張琳葉 黎鉉海 孫 勇 黃雪春 劉曉彬 楊景芳
(廣西大學(xué)化學(xué)化工學(xué)院,廣西 南寧 530004)
含富銦鐵酸鋅鋅浸渣中銦的微波強(qiáng)化酸浸
張琳葉 黎鉉海 孫 勇 黃雪春 劉曉彬 楊景芳
(廣西大學(xué)化學(xué)化工學(xué)院,廣西 南寧 530004)
常規(guī)酸浸很難高效浸出富銦鐵酸鋅中的銦,為了探索提高銦浸出率的低耗、高效工藝,以廣西柳州鋅品廠含富銦鐵酸鋅的鋅浸渣為對(duì)象,進(jìn)行了微波助浸工藝及工藝參數(shù)研究。結(jié)果表明:微波直接酸浸工藝具有簡(jiǎn)單、高效的特點(diǎn),其銦浸出率明顯高于常規(guī)酸浸和微波預(yù)處理+常規(guī)酸浸工藝,與微波預(yù)處理+微波酸浸工藝的銦浸出率十分接近;攪拌速度、硫酸初始濃度、液固比、浸出溫度、浸出時(shí)間對(duì)銦浸出率均有顯著影響;在攪拌速度為550 r/min、硫酸初始濃度為1.5 mol/L、液固比為10 mL/g、浸出溫度為75 ℃、浸出時(shí)間為90 min情況下,對(duì)鋅浸渣進(jìn)行微波直接酸浸銦,銦浸出率可達(dá)77.0%,較常規(guī)酸浸銦浸出率高19.9個(gè)百分點(diǎn)。
銦 富銦鐵酸鋅 鋅浸渣 酸浸 微波 浸出率
銦因具有十分獨(dú)特的物理化學(xué)性質(zhì)而被廣泛應(yīng)用于醫(yī)藥衛(wèi)生、電子、光電、計(jì)算機(jī)、太陽(yáng)能電池、國(guó)防與核工業(yè)等高科技領(lǐng)域,且在這些領(lǐng)域具有不可替代的作用[1-6]。
屬于稀散金屬的銦,獨(dú)立礦物十分罕見,一般以類質(zhì)同象形式存在于其他金屬礦物中[7-8],以固溶體形式伴生于閃鋅礦中的銦約占銦總儲(chǔ)量的70%~75%[9-12],因此,強(qiáng)化鋅資源中銦的回收就成為獲取國(guó)民經(jīng)濟(jì)建設(shè)所需銦的最主要手段[10]。
硫化鋅精礦提鋅主要采用濕法冶金工藝,這是目前世界上80%以上鋅的來(lái)源[13]。濕法煉鋅過程中會(huì)產(chǎn)生大量的固體廢棄物——鋅浸渣,其中的主要含鋅礦物是鐵酸鋅,以類質(zhì)同象形式存在的銦在浸鋅過程中大量富集于鐵酸鋅晶格中,形成富銦鐵酸鋅。這些富銦鐵酸鋅物性類似于鐵酸鋅,普通酸浸效果較差[14-15],要高效浸出其中的銦,需探索新的強(qiáng)化浸出技術(shù)。
微波加熱相對(duì)于傳統(tǒng)加熱,既有獨(dú)特的內(nèi)部加熱、快速直接加熱和選擇性加熱等優(yōu)點(diǎn),其非熱效應(yīng)又有別于傳統(tǒng)加熱。因此,微波加熱在磨礦、預(yù)處理、預(yù)還原、干燥、焙燒等方面有著廣泛的應(yīng)用和發(fā)展?jié)摿?,在液固反?yīng)浸取金屬方面近年也取得了一些突破[16]:W.A.Ding[17]對(duì)以輝銅礦和黃銅礦為主要成分的硫化銅精礦進(jìn)行了微波輔助三氯化鐵酸浸研究,銅回收率達(dá)到99%以上;H.J.Huang等[18]采用微波預(yù)氧化—氰化鈉浸出工藝處理難選金礦,金的浸出率較常規(guī)氰化鈉浸出率高30個(gè)百分點(diǎn)以上;華一新等[19-20]用微波加熱代替?zhèn)鹘y(tǒng)加熱處理氧化鎳礦,發(fā)現(xiàn)微波加熱顯著提高了Ni的后續(xù)浸出率;對(duì)微波加熱MnO2分解制備Mn3O4反應(yīng)的研究也發(fā)現(xiàn),微波能夠顯著地提高生成Mn3O4的反應(yīng)速率??梢娢⒉A(yù)處理技術(shù)是濕法冶金領(lǐng)域很有發(fā)展?jié)摿Φ囊豁?xiàng)新技術(shù),特別在低品位難選礦物處理方面前景尤其廣闊。張琳葉等[21-22]以人工合成的高純富銦鐵酸鋅為原料,進(jìn)行了微波輔助硫酸浸出行為及其穩(wěn)態(tài)動(dòng)力學(xué)研究,發(fā)現(xiàn)微波輻射對(duì)富銦鐵酸鋅中的銦具有明顯的強(qiáng)化浸出效果,但缺乏對(duì)工業(yè)含富銦鐵酸鋅的鋅浸渣的微波強(qiáng)化浸銦研究。基于此,擬用微波輻射的方法對(duì)工業(yè)含富銦鐵酸鋅的鋅浸渣中的銦進(jìn)行強(qiáng)化浸出試驗(yàn),以探索提高富銦鐵酸鋅中銦浸出率的新途徑。
1.1 試驗(yàn)原料
從廣西柳州鋅品廠取得浸鋅廢渣,粒度為0.15~0 mm,為了客觀考察微波輻射對(duì)浸渣中難溶組分——富銦鐵酸鋅中銦的強(qiáng)化浸出效果,試驗(yàn)前先將浸鋅廢渣用稀硫酸充分洗滌,以去除浸鋅廢渣中殘留的微量易溶組分ZnSO4、In(OH)3等,洗滌后過濾、烘干,即得試驗(yàn)所用鋅浸渣,其主要化學(xué)成分見表1。
表1 鋅浸渣主要化學(xué)成分分析結(jié)果Table 1 The main chemical composition analysis of zinc leaching residues %
1.2 試驗(yàn)方法
將600 mL一定濃度的硫酸溶液加入到1 000 mL的三口燒瓶中,將三口燒瓶置于微波反應(yīng)器內(nèi),啟動(dòng)微波反應(yīng)器,同時(shí)開動(dòng)攪拌和冷凝,當(dāng)微波體系溫度恒定在預(yù)先設(shè)定的溫度后,迅速將一定質(zhì)量鋅浸渣樣品加入三口燒瓶中。一定時(shí)間間隔后用帶過濾裝置的取樣器進(jìn)行取樣,并用JP-303型極譜分析儀測(cè)定浸出試液中銦濃度,并計(jì)算銦浸出率。
2.1 鋅浸渣酸浸工藝的確定
為了探討微波不同強(qiáng)化方式在鋅浸渣浸銦效果上的優(yōu)劣,在固定攪拌速度為550 r/min、硫酸初始濃度為1.5 mol/L、液固比為10 mL/g、體系溫度為75 ℃的情況下,分別進(jìn)行了常規(guī)酸浸、 微波預(yù)處理+常規(guī)酸浸、微波預(yù)處理+微波酸浸、微波酸浸效果比較試驗(yàn)。其中常規(guī)酸浸為傳統(tǒng)水浴加熱酸浸,微波每次僅預(yù)處理10 g鋅浸渣固體樣品,功率為500 W、時(shí)間為5 min,試驗(yàn)結(jié)果見圖1。
圖1 不同浸出工藝對(duì)銦浸出率的影響Fig.1 Effect of different leaching process on leaching ratio of indium■—微波酸浸;●—微波預(yù)處理+常規(guī)酸浸; ▲—微波預(yù)處理+微波酸浸;▼—常規(guī)酸浸
由圖1可知,微波酸浸、微波預(yù)處理+微波酸浸、微波預(yù)處理+常規(guī)酸浸3種工藝的銦浸出率均高于常規(guī)酸浸的浸出率,且均能在較短的時(shí)間內(nèi)達(dá)到很高的浸出率,表明微波對(duì)鋅浸渣中難浸銦組分有強(qiáng)化浸出效果;微波酸浸和微波預(yù)處理+微波酸浸工藝的浸出率在試驗(yàn)浸出時(shí)間范圍內(nèi)始終隨浸出時(shí)間的延長(zhǎng)而明顯上升,而常規(guī)酸浸在浸出時(shí)間為60 min時(shí)基本達(dá)到浸出平衡;微波預(yù)處理+微波酸浸、微波酸浸、微波預(yù)處理+常規(guī)酸浸工藝20 min的浸出率高達(dá)64.3%、62.9%、57.1%,而常規(guī)酸浸工藝20 min的浸出率則僅為42.7%,即使將常規(guī)酸浸時(shí)間延長(zhǎng)至90 min,其浸出率也僅為57.1%,達(dá)到這一浸出率微波酸浸和微波預(yù)處理+微波酸浸工藝僅需10 min。
基于微波酸浸工藝的浸出率與微波預(yù)處理+微波酸浸工藝基本相當(dāng),因此,后續(xù)采用微波直接酸浸工藝進(jìn)行試驗(yàn)。
2.2 鋅浸渣微波酸浸試驗(yàn)
2.2.1 攪拌速度對(duì)銦浸出率的影響
攪拌速度對(duì)銦浸出率影響試驗(yàn)固定硫酸初始濃度為1.5 mol/L、液固比為10 mL/g、浸出溫度為75 ℃、反應(yīng)時(shí)間為90 min,試驗(yàn)結(jié)果如圖2。
圖2 攪拌速度對(duì)銦浸出率的影響Fig.2 Effect of stirring speed on leaching ratio of indium
由圖2可知,當(dāng)攪拌速度小于550 r/min時(shí),銦浸出率隨攪拌速度的提高而顯著上升;當(dāng)攪拌速度大于550 r/min后,銦浸出率幾乎不隨攪拌速度的變化而變化。因此,確定浸出試驗(yàn)的攪拌速度為550 r/min。
2.2.2 硫酸初始濃度對(duì)銦浸出率的影響
硫酸初始濃度對(duì)銦浸出率影響試驗(yàn)固定攪拌速度為550 r/min、液固比為10 mL/g、浸出溫度為75 ℃、反應(yīng)時(shí)間為90 min,試驗(yàn)結(jié)果如圖3。
圖3 硫酸初始濃度對(duì)銦浸出率的影響Fig.3 Effect of initial concentration of sulfuric acid on leaching ratio of indium
由圖3可知,在硫酸初始濃度較低時(shí),銦浸出率隨硫酸初始濃度的提高而明顯上升,當(dāng)硫酸初始濃度高于1.5 mol/L后,銦浸出率上升緩慢。因此,確定浸出試驗(yàn)的硫酸初始濃度為1.5 mol/L。
2.2.3 液固比對(duì)銦浸出率的影響
液固比對(duì)銦浸出率影響試驗(yàn)固定攪拌速度為550 r/min、硫酸初始濃度為1.5 mol/L、浸出溫度為75 ℃、反應(yīng)時(shí)間為90 min,試驗(yàn)結(jié)果如圖4。
圖4 液固比對(duì)銦浸出率的影響Fig.4 Effect of ratio of liquid to solid on leaching ratio of indium
由圖4可知,當(dāng)液固比較低時(shí),隨液固比的增大,銦浸出率明顯上升;但當(dāng)液固比大于10后,銦浸出率幾乎不受液固比變化的影響。因此,確定浸出試驗(yàn)的液固比為10 mL/g。
2.2.4 浸出溫度對(duì)銦浸出率的影響
浸出溫度對(duì)銦浸出率影響試驗(yàn)固定攪拌速度為550 r/min、硫酸初始濃度為1.5 mol/L、液固比為10 mL/g、反應(yīng)時(shí)間為90 min,試驗(yàn)結(jié)果如圖5。
圖5 浸出溫度對(duì)銦浸出率的影響Fig.5 Effect of reaction temperature on leaching ratio of indium
由圖5可知,隨著浸出溫度的提高,銦浸出率上升,當(dāng)浸出溫度超過75 ℃以后,銦浸出率上升趨緩。因此,確定浸出溫度為75 ℃。
2.2.5 浸出時(shí)間對(duì)銦浸出率的影響
浸出時(shí)間對(duì)銦浸出率影響試驗(yàn)固定攪拌速度為550 r/min、硫酸初始濃度為1.5 mol/L、液固比為10 mL/g、浸出溫度為75 ℃,試驗(yàn)結(jié)果如圖6。
圖6 浸出時(shí)間對(duì)銦浸出率的影響Fig.6 Effect of reaction time on leaching efficiency of indium
由圖6可知,在浸出的最初10 min內(nèi),銦浸出率急速上升;隨著浸出時(shí)間的延長(zhǎng),銦浸出率升速明顯趨緩,至90 min后,銦浸出率上升十分緩慢。因此,確定浸出時(shí)間為90 min,對(duì)應(yīng)的浸出率為77.0%。
(1)采用微波直接酸浸工藝處理廣西柳州鋅品廠含富銦鐵酸鋅的鋅浸渣,在攪拌速度為550 r/min、硫酸初始濃度為1.5 mol/L、液固比為10、浸出溫度為75 ℃、浸出時(shí)間為90 min情況下,銦浸出率可達(dá)77.0%,較常規(guī)酸浸銦浸出率高19.9個(gè)百分點(diǎn)。
(2) 對(duì)含富銦鐵酸鋅的鋅浸渣采用微波直接酸浸工藝,有助于解決常規(guī)酸浸對(duì)浸出溫度、硫酸濃度、浸出時(shí)間的過度依賴問題,為高效、低耗浸出貧銦物料——鋅浸渣中的銦提供了新的工藝路線。
[1] Alfantazi A M,Moskalyk R R.Processing of indium:a review[J].Minerals Engineering,2003,16(8):687-694.
[2] Adhikari B B,Gurung M,Kawakita H,et al.Solid phase extraction,preconcentration and separation of indium with methylene cross-linked calix[4]-and calix[6] arene carboxylic acid resins[J].Chemical Engineering Science,2012,78(5):144-154.
[3] Ban T,Ohya Y,Takahashi Y.Tin doped indium oxide thin films:electrical properties[J].Journal of Applied Physics,1998,83(5):2631-2645.
[4] Yang S B,Kong B S,Jung D H,et al.Recent advances in hybrids of carbon nanotube network films and nanomaterials for their potential applications as transparent conducting films[J].Nanoscale,2011(3):1361-1373.
[5] Liu H Y,Avrutin V,Izyumskaya N,et al.Transparent cconducting oxides for electrode applications in light emitting and absorbing devices[J].Superlattices Microstruct,2010,48(5):458-484.
[6] Rao B P,Rao K H.Distribution of In3+ions in indium-substituted Ni-Zn-Ti ferrites[J].Journal of Magnetism and Magnetic Materials,2005,292:44-48.
[7] 李曉峰,楊 鋒,陳振宇,等.廣西大廠錫礦銦的地球化學(xué)特征及成因機(jī)制初探[J].礦床地質(zhì),2010,29(5):903-914. Li Xiaofeng,Yang Feng,Chen Zhenyu,et al.A tentative discussion on geochemistry and genesis of indium in Dachang tin ore district,Guangxi[J].Mineral Deposits,2010,29(5):903-914.
[8] 朱笑青,張 乾,何玉良,等.富銦及貧銦礦床成礦流體中銦與錫鉛鋅的關(guān)系研究[J].地球化學(xué),2006,35(1):6-12. Zhu Xiaoqing,Zhang Qian,He Yuliang,et al.Relationships between indium and tin,zinc and lead in ore-forming fluid from the indium-rich and poor deposits in China[J].Geochimica,2006,35(1):6-12.
[9] Tong X,Song S X,He J,et al.Flotation of indium-beard marmatite from multi-metallic ore[J].Rare Metals,2008,27(2):107-111.
[10] Sinclair W D,Kooiman G J A,Martin D A,et al.Geology,geochemistry and mineralogy of indium resources at mount pleasant,New Brunswick,Canada[J].Ore Geology Reviews,2006(1):123-145.
[11] Murao S,Deb M,F(xiàn)uruno M.Mineralogical evolution of indium in high grade tin-polymetallic hydrothermal veins:a comparative study from Tosham,Haryana State,India and Goka,Naegi District,Japan[J].Ore Geology Reviews,2008(3/4):490-504.
[12] Seifert T,Sandmann D.Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits,implications for host minerals from the Freiberg District,Eastern Erzgebirge,Germany[J].Ore Geology Reviews,2006(1):1-13.
[13] Balarini J C,Polli L D O,Miranda T L S,et al.Importance of roasted sulphide concentrates characterization in the hydrometallurgical extraction of zinc [J].Minerals Engineering,2008,21(1):100-110.
[14] Klimkiewicz R,Wolska J,Przepiera A,et al.The zinc ferrite obtained by oxidative precipitation method as a catalyst in N-butanol conversion [J].Materials Research Bulletin,2009,44(1):15-20.
[15] Nachbaur V,Tauvel G,Verdier T,et al.Mecano synthesis of partially inverted zinc ferrite[J].Journal of Alloys and Compounds,2009,473(1/2):303-307.
[16] 蔡衛(wèi)權(quán),李會(huì)泉,張 懿.微波技術(shù)在冶金中的應(yīng)用對(duì)策[J].過程工程學(xué)報(bào),2005,5(2):228-232. Cai Weiquan,Li Huiquan,Zhang Yi.Recent development of microwave radiation application in metallurgical processes[J].The Chinese Journal of Process Engineering,2005,5(2):228-232.
[17] Ding W A.Leaching behaviour of complex sulphide concentrate with ferric chloride by microwave irradiation[J].Rare Metals,1997,16(2):153-155.
[18] Huang H J,Rowson N A.Application of microwave pre-oxidation in improving gold recovery of a refractory gold ore[J].Rare Metals,2000,19(3):161-171.
[19] 華一新,譚春娥,謝愛軍,等.微波加熱低品位氧化鎳礦石的FeCl3氯化[J].有色金屬,2000,52(1):59-61. Hua Yixin,Tan Chun'e,Xie Aijun,et al.Microwave-aided chloridizing of nichel-bearing garnierite ore with FeCl3[J].Nonferrous Metals,2000,52(1):59-61.
[20] 華一新,劉純鵬,樂 莉.微波促進(jìn)MnO2分解的動(dòng)力學(xué)[J].中國(guó)有色金屬學(xué)報(bào),1998,8(3):497-501. Hua Yixin,Liu Chunpeng,Yue Li.Micriwave-assisted decomposition kinetics of MnO2[J].The Chinese Journal of Nonferrous Metals,1998,8(3):497-501.
[21] Zhang L Y,Mo J M,Li X H,et al.A kinetic study of indium leaching from indium-bearing zinc ferrite under microwave heating[J].Metallurgical and Materials,2013,44:1329-1336.
[22] 張琳葉,莫家梅,黎鉉海,等.合成富銦鐵酸鋅中銦的硫酸浸出行為研究[J].金屬礦山,2013(11):84-87. Zhang Linye,Mo Jiamei,Li Xuanhai,et al.Study on the leaching behaviror of sulphuric acid of indium from synthesis indium-bearing zinc ferrite[J].Metal Mine,2013(11):84-87.
(責(zé)任編輯 羅主平)
Microwave Enhanced Acid Leaching of Indium from Zinc Leaching Residues Containing Indium-bearing Zinc Ferrite
Zhang Linye Li Xuanhai Sun Yong Huang Xuechun Liu Xiaobin Yang Jingfang
(SchoolofChemistryandChemicalEngineering,GuangxiUniversity,Nanning530004,China)
It is very difficult to realize indium leaching from indium-bearing zinc ferrite by the conventional acid leaching process.In order to find a process which could increase the indium leaching ratio with low energy consumption and high efficiency,the microwave leaching process and its parameters were investigated by using zinc leaching residues containing indium-bearing zinc ferrite fron Liuzhou Zinc Product Mill in Guangxi as research objective.The results showed that the microwave acid leaching was a simple and high efficient process,the indium leaching ratio of which was very close to that of microwave pretreatment + microwave leaching process,and significantly higher than that of conventional leaching and microwave pretreatment + conventional leaching process.The indium leaching ratio by microwave leaching process was significantly influenced by stirring speed,initial concentration of sulfuric acid,the ratio of liquid to solid,reaction temperature and reaction time.Indium leaching enhanced by microwave from zinc leaching residues ratio could reached to 77.0%,under the conditions of 550 r/min stirring speed,sulfuric acid initial concentration of 1.5 mol/L,ratio of liquid to solid 10 mL/g,reaction temperature of 75 ℃,reaction time for 90 min,the leaching ratio was 19.9 percentage points higher than that of the conventional leaching process.
Indium,Indium-bearing zinc ferrite,Zinc leaching residues,Acid leaching,Microwave,Leaching rate
2013-11-22
廣西自然科學(xué)基金項(xiàng)目(編號(hào):2012GXNSFAA053210),廣西大學(xué)科研基金項(xiàng)目(編號(hào):XJZ120273),廣西大學(xué)實(shí)驗(yàn)室建設(shè)與實(shí)驗(yàn)教學(xué)改革項(xiàng)目(編號(hào):20120329),廣西大學(xué)“大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃”自治區(qū)級(jí)創(chuàng)新訓(xùn)練項(xiàng)目(編號(hào):1301045),廣西大學(xué)大學(xué)生實(shí)驗(yàn)技能和科技創(chuàng)新能力訓(xùn)練項(xiàng)目(編號(hào):SYJN20120337)。
張琳葉(1981—),女,講師,博士研究生。
TD925.6
A
1001-1250(2014)-03-161-04