沈 慧,李 陽(yáng),劉 鈺
(電子科技大學(xué) 微電子與固體電子學(xué)院 生物材料教研室,四川 成都 610054)
·綜合評(píng)述·
脂肪族聚酯功能化研究進(jìn)展*
沈 慧,李 陽(yáng),劉 鈺
(電子科技大學(xué) 微電子與固體電子學(xué)院 生物材料教研室,四川 成都 610054)
從六方面(鹵化、羥基化、羧基化、氨基化、不飽和鍵功能化和其他功能化)綜述了生物可降解線性脂肪族聚酯的功能化研究進(jìn)展。參考文獻(xiàn)60篇。
線性脂肪族聚酯;功能化;合成;綜述
生物可降解線性脂肪族聚酯及共聚物由于具有生物可降解性、良好的生物相容性成為應(yīng)用較多的可吸收植入材料和良好的組織工程材料,同時(shí)在藥物緩控釋材料中也有非常重要的應(yīng)用前景[1]。但其主鏈的疏水性和骨架上缺少活性官能團(tuán),使其應(yīng)用受限[2]。近年來(lái),由于生物醫(yī)學(xué)的發(fā)展,使功能化可生物降解線性聚酯成為更有吸引力的生物材料。聚酯多為半結(jié)晶性,疏水性較強(qiáng),缺乏活性官能團(tuán)。改善的方法之一就是引入官能團(tuán),如引入羥基和羧基可提高親水性和可降解性,調(diào)節(jié)力學(xué)、熱學(xué)、化學(xué)和生物學(xué)性質(zhì)。功能化后的線性脂肪族聚酯仍屬生物可降解聚合物,被廣泛應(yīng)用于生物醫(yī)學(xué)領(lǐng)域。
線性脂肪族聚酯的聚合方法主要有三種:(1)羥基酸分子與二醇或二酸化合物縮聚[2-4];(2)內(nèi)酯或其他環(huán)二酯的開環(huán)聚合[5-6];(3)酶催化聚合[7-8]。前兩種方法可統(tǒng)稱為化學(xué)合成功能化。本文僅對(duì)該法進(jìn)行綜述。
化學(xué)功能化中常采用兩種策略:(1)在單體中直接引入官能團(tuán),保護(hù)以免副反應(yīng)發(fā)生,聚合后再脫保護(hù)。該法需復(fù)雜的單體制備過(guò)程,冗長(zhǎng)的官能團(tuán)保護(hù)與脫保護(hù),但可得到結(jié)構(gòu)可控性較強(qiáng)的功能化聚酯。(2)先合成傳統(tǒng)的線性聚酯,再以化學(xué)修飾于聚合物鏈上引入官能團(tuán)。該法條件苛刻,結(jié)構(gòu)可控性較差[9-10]。
本文主要從六方面(鹵化、羥基化、羧基化、氨基化、不飽和鍵功能化和其他功能化)綜述生物可降解線性脂肪族聚酯功能化的研究進(jìn)展。
鹵原子性質(zhì)活潑,是很好的離去基團(tuán),因此可先鹵化再進(jìn)行其它功能化反應(yīng)。如,將6-氯環(huán)己酮氧化成6-氯-己內(nèi)酯,再開環(huán)均聚或共聚得到含氯原子側(cè)基的聚酯[11]。通過(guò)氯原子同疊氮化鈉的取代反應(yīng),聚酯主鏈上能引入疊氮基團(tuán)。疊氮基可同眾多具有三鍵官能團(tuán)的化合物進(jìn)行點(diǎn)擊反應(yīng),從而在聚酯中引入其它側(cè)鏈[12]。
Habnouni等[13]合成了一個(gè)新的功能化內(nèi)酯α-碘-ε-己內(nèi)酯 (1,Scheme 1);1聚合后就得到分子量分布窄的含碘側(cè)基的聚酯。
Lenoir等[14]通過(guò)α-氯-ε-己內(nèi)酯單體和ε-己內(nèi)酯共聚,再通過(guò)原子自由基轉(zhuǎn)移反應(yīng)(ATRP)接枝聚甲基丙烯酸甲酯或聚丁烯基苯甲酸。該反應(yīng)目前擴(kuò)展到了其它官能團(tuán),如醇、羧酸、環(huán)氧化物和胺。Hedrick等[15]通過(guò)γ-溴-ε-己內(nèi)酯的均聚,在0℃下甲苯溶液中通過(guò)Al(OPri)3引發(fā),得到的聚酯具有可預(yù)測(cè)的分子量和窄的分子量分布。這個(gè)含溴的聚酯開辟了通過(guò)直接轉(zhuǎn)化得到新的功能化聚酯的道路。
引入羥基可影響聚酯的親水性、降解率、結(jié)晶度和極性,且羥基可進(jìn)一步功能化[16]。線性聚酯的首次羥基化是通過(guò)環(huán)氧十一烯酸的直接縮聚[17],但所得產(chǎn)物純度不高。羥基化也可通過(guò)三步法實(shí)現(xiàn):(1)合成含有被保護(hù)羥基的內(nèi)酯;(2)內(nèi)酯再開環(huán)聚合;(3)去保護(hù)[18]。
Wang等[19-22]以雙端羥基的聚己內(nèi)酯同富馬酸氯反應(yīng)合成線型脂肪族不飽和聚酯。其中雙鍵在光引發(fā)劑作用下發(fā)生交聯(lián)反應(yīng),形成聚己內(nèi)酯的交聯(lián)網(wǎng)絡(luò)結(jié)構(gòu)。Takasu等[23]報(bào)道了含懸掛羥基的二醇和二羧酸的化學(xué)選擇性縮聚合成懸掛羥基聚酯的一步合成法,包括酒石酸和蘋果酸,在溫和條件下,用稀土三氟[如Sc(OTf)3,Y(OTf)3,Sm(OTf)3,Yb(OTf)3和Sc(NTf2)3]催化,得到聚合物的分子量為Mn>1.0×104g·mol-1。Xie[24]等合成了含伯羥基側(cè)基的聚酯。由于親水性的改變,脫保護(hù)后聚酯的降解速率比脫保護(hù)前明顯加快。隨后,又以mPEG為引發(fā)劑引發(fā)L-LA和PTO開環(huán)共聚,合成了兩親嵌段共聚物(2,Scheme 2)[25]。
Wang等[26]通過(guò)甘油和癸二酸縮聚,甘油/癸二酸的摩爾比是1∶1,得到的聚合物只有少量的交聯(lián)且羥基是直接連在網(wǎng)狀物骨架上。You[27]等報(bào)道了一種簡(jiǎn)單的路線制備帶有羥基化的功能化聚酯,聚(癸二甘油二酯)。其關(guān)鍵步驟是環(huán)氧化物開環(huán)聚合反應(yīng),而不是產(chǎn)生聚(癸二酸甘油)(PGS)的傳統(tǒng)縮聚。相比于PGS,PSeD的線性主鏈上有更多的羥基官能團(tuán),更高分子量和窄的分布,還具有良好的細(xì)胞相容性。Zhang等[28]合成了一種新的生物可降解的功能化聚酯聚(丁二酸丁二醇酯-共-丁烯酸鹽)[P(BS-co-BM)],脫保護(hù)得到懸掛羥基官團(tuán)的P(BS-co-BM)。脫保護(hù)后的產(chǎn)物P(BS-co-55mol% BM)顯示比預(yù)期對(duì)應(yīng)的P(BS-co-55mol% BBM)有較高的熔點(diǎn),結(jié)晶性和較低玻璃化轉(zhuǎn)變溫度。Miao[29]等將油酸經(jīng)酶促環(huán)氧化得到環(huán)氧化油酸,這種單體在較高溫下可自開環(huán)生成含側(cè)鏈經(jīng)基及長(zhǎng)鏈烷基的高分子量聚酯。
Hedrick等[30]報(bào)道了γ-芐氧基-ε-己內(nèi)酯和γ-2,2-雙(苯雙氧甲基)丙酸酯-ε-己內(nèi)酯的合成。1,4-環(huán)己二醇的單保護(hù)是通過(guò)與芐基溴或者2,2-雙(苯雙氧甲基)丙酸氯以中等產(chǎn)率反應(yīng)來(lái)完成。兩種產(chǎn)物都可被氯鉻酸吡啶嗡氧化,分別得到被保護(hù)的羥基和雙羥基功能化的環(huán)己酮。最后,通過(guò)Pd/C的催化氫解得到功能化聚合物。
Saulnier等[31]以辛酸亞錫為引發(fā)劑,通過(guò)L-丙交酯和3-(1,2,3,4-四氧代丁基-二異亞丙基)-1,4-二惡烷-2,5-二酮的開環(huán)共聚制備了羥基被保護(hù)的聚(乙醇酸-共-葡糖酸)和聚(L-乳酸-co-羥基乙酸-co-葡糖酸)。Wolf等[32]以異辛酸亞錫或者有機(jī)堿為催化劑,分別在本體和溶液中進(jìn)行共聚合成了帶有羥基端官能團(tuán)的聚(L-丙交酯)共聚物,兩者的Mn在(1200~34000)g·mol-1,且支化度可通過(guò)改變單體/引發(fā)劑的比例來(lái)調(diào)整。
Dhamaniya等[33]報(bào)道了2,3-異亞丙基-L-酒石酸鹽與丁二酸二甲酯或己二酸二甲酯與市售烷二醇(如丁二酸二甲酯與1,6-己二醇)在四異丙氧基鈦為催化劑下本體縮聚,接著異亞丙基的選擇性脫保護(hù)后就得到了側(cè)鏈?zhǔn)橇u基的功能化聚酯。
Hao等[34]先將微溶于氯仿的聚(丁烯酒石酸鹽)(PBF)乙?;舛?,接著OsO4和NMO為催化劑,氯仿和甲醇的混合溶劑中成功合成新型水溶性聚(丁烯酒石酸)(PBT),其具有較高的玻璃化轉(zhuǎn)變溫度和低于PBF合成前體的熱穩(wěn)定性。Leemhuis[35-37]等先后報(bào)道了帶有懸掛羥基的功能化聚酯——聚(乳酸-無(wú)規(guī)-羥甲基乙醇酸)[poly(HMMG-L)]和聚(乙醇-交替-羥甲基乙醇酸)[poly(HMG-CL)]的合成。
Mahmud等[38]合成了在PCL嵌段上帶有羧基側(cè)鏈的聚(環(huán)氧乙烷)-b-聚(ε-己內(nèi)酯)(PEO-b-PCL)嵌段共聚物。如,α-芐基羧酸酯-ε-己內(nèi)酯。用甲氧基PEO(5000g·mol-1)為引發(fā)劑,辛酸亞錫作為催化劑,α-芐基羧酸酯-ε-己內(nèi)酯的ROP制備PEO-b-聚(α-芐基羧酸酯的ε-己內(nèi)酯)(PEO-b-PBCL)。進(jìn)一步催化脫芐制備PEO-b-PCCL。PEO-b-PBCL和PEO-b-PCCL共聚物的分子量分布分別是1.74和1.52,球形膠束的平均直徑分別為62nm和20nm。Kulshrestha等[39]通過(guò)己二酸,1,8-辛二醇和雙(羥甲基)丁酸,成功制備了具有側(cè)掛羧酸基團(tuán)的直鏈脂族族聚酯。
Ouchi等[40]通過(guò)二芐基蘋果酸酯的開環(huán)聚合合成可生物降解聚(α-蘋果酸)。為了獲得較高分子量且側(cè)鏈有可修飾基團(tuán)的可生物降解乳酸類聚酯 ,二芐基蘋果酸酯與L-雙丙交酯開環(huán)共聚得到聚(α-蘋果酸-共-乳酸)。聚(α-蘋果酸)水解的結(jié)果表明該主鏈被無(wú)規(guī)裂解并緩慢排出體外。Zhang等[41]根據(jù)功能化的ε-己內(nèi)酯合成了pH敏感的帶有羧基的甲氧基聚(乙二醇)-嵌段-聚(ε-己內(nèi)酯)[mPEG-b-P(2-CCL-co-6-CCL)]。帶有側(cè)鏈羧基的PCLs 是由Hedrick和他的同事通過(guò)芐基γ-(ε-己內(nèi)酯)羧酸或叔丁基-γ-(ε-己內(nèi)酯)羧酸開環(huán)聚合,然后酸脫保護(hù)來(lái)制備的[30](Scheme 3)。
He等[42]用ROP的方法合成了具有高分子量的含聚β-芐基馬來(lái)酮酯的PLMA 共聚物。細(xì)胞無(wú)論在d-PLMA表面和支架內(nèi)都生長(zhǎng)良好,d-PLMA的細(xì)胞親和性比PLLA更好。
含有保護(hù)氨基的ε-己內(nèi)酯單體——γ-(氨基甲酸芐基酯)-ε-己內(nèi)酯(γ-CAB-ε-CL)成功被Yan等[43]合成。以辛酸亞錫為催化劑,于130℃其與己內(nèi)酯開環(huán)聚合共聚來(lái)合成共聚物。將γCABεC結(jié)構(gòu)單元連接到聚己內(nèi)酯上,導(dǎo)致了形態(tài)從半結(jié)晶至無(wú)定形的改變。保護(hù)基團(tuán)經(jīng)Pd/C催化氫解除去,獲得了側(cè)鏈上有一級(jí)氨基的聚己內(nèi)酯。Elisseeff等[44]合成了含有賴氨酸的ε-胺側(cè)鏈聚合物,如,聚(乳酸-co-賴氨酸)。聚天冬氨酸的側(cè)鏈接枝到聚合物氨基上得到PLAL-ASP。該聚合物與過(guò)量的甲基丙烯酸酐反應(yīng),連接到PLAL-ASP甲基丙烯酸酯基的含量為5%~22%(取決于反應(yīng)時(shí)間和溫度)。該聚合物有彈性,并具有組織工程應(yīng)用的機(jī)械完整性。Caponetti等[45]合成了含一個(gè)聚(L-乳酸-共-L-賴氨酸)骨架和聚(L-賴氨酸),聚(D,L-丙氨酸)或 聚(L-天冬氨酸)側(cè)鏈的共聚物。Alice等[46]在控制納米級(jí)尺寸下通過(guò)分子鏈交聯(lián)方法制備了多功能聚酯。首先2,2′-(亞乙二氧基)雙(乙胺)耦合,再與δ-戊內(nèi)酯和α-烯丙基-δ-戊內(nèi)酯,α-炔丙基-δ-戊內(nèi)酯和2-氧雜環(huán)庚烷-1,5-二酮開環(huán)聚合得到線性聚酯(帶有縮酮、氨基和羥基)。
Jiang[47]等制備了雙三鍵取代的乙交酯單體3,6-二炔丙基-1,4-二氧-2,5-二酮(PGL),并合成其均聚物、同丙交酯的無(wú)規(guī)及嵌段共聚物。這種聚合物可同含疊氮基團(tuán)的化合物或聚合物反應(yīng)來(lái)修飾改性(Scheme 4)。
Biiliet[48]合成了2-甲基-2-炔丙基-1,3-丙二醇,將其同二元酸、二元醇在阻聚劑對(duì)苯二酚存在下進(jìn)行常規(guī)高溫縮合,得到主鏈含炔鍵側(cè)基的功能化線性聚酯。通過(guò)炔鍵和疊氮基團(tuán)的Huisgen 1,3-環(huán)加成反應(yīng),對(duì)功能化聚酯進(jìn)行修飾,得到高產(chǎn)率的刷狀聚合物。
Riva等[49]用α-氯-ε-己內(nèi)酯(α-Cl-ε-CL)在引發(fā)劑作用下開環(huán)聚合,然后通過(guò)聚(α-疊氮-ε-己內(nèi)酯-共-ε-己內(nèi)酯)無(wú)規(guī)共聚物的疊氮基替代懸掛的氯,再進(jìn)行 Huisgen 1,3-偶極炔烴的環(huán)加成反應(yīng),這是比較有效的聚己內(nèi)酯接枝取代方法。據(jù)這一方法,懸掛羥基、酯基和原子轉(zhuǎn)移自由基聚合的引發(fā)劑被成功連接到PCL。5-炔丙基-戊內(nèi)酯也是一種不飽和功能基的環(huán)狀單體,可進(jìn)行開環(huán)均聚或與己內(nèi)脂、丙交酯等單體共聚,合成了含炔丙基側(cè)基的功能化聚酯[50]。
Su等[51]報(bào)道了兩親性接枝嵌段功能化聚酯(PαN3CL-g-alkyne)-b-PCL的合成及功能化。將PMEs或PMPEGs接枝到PaN3CL-b-PCL上,這種兩親性聚合物在水溶液中自組裝成膠束。在25℃時(shí)臨界膠束濃度為(8.2~39.8)mg·mol-1。Parrish等[12]通過(guò)α-炔丙基-δ-戊內(nèi)酯和ε-己內(nèi)酯的可控開環(huán)聚合了帶有懸掛乙炔官能團(tuán)的脂肪族聚酯。隨后,用點(diǎn)擊化學(xué)在聚酯上接枝聚(乙二醇)和低聚物基團(tuán);該兩親性接枝聚酯具有生物相容性,可在一定范圍內(nèi)作為生物材料使用。Wurth等[52]提出了通過(guò)ε-己內(nèi)酯和單體乙基2-甲基-4-戊烯酸氧化物的共聚得到聚(ε-己內(nèi)酯-共-乙基-2-甲基-4-戊烯酸氧化物)。這個(gè)方法開拓了生物醫(yī)學(xué)領(lǐng)域PCL應(yīng)用的新途徑。M?lberg等[53]通過(guò)縮聚得到了不飽和脂肪族聚酯聚(丁-2-烯-1,4-二基丙二酸二甲酯)(PBM)。PCL-PBM和PLLA-PBM線性聚合物易交聯(lián)而得到更高強(qiáng)度和機(jī)械性能,所以該物質(zhì)可以用于用于彈性體網(wǎng)絡(luò)和大分子引發(fā)劑。Parrish[54]等合成了一種雙鍵取代的戊內(nèi)酯,將其同己內(nèi)酯在Sn(Otf)2催化下合成了雙鍵功能化的共聚物。雙鍵可改性為羥基,再同羧基封端的mPEG反應(yīng)得到mPEG接枝的兩親性共聚物。
1,4-環(huán)己二酮經(jīng)Bayer-Villiger氧化反應(yīng)可高產(chǎn)率合成羰基功能化己內(nèi)酯(OPD);OPD由錫類化合物催化開環(huán)均聚合或同其它單體如CL,LA等共聚,能獲得含不同功能基團(tuán)的聚酯[55-57]。聚酯上的羰基碳原子上易發(fā)生親核加成反應(yīng),從而對(duì)聚酯進(jìn)行修飾。Mayer[58]等以氨基封端的PEG為親核試劑,同P(CL-co-OPD)進(jìn)行加成反應(yīng)合成了親水鏈PEG修飾的聚酯,反應(yīng)條件溫和。聚酯中接枝的PEG較多時(shí),可溶于水相。Horn[59]等也合成了P(CL-co-OPD),以含氨氧基的小分子熒光染料和藥物同時(shí)對(duì)這種聚酯進(jìn)行修飾,室溫下即可在聚酯上引入不同比例的小分子,使聚酯含有兩種不同功能性側(cè)基。以雙端官能團(tuán)1,6-二(氨氧基)己烷同聚合物反應(yīng),得到了一種交聯(lián)的聚酯凝膠。Yang等[60]合成了懸掛縮酮和活性丙烯酸酯與己內(nèi)酯的共聚物,體外實(shí)驗(yàn)顯示,該聚合物毒性低,可應(yīng)用于組織工程支架。Zheng等[61]合成了多官能化的脂肪族聚酯,包含聚(富馬酸丁二醇酯)和聚(1,2-環(huán)氧琥珀酸)兩部分,并且當(dāng)與后者結(jié)合時(shí),其Tm和Tg穩(wěn)定,適用于低廉的生物藥品。
Dai等[62]首次合成了帶有N-異丙基官能團(tuán)的脂肪族聚酯(3,Scheme 5)。與PCL相比,poly(CCL-co-CL)具有較低結(jié)晶度和較高降解率。
Tian等[57]合成了被酮基修飾的聚己內(nèi)酯。1,4,8-三氧雜[4,6]-9-十一烷酮以鋁醇鹽作為催化劑在甲苯中先均聚,接著用三苯基四氟硼酸鹽脫去縮醛的反應(yīng)合成新的脂肪族聚酯聚(γ-酮-ε-己內(nèi)酯)。與PCL相比,該聚合物有較高結(jié)晶度,較高熔融溫度,還可以光降解,減少白色污染。
生物可降解脂肪族聚酯的功能化不僅擴(kuò)大了生物材料的應(yīng)用范圍,而且也促進(jìn)了生物醫(yī)學(xué)領(lǐng)域的發(fā)展?;瘜W(xué)修飾的聚合物很有可能會(huì)引起生物可降解聚合物的性質(zhì)改變,但可以通過(guò)適當(dāng)?shù)脑O(shè)計(jì)手段使合成的聚合物不僅保持其本身優(yōu)點(diǎn),還可得到多種性質(zhì)共存并進(jìn)一步修飾的可能性。如:組織工程支架需要良好的生物相容性、細(xì)胞粘附性和生物可降解性,藥物運(yùn)輸系統(tǒng)需要智能可控的刺激相應(yīng)性能等。生物可降解聚合物功能化的發(fā)展趨勢(shì)如下:(1)功能化過(guò)程應(yīng)該更簡(jiǎn)單且有效;(2)合成的聚酯不只是連接不同的功能基,而要各種基團(tuán)間協(xié)同作用;(3)應(yīng)擴(kuò)大應(yīng)用范圍,包括潛在的體內(nèi)應(yīng)用。線性脂肪族聚酯的功能化將會(huì)對(duì)促進(jìn)生物醫(yī)學(xué)的發(fā)展做出巨大貢獻(xiàn)。
[1] Jazkewitsch O,Mondrzyk A,Staffel R,etal.Cyclodextrin-modified polyesters from lactones and from bacteria:An approach to new drug carrier systems[J].Macromolecules,2011,44:1365-1371.
[2] Yildirim E D,Ayan H,Vasilets V N,etal.Effect of dielectric barrier discharge plasma on the attachment and proliferation of osteoblasts cultured over poly(ε-caprolactone)scaffolds[J].Plasma Processes and Polymers,2008,5:58-66.
[3] Albertsson A C,Varma I K.Aliphatic polyesters:Synthesis,properties and applications[J].Adv Polym Sci,2002,157:1-40.
[4] Hyon S H,Jamshidi K,Ikada Y.Synthesis of polylactides with different molecular weights[J].Biomaterials,1997,18:1503-1508.
[5] Pounder R J,Dove A P.Towards poly(ester)nanoparticles:Recent advances in the synthesis of functional poly(ester)s by ring-opening polymerization[J].Polymer Chemistry,2010,1:260.
[6] Velthoen I W,Dijkstra P J,Feijen J.AB2functional polyesters via ring opening polymerization:Synthesis and characterization[J].Macromolecular Chemistry and Physics,2009,210:689-697.
[7] Kobayashi S,Uyama H,Kimu S.Enzymatic polymerization[J].Chem Rev,2001,101:3793-3818.
[8] Loos K,Stadler R.Synthesis of amylose-block-polystyrene rod-coil block copolymers[J].Macromolecules,1997,30:7641-7643.
[9] Saulnier B,Coudane J,Garreau H,etal.Hydroxyl-bearing poly(α-hydroxy acid)-type aliphatic degradable polyesters prepared by ring opening(co)polymerization of dilactones based on glycolic,gluconic and l-lactic acids[J].Polymer,2006,47:1921-1929.
[10] Ponsart S,Coudane J,Vert M.A novel route to poly(ε-caprolactone)-based copolymers via anionic derivatization[J].Biomacromolecules,2000,1:275-81.
[11] Riva R,Schmeits S,Stoffelbach F,etal.Combination of ring-opening polymerization and “click” chemistry towards functionalization of aliphatic polyesters[J].Chemical Communications,2005:5334.
[12] Parrish B,Breitenkamp R B,Emrick T.PEG-and peptide-grafted aliphatic polyesters by click chemistry[J].J Am Chem Soc,2005,127:7404-7410.
[13] Habnouni S E,Darcos V,Coudane J.Synthesis and ping opening polymerization of a new functional lactone,alpha-Iodo-epsilon-caprolactone:A novel route to functionalized aliphatic polyesters[J].Macromolecular Rapid Communications,2009,30:165-169.
[14] Lenoir S,Riva R,Lou X,etal.Ring-opening polymerization ofα-chloro-ε-caprolactone and chemical modification of poly (α-chloro-ε-caprolactone)by atom transfer radical processes[J].Macromolecules,2004,37:4055-4061.
[15] Detrembleur C,Mazza M,Hedrick J,etal.Ring-opening polymerization ofγ-bromo-ε-caprolactone:A novel route to functionalized aliphatic polyesters[J].Macromolecules,2000,33:14-18.
[16] Hans M,Keul H,Moeller M.Poly(ether-ester)conjugates with enhanced degradation[J].Biomacromolecules,2008,9:2954-62.
[17] White J E,Earls J D,Sherman J W,etal.Step-growth polymerization of 10,11-epoxyundecanoic acid:Synthesis and properties of a new hydroxy-functionalized thermoplastic polyester[J].Polymer,2007,48:3990-3998.
[18] Lecomte P,Riva R,Schmeits S,etal.New prospects for the grafting of functional groups onto aliphatic polyesters.Ring-opening polymerization ofα- orγ-substituted-caprolactone followed by chemical derivatization of the substituents[J].Macromolecular Symposia,2006,240:157-165.
[19] Wang S,Lu L,Gruetzmacher J A,etal.A biodegradable and cross-linkable multiblock copolymer consisting of poly(propylene fumarate)and poly(e-caprolactone):Synthesis,characterization,and physical properties[J].Macromolecules,2005:7358-7370.
[20] Jabbari E,Wang S,Lu L,etal.Synthesis,material properties,and biocompatibility of a novel self-cross-linkable poly(caprolactone fumarate)as an Injectable tissue engineering scaffold[J].Biomacromolecules,2005,6:2503-2511.
[21] Wang S,Lu L,Gruetzmacher J,etal.Synthesis and characterizations of biodegradable and crosslinkable poly(ε-caprolactone fumarate),poly(ethylene glycol fumarate),and their amphiphilic copolymer[J].Biomaterials,2006,27:832-841.
[22] Wang S,Yaszemsk M J,Gruetzmacher J A,etal.Photo-crosslinked poly(3-caprolactone fumarate)networks:Roles of crystallinity and crosslinking density in determining mechanical properties[J].Polymer,2008,49:5692-5699.
[23] Takasu A,Shibata Y,Narukawa Y,etal.Chemoselective dehydration polycondensations of dicarboxylic acids and diols having pendant hydroxyl groups using the room temperature polycondensation technique[J].Macromolecules,2007,40:151-153.
[24] Xie Z,Lu C,Chen X,etal.Synthesis and characterization of novel poly(ester carbonate)s based on pentaerythritol[J].Journal of Polymer Science Part A:Polymer Chemistry,2007,45:1737-1745.
[25] Hu X,Liu S,Chen X,etal.Biodegrad able amphiphilic block copolymers bearing protected hydroxyl groups:Synthesis and characterization[J].Biomacromolecules,2008,9:553-560.
[26] Wang Y,Ameer G A,Sheppard B J,etal.A tough biodegradable elastomer[J].Nature Biotechnology,2002,20:602-606.
[27] You Z,Cao H,Gao J,etal.A functionalizable polyester with free hydroxyl groups and tunable physiochemical and biological properties[J].Biomaterials,2010,31:3129-3138.
[28] Zhang S,Yang J,Liu X,etal.Synthesis and characterization of poly(butylene succinate-437-butylene malate):A new biodegradable copolyester bearing hydroxyl pendant Groups[J].Biomacromolecules,2003,4:437-445.
[29] Miao S,Zhang S,Su Z,etal.Chemoenzymatic synthesis of oleic acid-based polyesters for use as highly stable biomaterials[J].Journal of Polymer Science Part A:Polymer Chemistry,2008,46:4243-4248.
[30] Trolls?s M,Lee V Y,Hedrick J,etal.Hydrophilic aliphatic polyesters:Design,synthesis,and ring-opening polymerization of functional cyclic esters[J].Macromolecules,2000,33:4619-4627.
[31] Saulnier B,Coudane J,Garreau H,etal.Hydroxyl-bearing poly(α-hydroxy acid)-type aliphatic degradable polyesters prepared by ring opening (co)polymerization of dilactones based on glycolic,gluconic and l-lactic acids[J].Polymer,2006,47:1921-1929.
[32] Wolf F K,Frey H.Inimer-promoted synthesis of bran ched and hyperbranched polylactide copolymers[J].Macromolecules,2009,42:9443-9456.
[33] Dhamaniya S,Jacob J.Synthesis and characterization of copolyesters based on tartaric acid derivatives[J].Polymer Bulletin,2011,68:1287-1304.
[34] Hao Q,Yang J,Li Q,etal.New facile approach to novel water-soluble aliphatic poly(butylene tartarate)s bearing reactive hydroxyl pendant groups[J].Biomacromolecules,2005,6:3474.
[35] Leemhuis M,van Steenis Jan H,van Uxem Michelle J,etal.A versatile route to functionalized dilactones as monomers for the synthesis of poly(α-hydroxy)acids[J].European Journal of Organic Chemistry,2003,2003:3344-3349.
[36] Leemhuis M,Nostrum C F V,Kruijtze J A W,etal.Functionalized poly(R-hydroxy acid)s via ring-opening polymerization:Toward hydrophilic polyesters with pendant hydroxyl groups[J].Macromolecules,2006,39:3500-3508.
[37] Leemhuis M,Kruijtzer J A W,Nostrum C F C,etal.In vitro hydrolytic degradation of hydroxyl-functionalized poly(α-hydroxy acid)s[J].Biomacromolecules,2007,8:2943-2949.
[38] Mahmud A,Xiong X B,Anifar A L.Novel self-associating poly(ethyle ne-oxide)-block-poly(ε-caprolactone)block copolymers with functional side groups on the polyester block for drug delivery[J].Macromolecules,2006,39:9419-9428.
[39] Kulshrestha A S,Sahoo B,Gao W,etal.Lipase catalysis.A direct route to linear aliphatic copolyesters of bis(hydroxymethyl)butyric acid with pendant carboxylic acid groups[J].Macromolecules,2005,38:3205-3213.
[40] Ouchi T,Fujino A.Synthesis of poly(a-malic acid)and its hydrolysis behavior in vitro[J].Die Makro Chemie,2003,190:1523-1530.
[41] Zhang Y,Li J H,Du Z Z.Synthesis and pH-responsive assembly of methoxy poly(ethylene glycol)-b-poly(ε-caprolactone)with pendant carboxyl groups[J].Poly Sci Pol Chem A,2014,52(2):188-199.
[42] He B,Wan Y,Bei J,etal.Synthesis and cell affinity of functionalized poly(L-lactide-co-beta-malic acid)with high molecular weight[J].Biomaterials,2004,25:5239-5247.
[43] Yan J,Zhang Y,Xiao Y,etal.Novel poly(ε-caprolactone)s bearing amino groups:Synthesis,characterization and biotinylation[J].Reactive and Functional Polymers,2010,70:400-407.
[44] Elisseeff J,Anseth K,Langer R,etal.Synthesis and characterization of photo-cross-linked polymers based on poly(L-lactic acid-co-L-aspartic acid)[J].Macromolecules,1997,30:2182-2184.
[45] Caponetti G,Hrkach JS,Kriwet B,etal.Microparticles of novel branched copolymers of lactic acid and amino acids:Preparation and characterization[J].Journal of Pharmaceutical Sciences,1999,88:136-141.
[46] Alice E V D Ende,Evan J Kravitz.Approach to formation of multifunctional polyester particles in controlled nanoscopic dimensions[J].Am Chem Soc,2008,130(27):8706-8713.
[47] Jiang X,Vogel E B.“Clickable” polyglycolides:Tunable synthons for thermoresponsive,degradable polymers[J].Macromolecules,2008,41:1937-44.
[48] Billiet L,Fournier D,Du Prez F.Combining “click” chemistry and step-growth polymerization for the generation of highly functionalized polyesters[J].Journal of Polymer Science Part A:Polymer Chemistry,2008,46:6552-6564.
[49] R Riva,Schmeits S,Jérme C,etal.Combination of ring-opening polymerization and “click chemistry”:Toward functional ization and grafting of poly(ε-caprolactone)[J].Macromolecules,2007,40:796-803.
[50] Mertzman J E,Kar S,Lofland S,etal.Surface attached manganese-oxo clusters as potential contrast agents[J].Chem Commun (Camb),2009,21(7):788-790.
[51] Su R J,Yang H W,Leu Y L,etal.Synthesis and characterization of amphiphilic functional polyesters by ring-opening polymerization and click reaction[J].Reactive and Functional Polymers,2012,72:36-44.
[52] Wurth J J,Shastri V P.Synthesis and characterization of functionalized poly(ε-caprolactone)[J].Polym Sci Part A Polym Chem,2013,51(16):3375-3382.
[53] S M?lberg,P Plikk.A finne-wistrand[J].Chem Mater,2010,22(9):3009-3014.
[54] Parrish B,Emrick T.Aliphatic polyesters with pendant cyclopentene groups:Controlled synthesis and conversion to polyester-graft-PEG copolymers[J].Macromolecules,2004,37:5863-5865.
[55] Brooke A,Horn V,Wooley K L.Toward cross-linked degradable polyester materials:Investigations into the compatibility and use of reductive amination chemistry for cross-linking[J].Macromolecules,2007,40:1480-1488.
[56] Dwan′Isa J P L,Lecomte P,Philippe Duboisa,etal.Synthesis and characterization of random copolyesters ofε-caprolactone and 2-oxepane-1,5-dione[J].Macromolecules,2003,36:2609-2615.
[57] Tian D,Halleux O,Dubois P,etal.Poly(2-oxepane-1,5-dione):A highly crystalline modi fied poly(ε-caprolactone)of a high melting temperature[J].Macromolecules,1998,31:924-927.
[58] Taniguchi I,Mayes A M.A chemoselective approach to grafting biodegradable polyesters[J].Macromolecules,2005,38:216-219.
[59] A B,Horn V,Iha R K,etal.Sequential and single-step,one-pot strategies for the transformation of hydrolytically degradable polyesters into multifunctional systems[J].Macromolecules,2008,41:1618-1626.
[60] X W Yang,C Cui,Z Tonga.Novel unsaturated aliphatic polyesters:Synthesis,characterization,and properties of,multiblock copolymers composing of poly(butylene fumarate)and poly(1,2-propylene succinate)[J].Acta Biomater,2013,9(9):8232-8244.
[61] Zheng L,Wang Z,Li C.Novel unsaturated aliphatic polyesters:Synthesis,characterization,and properties of multiblock copolymers composing of poly(butylene fumarate)and poly(1,2-propylene succinate)[J].Ind Eng Chem Res,2012,51:14107-14111.
[62] Dai W,Huang H,Du Z,etal.Synthesis,characterization and degradability of the novel aliphatic polyester bearing pendantN-isopropylamide functional groups[J].Polymer Degradation and Stability,2008,93:2089-2095.
AdvancesinResearchforFunctionalAliphaticPolyester
SHEN Hui,LI Yang,LIU Yu
(Biological Materials Laboratory,School of Microelectronics and Solid-state Electronics,University of Electronic Science and Technology of China,Chengdu 610041,China)
This paper review introduced the research development of the functionalization such as halogenation,hydroxylation,amination and other functional groups of biodegradable linear aliphatic polyesters with 60references.
biodegradable linear polyester;functional group;synthesis;review
2014-03-26;
2014-06-12
沈慧(1988-),女,漢族,四川成都人,碩士研究生,主要從事生物材料和生物電子方面的研究。
劉鈺,E-mail:liuyupoly@gmail.com
O621.3;O63
A
1005-1511(2014)04-0569-08