高采文 朱曉琳 曾林蕊
摘 要 主要考慮了生長曲線模型中的參數(shù)矩陣的估計. 首先基于Potthoff-Roy變換后的生長曲線模型, 采用不同的懲罰函數(shù):Hard Thresholding函數(shù), LASSO, ENET, 改進LASSO, SACD給出了參數(shù)矩陣的懲罰最小二乘估計.接著對不做變換的生長曲線模型, 直接定義其懲罰最小二乘估計, 基于Nelder-Mead法給出了估計的數(shù)值解算法. 最后對提出的參數(shù)估計方法進行了數(shù)據(jù)模擬. 結果表明自適應LASSO在估計方面效果比較好.
關鍵詞 懲罰最小二乘估計;Hard Thresholding函數(shù);SCAD 懲罰函數(shù);改進LASSO
中圖分類號 O212.1 文獻標識碼 A
參考文獻
[1] R F POTTOFF,S N ROY. A generalized multivariate analysis of variance model useful especially for growth curve problems[J]. Biometrika, 1964, 51(3):313-326.
[2] C L JACK. Tests and model selection for the general growth curve model[J].Biometrics, 1991,47(1):147-159.
[3] A ANTONIADIS. Wavelets in statistics: a review[J]. Journal of the Italian Statistical Association, 1997,6(2): 97-144.
[4] A E HOERL,R W KENNARD. Ridge regression: bias estimation for nonorthogonal problems[J]. Technometrics, 1970, 12(1): 55-67.
[5] R TIBSHIRANI. Regression shrinkage and selection via the Lasso[J]. Journal of the Royal Statistical Society, 1996,58(1): 267-288.
[6] H ZOU, T HASTIE. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society, 2005, 67(2): 301-320.
[7] Hui ZOU. The adaptive Lasso and its oracle properties[J].Journal of the American Statistical Association, 2006, 476 (101):1419-1426.
[8] Jianqing FAN, Runze LI.Variable selection via nonconcave penalized likeli-hood and its oracle properties[J]. Journal of the American Statistical Association,2001,456 (96):1348-1360.
[9] 劉愛義.生長曲線模型的協(xié)變量選擇與參數(shù)估計[J].數(shù)學學報, 1994, 37(3):362-372.endprint
摘 要 主要考慮了生長曲線模型中的參數(shù)矩陣的估計. 首先基于Potthoff-Roy變換后的生長曲線模型, 采用不同的懲罰函數(shù):Hard Thresholding函數(shù), LASSO, ENET, 改進LASSO, SACD給出了參數(shù)矩陣的懲罰最小二乘估計.接著對不做變換的生長曲線模型, 直接定義其懲罰最小二乘估計, 基于Nelder-Mead法給出了估計的數(shù)值解算法. 最后對提出的參數(shù)估計方法進行了數(shù)據(jù)模擬. 結果表明自適應LASSO在估計方面效果比較好.
關鍵詞 懲罰最小二乘估計;Hard Thresholding函數(shù);SCAD 懲罰函數(shù);改進LASSO
中圖分類號 O212.1 文獻標識碼 A
參考文獻
[1] R F POTTOFF,S N ROY. A generalized multivariate analysis of variance model useful especially for growth curve problems[J]. Biometrika, 1964, 51(3):313-326.
[2] C L JACK. Tests and model selection for the general growth curve model[J].Biometrics, 1991,47(1):147-159.
[3] A ANTONIADIS. Wavelets in statistics: a review[J]. Journal of the Italian Statistical Association, 1997,6(2): 97-144.
[4] A E HOERL,R W KENNARD. Ridge regression: bias estimation for nonorthogonal problems[J]. Technometrics, 1970, 12(1): 55-67.
[5] R TIBSHIRANI. Regression shrinkage and selection via the Lasso[J]. Journal of the Royal Statistical Society, 1996,58(1): 267-288.
[6] H ZOU, T HASTIE. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society, 2005, 67(2): 301-320.
[7] Hui ZOU. The adaptive Lasso and its oracle properties[J].Journal of the American Statistical Association, 2006, 476 (101):1419-1426.
[8] Jianqing FAN, Runze LI.Variable selection via nonconcave penalized likeli-hood and its oracle properties[J]. Journal of the American Statistical Association,2001,456 (96):1348-1360.
[9] 劉愛義.生長曲線模型的協(xié)變量選擇與參數(shù)估計[J].數(shù)學學報, 1994, 37(3):362-372.endprint
摘 要 主要考慮了生長曲線模型中的參數(shù)矩陣的估計. 首先基于Potthoff-Roy變換后的生長曲線模型, 采用不同的懲罰函數(shù):Hard Thresholding函數(shù), LASSO, ENET, 改進LASSO, SACD給出了參數(shù)矩陣的懲罰最小二乘估計.接著對不做變換的生長曲線模型, 直接定義其懲罰最小二乘估計, 基于Nelder-Mead法給出了估計的數(shù)值解算法. 最后對提出的參數(shù)估計方法進行了數(shù)據(jù)模擬. 結果表明自適應LASSO在估計方面效果比較好.
關鍵詞 懲罰最小二乘估計;Hard Thresholding函數(shù);SCAD 懲罰函數(shù);改進LASSO
中圖分類號 O212.1 文獻標識碼 A
參考文獻
[1] R F POTTOFF,S N ROY. A generalized multivariate analysis of variance model useful especially for growth curve problems[J]. Biometrika, 1964, 51(3):313-326.
[2] C L JACK. Tests and model selection for the general growth curve model[J].Biometrics, 1991,47(1):147-159.
[3] A ANTONIADIS. Wavelets in statistics: a review[J]. Journal of the Italian Statistical Association, 1997,6(2): 97-144.
[4] A E HOERL,R W KENNARD. Ridge regression: bias estimation for nonorthogonal problems[J]. Technometrics, 1970, 12(1): 55-67.
[5] R TIBSHIRANI. Regression shrinkage and selection via the Lasso[J]. Journal of the Royal Statistical Society, 1996,58(1): 267-288.
[6] H ZOU, T HASTIE. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society, 2005, 67(2): 301-320.
[7] Hui ZOU. The adaptive Lasso and its oracle properties[J].Journal of the American Statistical Association, 2006, 476 (101):1419-1426.
[8] Jianqing FAN, Runze LI.Variable selection via nonconcave penalized likeli-hood and its oracle properties[J]. Journal of the American Statistical Association,2001,456 (96):1348-1360.
[9] 劉愛義.生長曲線模型的協(xié)變量選擇與參數(shù)估計[J].數(shù)學學報, 1994, 37(3):362-372.endprint