚山县| 晴隆县| 民县| 上高县| 新疆| 若羌县| 改则县| 太保市| 莲花县| 彩票| 遵义市| 海盐县| 始兴县| 黔西县| 夏邑县| 宿州市| 安福县|