陳永正,崔寶東,白 玫,,袁偉成
(1.遵義醫(yī)學(xué)院 藥學(xué)院,貴州 遵義 563000;2.中國科學(xué)院 成都有機化學(xué)研究所,四川 成都 610041;3.中國科學(xué)院大學(xué),北京 100039)
·研究簡報·
手性螺[(吡唑啉-5-酮)-4,4′-環(huán)己酮]的合成*
陳永正1,崔寶東2,3,白 玫1,2,3,袁偉成2
(1.遵義醫(yī)學(xué)院 藥學(xué)院,貴州 遵義 563000;2.中國科學(xué)院 成都有機化學(xué)研究所,四川 成都 610041;3.中國科學(xué)院大學(xué),北京 100039)
以9-氨基-9-脫氧奎尼丁為催化劑,三氟乙酸為添加劑,乙腈為溶劑,吡唑啉-5-酮與1,5-二取代戊二烯-3-酮經(jīng)不對稱雙Michael加成反應(yīng)合成了一系列手性的螺[(吡唑啉-5-酮)-4,4′-環(huán)己酮],收率42%~71%,72%ee~97%ee,其結(jié)構(gòu)經(jīng)1H NMR,13C NMR和HR-ESI-MS確證。
Michael加成;有機催化;螺[(吡唑啉-5-酮)-4,4′-環(huán)己酮]吡唑啉-5-酮;二烯酮;不對稱合成
近年來,含雜環(huán)的螺環(huán)環(huán)己酮類化合物的合成倍受關(guān)注[1-2]。1-苯基-3-甲基-5-吡唑啉酮(2)是一類重要的雜環(huán)化合物,具有獨特的生物與藥理活性[3],但用于催化不對稱Michael加成反應(yīng)較少[4-5,8]。二烯酮作為受體參與的不對稱雙Michael加成反應(yīng)已有文獻報道[6-8]。
我們預(yù)測2能夠與二烯酮發(fā)生雙Michael加成反應(yīng),得到同時含有環(huán)己酮與吡唑啉酮結(jié)構(gòu)單元的螺環(huán)化合物。為此,本文以9-氨基-9-脫氧奎尼丁(Ⅰ,Chart 1)為催化劑,三氟乙酸(TFA)為添加劑,在乙腈中成功實現(xiàn)了2與1,5-二取代戊二烯-3-酮(1a~1j)的不對稱雙Michael加成反應(yīng),構(gòu)建了一系列手性的螺[(吡唑啉-5-酮)-4,4′-環(huán)己酮]化合物(3a~3j,Scheme 1),收率42%~71%,72%ee~97%ee,其結(jié)構(gòu)經(jīng)1H NMR,13C NMR和HR-ESI-MS確證。
表1 3a~3j的實驗結(jié)果Table1 Experimental results of 3a~3j
1.1 儀器與試劑
Bruker-300型核磁共振儀(CDCl3為溶劑,TMS為內(nèi)標);BioTOF Q型質(zhì)譜分析儀;島津高效液相色譜儀[HPLC:Chiralpak OD-H,V(異丙醇)∶V(正己烷)=30∶70,流速1.0mL·min-1,λ=254nm]。
所用試劑均為分析純。
1.23a~3j的合成通法
向硬質(zhì)反應(yīng)管中加入10.18mmol(1.2eq.),Ⅰ.20mol%(0.2eq.),TFA 50mol%(0.5eq.)及乙腈1mL[3b用THF(1mL)為溶劑,3j用1,2-二氯乙烷(1mL)作溶劑],攪拌下于室溫反應(yīng)15min。加入226.1mg(0.15mmol),于室溫反應(yīng)96h。真空蒸出溶劑后經(jīng)硅膠柱層析[梯度洗脫劑:V(乙酸乙酯)∶V(石油醚)=1∶10~1∶5]純化得棕紅色油狀物3a~3d,3f~3j和白色固體3e。
3a{4-甲基-2,6,10-三苯基-2,3-二氮雜螺[4.5]癸-3-烯-1,8-二酮}:1H NMRδ:1.67(s,3H),2.65(dd,J=2.7Hz,15.9Hz,1H),2.98(dd,J=9.6Hz,16.2Hz,1H),3.38(dd,J=5.1Hz,16.5Hz,1H),3.66(dd,J=3.0Hz,14.4Hz,1H),3.83~3.93(m,2H),7.13~7.20(m,8H),7.29~7.34(m,5H),7.47(d,J=8.1Hz,2H);13C NMR(75MHz,下同)δ:15.6,40.5,41.2,42.3,44.1,61.7,119.7,125.5,127.5,127.6,127.9,128.0,128.5,128.6,128.9,136.5,137.1,138.4,160.5,174.7,209.2;HR-ESI-MSm/z:Calcd for C27H24N2O2Na{[M+Na]+}431.1754,found 431.1736。
3b:1H NMRδ:1.63(s,3H),2.20(s,3H),2.33(s,3H),2.62(dd,J=3.0Hz,15.9Hz,1H),2.91(dd,J=8.7Hz,16.2Hz,1H),3.40(dd,J=5.4Hz,16.2Hz,1H),3.64(dd,J=3.0Hz,14.1Hz,1H),3.80~3.90(m,2H),6.98~7.05(m,6H),7.11(d,J= 8.1Hz,2H),7.18(d,J=7.5Hz,1H),7.31~7.36(m,2H),7.51~7.54(m,2H);13C NMRδ:15.7,20.9,21.0,40.7,41.6,42.1,44.1,61.8,119.8,125.5,127.5,127.6,128.7,129.3,129.5,133.7,135.6,137.2,137.7,137.8,160.9,175.0,209.6;HR-ESI-MSm/z:Calcd for C29H28N2O2Na{[M+Na]+}459.2043,found 459.2051。
3c:1H NMRδ:1.67(s,3H),2.60(dd,J=3.0Hz,15.9Hz,1H),2.90(dd,J=9.0Hz,16.2Hz,1H),3.36(dd,J=5.1Hz,16.2Hz,1H),3.61(dd,J=3.0Hz,14.4Hz,1H),3.67(s,3H),3.78(s,3H),3.82~3.88(m,2H),6.71(d,J=8.7Hz,2H),6.82(d,J=8.7Hz,2H),7.02~7.07(m,4H),7.16~7.18(m,1H),7.30~7.35(m,2H),7.51~7.54(m,2H);13C NMRδ:15.7,40.8,41.6,41.7,43.6,55.1,55.2,62.0,113.9,114.2,119.7,125.5,128.6,128.7,130.6,137.2,159.1,159.2,160.9,175.0,209.5;HR-ESI-MSm/z:Calcd for C29H28N2O4Na{[M+Na]+}491.1941,found 491.1942。
3d:1H NMRδ:1.67(s,3H),2.64(dd,J=2.1Hz,15.9Hz,1H),2.93(dd,J=9.0Hz,16.2Hz,1H),3.38(dd,J=5.1Hz,16.2Hz,1H),3.62(m,3H),3.67(m,3H),3.77~3.89(m,3H),6.63(s,1H),6.68~6.73(m,4H),6.83(d,J=8.1Hz,1H),7.07~7.23(m,3H),7.30~7.35(m,2H),7.56(d,J=7.8Hz,2H);13C NMRδ:15.7,40.6,41.4,42.6,44.4,55.0,55.1,61.6,113.2,113.4,113.6,119.6,119.8,120.0,125.5,128.7,129.6,129.9,137.3,138.2,140.1,159.6,159.9,160.7,174.9,209.1;HR-ESI-MSm/z:Calcd for C29H28N2O4Na{[M+Na]+}491.1941,found 491.1936。
3e:1H NMRδ:1.39(s,3H),2.42~2.52(m,1H),3.03(dd,J=9.0Hz,15.3Hz,1H),3.30(dd,J=4.5Hz,15.6Hz,1H),3.52(s,3H),3.69(s,3H),3.75~3.85(m,1H),4.11~4.15(m,1H),4.48~4.56(m,1H),6.72(d,J=7.5Hz,2H),6.79(d,J=7.8Hz,1H),6.97~7.14(m,3H),7.21~7.33(m,5H),7.71(d,J=7.5Hz,2H);13C NMRδ:14.9,33.7,37.9,40.9,54.5,54.9,60.2,110.1,110.2,118.7,120.3,120.6,124.6,125.5,127.6,128.0,128.4,128.7,128.9,137.7,155.9,157.1,161.8,175.6;HR-ESI-MSm/z:Calcd for C29H28N2O4Na{[M+Na]+}491.1941,found 491.1942。
3f:1H NMRδ:1.76(s,3H),2.63(dd,J=2.7Hz,16.2Hz,1H),2.96(dd,J=10.2Hz,16.5Hz,1H),3.28(dd,J=4.8Hz,16.5Hz,1H),3.59(dd,J=2.7Hz,14.4Hz,1H),3.77~3.87(m,1H),3.89~3.94(m,1H),6.98~7.04(m,2H),7.12~7.15(m,5H),7.19(d,J=7.5Hz,2H),7.24~7.36(m,2H),7.46(d,J=7.5Hz,2H);13C NMRδ:15.7,40.1,40.7,42.0,43.4,61.5,119.9,125.6,125.8,125.9,127.6,128.0,128.3,128.4,128.8,129.9,130.2,134.4,134.9,136.7,138.2,140.1,159.7,174.3,207.9;HR-ESI-MSm/z:Calcd for C27H22N2O2Cl2Na{[M+Na]+}499.0951,found 499.0938。
3g:1H NMRδ:1.75(s,3H),2.63(dd,J=2.4Hz,16.2Hz,1H),2.96(dd,J=10.2Hz,16.5Hz,1H),3.29(dd,J=4.8Hz,16.5Hz,1H),3.57(dd,J=2.7Hz,14.4Hz,1H),3.76~3.86(m,1H),3.87~3.92(m,1H),7.02~7.08(m,3H),7.16~7.21(m,2H),7.31~7.37(m,5H),7.43~7.48(m,3H);13C NMRδ:15.7,40.1,40.7,42.0,43.4,61.5,120.0,122.6,123.1,125.9,126.0,126.3,128.8,130.2,130.5,130.6,130.9,131.3,131.4,136.7,138.4,140.4,159.7,174.3,207.8;HR-ESI-MSm/z:Calcd for C27H22N2O2Br2Na{[M+Na]+}586.9940,found 586.9946。
3h:1H NMRδ:1.77(s,3H),2.64(dd,J=2.7HZ,16.2Hz,1H),2.98(dd,J=10.2Hz,16.5Hz,1H),3.29(dd,J=4.8Hz,16.5Hz,1H),3.63(dd,J=2.7Hz,14.4Hz,1H),3.78~3.88(m,1H),3.91~3.96(m,1H),6.83~6.94(m,5H),6.97~7.03(m,1H),7.17~7.21(m,2H),7.24~7.35(m,3H),7.47(d,J=7.8Hz,2H);13C NMRδ:15.6,40.2,40.8,42.0,43.5,61.6,114.4,114.7,115.0,115.1(d,J=4.3Hz,1C),115.3(d,J=4.7Hz,1C),119.7,123.3(d,J=2.9Hz,1C),123.4(d,J=2.9Hz,1C),125.8,128.8,130.2(d,J=8.3Hz,1C),130.6(d,J=8.3Hz,1C),136.8,138.7(d,J=6.8Hz,1C),140.6(d,J=6.8Hz,1C),159.8,162.5(d,J=245.8Hz,1C),162.8(d,J=246.5Hz,1C),174.3,208.0;HR-ESI-MSm/z:Calcd for C27H22N2O2F2Na{[M+Na]+}467.1542,found 467.1540。
3i:1H NMRδ:1.76(s,3H),2.62(dd,J=2.7Hz,16.2Hz,1H),2.98(dd,J=10.5Hz,16.5Hz,1H),3.28(dd,J=4.8Hz,16.5Hz,1H),3.61(dd,J=2.7Hz,14.4Hz,1H),3.77~3.88(m,1H),3.90~3.95(m,1H),6.87~6.90(m,2H),6.97~7.03(m,2H),7.07~7.17(m,5H),7.30~7.35(m,2H),7.46(d,J=8.4Hz,2H);13C NMRδ:15.7,40.5,41.1,41.6,43.2,62.0,115.5(d,J=21.4Hz,1C),115.9(d,J=21.3Hz,1C),125.8,128.8,129.1(d,J=8.0Hz,1C),129.4(d,J=8.1Hz,1C),132.1(d,J=3.3Hz,1C),134.0(d,J=3.4,Hz,1C),136.9,162.0(d,J=293.2Hz,1C),162.3(d,J=246.4Hz,1C),174.6,208.4;HR-ESI-MSm/z:Calcd for C27H22N2O2F2Na{[M+Na]+}467.1542,found 467.1549。
3j:1H NMRδ:1.67(s,3H),2.73~2.80(m,2H),3.65(dd,J=5.7Hz,15.6Hz,1H),3.76~3.86(m,1H ),4.07~4.17(m,2H),6.83~6.89(m,3H),6.97~6.99(m,1H),7.08(d,J=5.1Hz,1H),7.19~7.25(m,2H),7.34~7.39(m,2H),7.69(d,J=7.8Hz,2H);13C NMRδ:15.3,38.4,40.8,41.9,43.2,61.2,119.6,124.7,125.1,125.5,125.6,126.0,126.9,127.2,128.8,137.3,139.6,141.4,160.7,173.8,207.1;HR-ESI-MSm/z:Calcd for C23H20N2O2S2Na{[M+Na]+}443.0858,found 443.0870。
2.1 底物的適用性
從Scheme 1可見,該反應(yīng)體系適用于芳香環(huán)上含有各種取代基團的二烯酮底物。無論是給電子基團還是吸電子基團取代以及不同位置取代的底物都能很好的與2反應(yīng),得到較好收率與高選擇性的產(chǎn)物3。此外,當二烯酮的芳香環(huán)由苯基取代換為2-噻吩基團取代(2j)時,反應(yīng)也能很好的進行,得到中等收率以及高達82%ee值的螺環(huán)化合物3j。
2.2 反應(yīng)機理
[6],本文提出了合成3的分步反應(yīng)機理(Scheme 2)。首先,在酸性條件下,1a~1j與Ⅰ形成亞胺正離子中間體A,從而增加了1a~1j的親電活性。2在催化劑叔胺部分的作用下失去質(zhì)子并以烯醇負離子的形式與催化劑的叔胺部分形成氫鍵,從而得到中間體B;此時,被活化了的2與1的一個雙鍵發(fā)生第一次Michael加成反應(yīng)生成中間體C;緊接著,在催化劑的促進下,吡唑啉-5-酮負離子與2的另一個雙鍵發(fā)生第二次Michael加成反應(yīng)生成3a~3j。
Scheme 2
以9-氨基-9-脫氧奎尼丁為催化劑,三氟乙酸為添加劑,實現(xiàn)了吡唑啉-5-酮與二烯酮的不對稱雙Michael加成反應(yīng)。該方法適用于含不同取代基團的二烯酮底物,以較好收率、高非對映選擇性以及高對映選擇性的得到螺環(huán)產(chǎn)物,為手性螺[(吡唑啉-5-酮)-4,4′-環(huán)己酮]化合物的合成提供了一種新的方法。
[1] Egle Maria Beccalli,Maria Luisa Gelmi.A new synthetic procedure to spiro[cyclohexane-1,3′-indoline]-2′,4-diones[J].Tetrahedron,2003,59:4615-4622.
[2] 陳永正,趙建強,白玫,等.新型螺[氧化吲哚-3,4-惡唑啉]-5-磷酸酯類化合物的合成[J].合成化學(xué),2014,22(3):346-349.[3] Kuppusamy Sujatha,Melani Rajendran.Synthesis and antiviral activity of 4,4′-(arylmethylene)bis(1H-pyrazol-5-ols)against peste des petits ruminant virus(PPRV)[J].Bioorg Med Chem Lett,2009,19:4501-4503.
[4] Yu-Hua Liao,Wei-Cheng Yuan.Organocatalytic asymmetric Michael addition of pyrazolin-5-ones to nitroolefins with bifunctional thiourea:Stereocontrolled construction of contiguous quaternary and tertiary stereocenters[J].Adv Synth Catal,2010,(352):827-832.
[5] Zhen Wang,Xiaoming Feng.Highly enantioselective Michael addition of pyrazolin-5-ones catalyzed by chiral metal/N,N′-dioxide complexes:Metal-directed switch in enantioselectivity[J].Angew Chem Int Ed,2011,50:4928-4932.
[6] Liang-Liang Wang,Li-Xin Wang.A highly organocatalytic stereoselective double Michael reaction:Efficient construction of optically enriched spirocyclic oxindoles[J].Chem Commun,2011,47:5593-5595.
[7] Xue-ming Li,Ming Yan.Asymmetric organocatalytic double-conjugate addition of malononitrile to dienones:Efficient synthesis of optically active ayclohexanones[J].Org Lett,2011,13:374-377.
[8] Bin Wu,Xing-Wang Wang.Highly enantioselective synthesis of spiro[cyclohexanone-oxindoles] and spiro[cyclohexanone-pyrazolones] by asymmetric cascade[5+1] double Michael reactions[J].Eur J Org Chem,2012:1318-1327.
SynthesisofChiralSpiro[(pyrazolin-5-one)-4,4′-cyclohexanones]
CHEN Yong-zheng1, CUI Bao-dong2,3, BAI Mei1,2,3, YUAN Wei-cheng2
(1.School of Pharmacy,Zunyi Medical University,Zunyi 563000,China;2.Chengdu Institute of Organic Chemistry,Chinese Academy of Sciences,Chengdu 610041,China;3.University of Chinese Academy of Sciences,Beijing 100039,China)
A series of chiral spiro[(pyrazolin-5-one)-4,4′-cyclohexanones] in yield of 42%~71% with 72%ee~97%eewere synthesized by an asymmetric double Michael addition of pyrazolin-5-one with 1,5-disubstituted-pentylene-3-one using 9-amino-9-deoxyepiquinidine as the catalyst,trifluoroacetic acid as the additive and acetonitrile as the solvent.The structures were confirmed by1H NMR,13C NMR and HR-ESI-MS.
Michael addition;organocatalysis;spiro[(pyrazolin-5-one)-4,4′-cyclohexanone];dienone;asymmetric synthesis
2014-01-06;
2014-04-16
國家自然科學(xué)基金資助項目(21372217);貴州省科學(xué)技術(shù)基金資助項目{黔科合J字LKZ[2013]27號};遵義醫(yī)學(xué)院博士啟動基金資助項目(F-563)
陳永正(1982-),男,漢族,貴州遵義人,博士,副教授,碩士生導(dǎo)師,主要從事不對稱合成的研究。E-mail:yzchen@zmc.edu.cn
袁偉成,研究員,博士生導(dǎo)師,E-mail:yuanwc@cioc.ac.cn
O626.21;O643.36
A
1005-1511(2014)04-0544-04