穆晞惠等
摘 要 [HTSS]以磁微粒偶聯(lián)多抗為磁性捕獲探針,酶標(biāo)噬菌體抗體為特異信號(hào)檢測(cè)探針,采用“磁性捕獲探針待測(cè)物酶標(biāo)噬菌體抗體探針”的檢測(cè)模式,成功建立了一種基于酶標(biāo)噬菌體抗體的磁分離免疫分析方法。
1 引 言
噬菌體抗體是利用噬菌體展示技術(shù),將編碼抗體分子片段的基因與噬菌體衣殼蛋白基因末端融合,使表達(dá)抗體展示在噬菌體顆粒表面,再經(jīng)抗原抗體特異性結(jié)合篩選得到目的噬菌體抗體。該抗體具有產(chǎn)量高、分子量小、穩(wěn)定性好、親和力高及特異性強(qiáng)等優(yōu)點(diǎn)
4 結(jié) 論
本研究以磁微粒偶聯(lián)多抗作為磁性捕獲探針,酶標(biāo)噬菌體抗體作為特異信號(hào)檢測(cè)探針,采用“磁性捕獲探針待測(cè)物酶標(biāo)噬菌體抗體探針”的檢測(cè)模式,建立了基于酶標(biāo)噬菌體抗體的磁分離免疫分析方法,以βBGT為檢測(cè)目標(biāo)物,實(shí)現(xiàn)了微量βBGT檢測(cè)。利用噬菌體表面含有多拷貝的衣殼蛋白與其相應(yīng)的酶標(biāo)抗體特異結(jié)合特性,酶標(biāo)噬菌體抗體作為信號(hào)檢測(cè)探針與傳統(tǒng)抗體酶標(biāo)二抗結(jié)合形成的酶標(biāo)抗體復(fù)合物探針相比,一個(gè)噬菌體抗體能結(jié)合更多的酶分子,從而產(chǎn)生針對(duì)檢測(cè)靶分子的特異信號(hào)放大效應(yīng)。
References
1 Smith G P. Science, 1985, 228(4705): 1315-1317
2 McCafferty J, Griffiths A D, Winter G, Chisweu D J. Nature, 1990, 348(6301): 552-554
3 Pini A, Ricci C, Bracci L. Comb Chem High Throughput Screen, 2002, 5(7): 503-510
4 WANG Yun, LIU Yuan, WANG Xiang. Chinese Journal of Cellular and Molecular Immunology, 2009, 25(12): 1146-1148
王 耘, 劉 媛, 王 祥. 細(xì)胞與分子免疫學(xué)雜志, 2009, 25(12): 1146-1148
5 SHAO JianJun, MIAO XiangYang, ZHU RuiLiang, DING ShuYan, CHEN YongFu. Acta Veterinaria et Zootrchnica Sinica, 2005, 36(1): 98-99
邵建軍, 苗向陽, 朱瑞良, 丁淑燕, 陳永福. 畜牧獸醫(yī)學(xué)報(bào), 2005, 36(1): 98-99
6 Liu R P, Liu J T, Xie L, Wang M X, Luo J P, Cai X X. Talanta, 2010, 81(3): 1016-1021
7 NIU Mu, DU MeiHong, DENG Yi,GAO MingYuan. Chem. J. Chinese Universities, 2011, 32(2): 322-326
牛 牧, 杜美紅, 鄧 奕, 高明遠(yuǎn). 高等學(xué)校化學(xué)學(xué)報(bào),2011, 32(2): 322-326
8 Hayat A, Barthelmebs L, Marty J L. Anal. Chim. Acta, 2011, 690(2): 248-252
9 LIU Bing, TONG ZhaoYang, HAO LanQun, LIU Wei, MU XiHui, LIU ZhiWei, HUANG QiBin. Chinese J. Anal.Chem., 2013, 41(12): 1807-1811
劉 冰,童朝陽,郝蘭群,劉 威,穆晞惠,劉志偉,黃啟斌. 分析化學(xué),2013, 41(12): 1807-1811
10 Proczek G , Gassner A L , Busnel J M. Anal. Bioanal. Chem, 2012, 402(8): 2645-2653
11 Thornton C R. Soil Biol. Biochem., 1996, 28(4/5): 521-532
12 Ndhlovu P, Cadman H, Gundersen S G, Vennervald B, Friis H, Christensen N, Mutasa G, Haagensen I, Chandiwana S K, Deelder A M. Acta Tropica, 1995, 59(3): 223-235
13 Liu Z S, Zhang L, Yang H, Zhu Y H, Jin W, Song Q, Yang X L. Anal. Biochem., 2010, 404(2): 127-134
14 LI ChengWen. Contemporary Immunochemistry Technology. Shanghai: Shanghai Science and Technology Press, 1990: 79-101
李成文. 現(xiàn)代免疫化學(xué)技術(shù). 上海: 上海科學(xué)技術(shù)出版社, 1990: 79-101
15 XU Yi. Technology of Immunodetection. Beijing: Science Press, 1997: 271-289
徐 宜. 免疫檢測(cè)技術(shù). 北京: 科學(xué)出版社, 1997: 271-289
16 XU ZhiKai. Technology of Monoclonal Antibodies Practicability. Xian: Shanxi Science and Technology Press, 1992: 42-50
徐志凱. 實(shí)用單克隆抗體技術(shù). 西安: 陜西科學(xué)技術(shù)出版社, 1992: 42-50
17 Le V D, Selvanayagam Z E, Gopalakrishnakone P, Eng K H. Journal of Immunological Methods, 2002, 260(12): 125-136
Magnetic Affinity Immunoassay Based EnzymeLabeled
Phage Displayed Antibody
MU XiHui, TONG ZhaoYang*, HUANG QiBin, LIU Bing, LIU ZhiWei, HAO LanQun, ZHANG JinPing
(Research Institute of Chemical Defence, State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China)
Abstract A new magnetic affinity immunoassay (MAIA) strategy based on enzymelabeled phage displayed antibody was developed. The assay consisted of a sandwich format in which immobilized polyclonal antibody (pcAb) on magnetic microparticle was used for capture probe, and enzymelabeled phage displayed antibody for specific detection probe to increase enzyme amount and enhance detection signal. By the proposed method, βbungarotoxin (βBGT) was successfully detected. A linear relationship between absorbance value and the concentration of βBGT in the range of 0.016-62.5 μg/L was obtained. The linear regression equation was Y=0.641X+1.355 (R=0.9925, n=13, p<0.0001)with a detection limit of 0.016 μg/L. In comparison with the traditional ELISA, this method gave a 10fold better sensitivity in βBGT detection. This strategy also gave a 4fold better sensitivity comparing with the MAIA based on enzyme labeled monoclonal antibody (mcAb). Due to low detection limit, acceptable reproducibility and high specificity, this method holds great promise in toxin trace detection.
Keywords Enzymelabeled phage displayed antibody; Magnetic affinity immunoassay; βBungarotoxin
(Received 4 November 2013; accepted 21 February 2014)
徐志凱. 實(shí)用單克隆抗體技術(shù). 西安: 陜西科學(xué)技術(shù)出版社, 1992: 42-50
17 Le V D, Selvanayagam Z E, Gopalakrishnakone P, Eng K H. Journal of Immunological Methods, 2002, 260(12): 125-136
Magnetic Affinity Immunoassay Based EnzymeLabeled
Phage Displayed Antibody
MU XiHui, TONG ZhaoYang*, HUANG QiBin, LIU Bing, LIU ZhiWei, HAO LanQun, ZHANG JinPing
(Research Institute of Chemical Defence, State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China)
Abstract A new magnetic affinity immunoassay (MAIA) strategy based on enzymelabeled phage displayed antibody was developed. The assay consisted of a sandwich format in which immobilized polyclonal antibody (pcAb) on magnetic microparticle was used for capture probe, and enzymelabeled phage displayed antibody for specific detection probe to increase enzyme amount and enhance detection signal. By the proposed method, βbungarotoxin (βBGT) was successfully detected. A linear relationship between absorbance value and the concentration of βBGT in the range of 0.016-62.5 μg/L was obtained. The linear regression equation was Y=0.641X+1.355 (R=0.9925, n=13, p<0.0001)with a detection limit of 0.016 μg/L. In comparison with the traditional ELISA, this method gave a 10fold better sensitivity in βBGT detection. This strategy also gave a 4fold better sensitivity comparing with the MAIA based on enzyme labeled monoclonal antibody (mcAb). Due to low detection limit, acceptable reproducibility and high specificity, this method holds great promise in toxin trace detection.
Keywords Enzymelabeled phage displayed antibody; Magnetic affinity immunoassay; βBungarotoxin
(Received 4 November 2013; accepted 21 February 2014)
徐志凱. 實(shí)用單克隆抗體技術(shù). 西安: 陜西科學(xué)技術(shù)出版社, 1992: 42-50
17 Le V D, Selvanayagam Z E, Gopalakrishnakone P, Eng K H. Journal of Immunological Methods, 2002, 260(12): 125-136
Magnetic Affinity Immunoassay Based EnzymeLabeled
Phage Displayed Antibody
MU XiHui, TONG ZhaoYang*, HUANG QiBin, LIU Bing, LIU ZhiWei, HAO LanQun, ZHANG JinPing
(Research Institute of Chemical Defence, State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China)
Abstract A new magnetic affinity immunoassay (MAIA) strategy based on enzymelabeled phage displayed antibody was developed. The assay consisted of a sandwich format in which immobilized polyclonal antibody (pcAb) on magnetic microparticle was used for capture probe, and enzymelabeled phage displayed antibody for specific detection probe to increase enzyme amount and enhance detection signal. By the proposed method, βbungarotoxin (βBGT) was successfully detected. A linear relationship between absorbance value and the concentration of βBGT in the range of 0.016-62.5 μg/L was obtained. The linear regression equation was Y=0.641X+1.355 (R=0.9925, n=13, p<0.0001)with a detection limit of 0.016 μg/L. In comparison with the traditional ELISA, this method gave a 10fold better sensitivity in βBGT detection. This strategy also gave a 4fold better sensitivity comparing with the MAIA based on enzyme labeled monoclonal antibody (mcAb). Due to low detection limit, acceptable reproducibility and high specificity, this method holds great promise in toxin trace detection.
Keywords Enzymelabeled phage displayed antibody; Magnetic affinity immunoassay; βBungarotoxin
(Received 4 November 2013; accepted 21 February 2014)