羅日成+盧澤華+張昇+黃彪+李穩(wěn)
收稿日期:20140317
基金項目:國家自然科學(xué)基金資助項目(50977003)
作者簡介:羅日成(1969-),男,湖南隆回人,長沙理工大學(xué)副教授,博士
通訊聯(lián)系人,E-mail:luorich@126.com
北京市重點(diǎn)實驗室(華北電力大學(xué)),北京102206;3.溫嶺供電公司,浙江 溫嶺317500)
摘要:為準(zhǔn)確地檢測電力系統(tǒng)中諧波信號的參數(shù),從被檢測信號噪聲的基本特性出發(fā),將空間譜估計理論中的Toeplitz算法應(yīng)用于諧波、間諧波參數(shù)檢測.首先對采樣信號構(gòu)成的自相關(guān)矩陣進(jìn)行奇異值分解,根據(jù)不同時刻白噪聲相互獨(dú)立的原理劃分出噪聲子空間和信號子空間,再利用最小二乘法和旋轉(zhuǎn)不變參數(shù)估計的原理,實現(xiàn)信號的頻率和幅值參數(shù)的準(zhǔn)確估計.根據(jù)白噪聲均值為0的特性,通過仿真實驗和現(xiàn)場數(shù)據(jù)分析表明:本文提出的方法在提高諧波和間諧波的參數(shù)估計精度和抗噪能力等方面具有較好的可行性和有效性,能滿足實際應(yīng)用的需要.
關(guān)鍵詞:諧波;間諧波;Toeplitz;最小二乘;旋轉(zhuǎn)不變性;陣列信號處理;共軛矩陣
中圖分類號:TM935 文獻(xiàn)標(biāo)識碼:A
Parameter Estimation of Harmonics and Inter
Harmonics Based on Toeplitz Algorithm
LUO Richeng1,LU Zehua2,ZHANG Sheng3,HUANG Biao1,LI Wen1
( 1.College of Electrical and Information Engineering,Changsha Univ of Science and Technology,Changsha,
Hunan410004, China; 2.Beijing Key Laboratory of High Voltage & EMC, North China Electric Power Univ,
Beijing102206,China; 3.Wenling Power Supply Company,Wenling,Zhejiang317500,China)
Abstract: In order to accurately detect the parameters of harmonics in the power system, an algorithm based on a method of spatial spectrum estimation named Toeplitz was proposed on the basis of the essential property of noise information. First, eigenvalue decomposition was used for the autocorrelation of matrix constructed by sampling data to get signal subspace and noise subspace. It adopts the principle of least squares method and rotational invariance techniques to calculate high precision signal parameter flicker .Finally, based on the estimated frequency of every signal component and the characteristic of zero average value of noise signals, the simulation results and the realtime data analysis have verified the effectiveness of the algorithm,which satisfies the needs of practical application.
Key words:harmonic;interharmonic;Toeplitz;leastsquare;rotational invariance techniques;array signal processing;conjugate matrix
近年來,非線性電力電子設(shè)備被廣泛應(yīng)用,使電網(wǎng)中出現(xiàn)了日趨嚴(yán)重的電能質(zhì)量問題[1-2],尤其以諧波、間諧波污染為主.隨著中國加快推進(jìn)智能電網(wǎng)的建設(shè),對海島風(fēng)電、太陽能等新能源、儲能設(shè)備(如鉛酸蓄電池組、鋰電池組等)和電動汽車充電設(shè)備的并網(wǎng)運(yùn)行[3],都給電網(wǎng)帶來較大的諧波污染;諧波污染會增加電網(wǎng)損耗,減小電力供應(yīng)的效率,也會造成供電不穩(wěn)定、保護(hù)裝置誤動作,給電力系統(tǒng)帶來十分嚴(yán)重的后果.
目前諧波和間諧波的檢測算法都是建立在能夠精確分析信號的頻譜特征的前提上,對其頻率和幅值進(jìn)行估計.現(xiàn)有的檢測方法主要有快速傅里葉變換(FFT)和小波分析等時域估計方法,多重信號分類(Multiple Signal Classification,MUSIC)、最小二乘子空間旋轉(zhuǎn)不變子空間(TLSESPRIT)等具有代表性的子空間分解類譜估計算法[4],以及神經(jīng)網(wǎng)絡(luò)和遺傳算法等智能辨識分析方法.FFT在檢測不穩(wěn)定信號時,易造成頻譜泄漏,難實現(xiàn)信號同步采樣,容易引起測量結(jié)果不準(zhǔn)確[5-7].小波變換在電網(wǎng)系統(tǒng)出現(xiàn)頻率偏差時,小波變換法的頻率分辨率低,會發(fā)生頻譜泄露問題[8-9].MUSIC可較精確估計出諧波參數(shù),但要進(jìn)行復(fù)雜的峰值搜索,計算量較大,且在峰值搜索的過程中存在柵欄效應(yīng),導(dǎo)致頻率估計精度不夠精確[10-12].TLSESPRIT需要提前估計出子信號的數(shù)目,實際信號數(shù)目與估計數(shù)目有差別時,會導(dǎo)致噪聲子空間和信號子空間不正交,造成估計結(jié)果不準(zhǔn)確[13].神經(jīng)網(wǎng)絡(luò)和遺傳算法屬于人工智能算法,對噪聲的敏感程度不高,但是對樣本的要求很嚴(yán)格,需要對訓(xùn)練樣本進(jìn)行長久訓(xùn)練,過程復(fù)雜[14].
本文提出的Toeplitz算法主要是利用信號子空間的旋轉(zhuǎn)不變性.首先對采樣信號構(gòu)成的協(xié)方差矩陣進(jìn)行奇異值分解,得到大特征值組成的信號子空間,然后利用分解后的奇異矢量來近似代替數(shù)據(jù)協(xié)方差矩陣并構(gòu)造新的求解矩陣,再用最小二乘法求解,得到相應(yīng)的頻率、幅值信息.
1基于Toeplitz的諧波和間諧波檢測原理
Toeplitz法是基于子空間分解的高分辨率的諧波和間諧波檢測新方法,能有效地識別電網(wǎng)中衰減和非衰減正弦信號的頻率、幅值等信息.該方法被廣泛應(yīng)用于語音信號和陣列信號的處理以及電力系統(tǒng)暫態(tài)信號的分解等方面.
假設(shè)信號由M個復(fù)正弦信號和一個高斯白噪聲組成:
x(t)=∑Mi=1aisin (2πfi+φi)+w(t).(1)
式中:ai為諧波幅值;fi為頻率;φi為初始相位;i為諧波次數(shù),當(dāng)i=0時,x(t)為基波;w(t)為均值等于0,方差σ2=1的白噪聲,且與各個頻率分量相互獨(dú)立.
對于N個快拍數(shù),式(1)也可表示為:
X=AS+w(n)=[x(0),…,x(N-1)].(2)
對信號采樣,建造U×V的采樣數(shù)據(jù)矩陣:
XU×V=x(0)x(1)…x(V-1)
x(1)x(2)…x(V)
x(U-1)x(U)…x(U+V-2).(3)
式中:V為時間長度,且V>M;U+V為采樣數(shù)目.
定義信號矢量:
X(n)=[x(n),x(n+1),…,x(n+V-1)]T,(4)
W(n)=[w(n),w(n+1),…,w(n+V-1)]T,(5)
X(n)=S(n)+W(n)=PΦnA.(6)
式中:A=[A1,A2,…,AM]T;Φ=diag{ejω1,ejω2,…,ejωM};P=[p(f1),…,p(fM)].其中p(fi)=[1,ejωi,…,ej(V-1)ωi],1≤i≤M;求得矩陣Φ后,由于Φ中含有信號源的頻率信息,即可求出信號的頻率,進(jìn)而得出其余信號頻率的相關(guān)參數(shù).
Toepliz算法首先求取采樣數(shù)據(jù)矩陣X的協(xié)方差矩陣:
R=E[XnXHn]. (7)
對協(xié)方差矩陣R進(jìn)行奇異值分解,可得到:
R=∑Di=1λieieHi+∑Mj=D+1λjejeHj=
UsUnΣ[UsUn]=
UsΣsUHs+UnΣnUHn+Un. (8)
式中:Σs為大特征值組成的對角陣;Σn為小特征值組成的對角陣;λk和ek分別是協(xié)方差矩陣R的第i個特征值及其對應(yīng)的特征矢量(1≤k≤M),由于大小特征值在數(shù)值上差別明顯,根據(jù)特征值的這一特性,可劃分信號子空間與噪聲子空間,大特征值組成的是信號子空間Us=[e1,e2,…,eD];小特征值組成的是噪聲子空間Un=[eD+1,…,eM],D為大特征值的個數(shù).
此時,可用奇異值分解后的奇異矢量來近似代替無噪聲情況下的數(shù)據(jù)協(xié)方差矩陣:
R0=UsΣsVTseD+2.(9)
通過旋轉(zhuǎn)不變子空間的方法:
B=UsΣ1/2s.(10)
此時,可將矩陣B分為兩個M-1維的子空間B1和B2.B1為矩陣B去掉最后一行后的M-1維子空間;B2為矩陣B去掉第一行后的M-1維子空間.可知:
B=B1
最后一行=第一行
B2. (11)
顯然易見B1和B2滿足如下關(guān)系:
B1D=B2. (12)
式中:矩陣D為最小二乘解.從式(11)可知:
Us1Σ1/2s=Us2Σ1/2s.(13)
其中,Us1為Us的前M-1行,Us2為Us的后M-1行.所以式(8)的最小二乘解為:
D=(Us1Σ1/2s)+Us2Σ1/2s. (14)
對矩陣D進(jìn)行特征分解,由特征值λM即可獲得信號源中各個分量的頻率fM.
fM=arg (λM)fi/2π. (15)
式中:fi為信號的頻率.
在求得信號中各個正弦分量的頻率后,可通過最小二乘法求得幅值信息.對于N個采樣信號,令
λ=11…1
λ1λ2…λM
λN-11λN-11…λN-1M;
X=x(0)
x(1)
x(N-1);
A=A1A2…AM.
由最小二乘法可得:
A=λHλ-1λHX.(16)
由式(16)求得各信號分量的幅值為:
ak=2AM.(17)
基于Toeplitz算法,對N點(diǎn)采樣數(shù)據(jù),先通過式(7),(8),(9),(14)和式(15)估計出信號頻率信息,再通過式(16)和式(17)估計出幅值.本文算法流程圖如圖1所示.
圖1算法流程圖
Fig.1Flowchart of algorithm
2仿真算例
在電力系統(tǒng)中的諧波和間諧波幅值均不大,故將仿真信號中的諧波幅值比例控制在20%以內(nèi),通過式(18)進(jìn)行仿真實驗.
x(t)=0.07cos (2π42t)+0.5cos (2π50t)+
0.15cos (2π150t)+0.6cos (2π276t)+
0.03cos (2π350t)+w.(18)
式中:w為均值是0,方差為0.01的白噪聲;信號由頻率為50 Hz的基波,頻率分別為150 Hz和350 Hz的諧波以及頻率分別為42 Hz和276 Hz的間諧波等多個子信號組成.信噪比SNR為25 dB,采樣頻率為1 kHz,采樣個數(shù)為512.加入高斯白噪聲后的波形如圖2所示.
t/s
圖2仿真信號波形圖
Fig.2Waveforms of the simulation harmonic signal
利用Toeplitz提取的基波和諧波信號如圖3所示.表1為Toeplitz算法與經(jīng)典FFT算法所得頻率與幅值的比較.
利用Toeplitz算法精確提取了各次諧波信號的參數(shù),并與用經(jīng)典FFT算法估計的結(jié)果作比較.定義相對誤差:
Er=1n∑ni=1X(i)-X(i)′X(i). (19)
式中:Er為相對誤差;X(i)為基波或各次諧波頻率、幅值的初值;X(i)′為本文算法多次測量取得的平均值.
由表1可知,Toeplitz 算法頻率誤差為0.046 7%,幅值誤差為 4.367%.FFT 算法頻率誤差為 0.24%,幅值誤差為 14.83%,由于經(jīng)典FFT 算法對簡諧波的檢測出現(xiàn)頻譜泄露和柵欄效應(yīng)的問題,造成部分子信號幅頻特性嚴(yán)重失真,檢測出了一些虛假的間諧波信號(40.65,0.028;276.93,1.164),淹沒了原信號中(42 Hz,276 Hz)的2個間諧波信號,因此大大影響FFT對諧波參數(shù)檢測的準(zhǔn)確性.而本文方法基于信號子空間的基礎(chǔ)上,結(jié)合子空間旋轉(zhuǎn)不變性思想和最小二乘法的特性,降低了噪聲空間對參數(shù)檢測的影響,實現(xiàn)了對信號參數(shù)的有效估計.分析表明,本文算法在低性噪比下比經(jīng)典FFT 算法頻率、幅值估計精確度更高.
為進(jìn)一步驗證本文算法的精確性,取與式(18)中相同的 512個樣本數(shù)據(jù)點(diǎn),分別利用 Toeplitz,PMMUSIC(基于PM算子的MUSIC算法),TLSESPRIT(總體最小二乘空間旋轉(zhuǎn)不變性)和ROOTMUSIC(求根MUSIC算法)提取諧波參數(shù).TLSESPRIT屬于信號子空間算法,也是利用子空間信號的旋轉(zhuǎn)不變性來求解;PMMUSIC和ROOTMUSIC,都屬于噪聲子空間算法,利用導(dǎo)向矢量與噪聲子空間的正交性得到信號的參數(shù).實驗結(jié)果如表2所示.
由表2可知,利用相同的樣本數(shù)據(jù),在信噪比SNR=25 dB的條件下,Toeplitz算法頻率估計誤差為 0.046 7%,幅值估計誤差為4.367%,均小于其他3種算法的估計結(jié)果,因此 Toeplitz算法的頻率與幅值估計結(jié)果更精確.
在不同信噪比環(huán)境下,分別利用以上4種算法對相同的樣本數(shù)據(jù)估計頻率幅值,圖4為頻率誤差、幅值誤差與信噪比關(guān)系,在不同信噪比環(huán)境下,TLSESPRIT,PMMUSIC,ROOTMUSIC算法的頻率估計值相差不大,當(dāng)SNR=10 dB時,誤差值增大到0.125%.從圖4可知,Toeplitz算法估計的頻率誤差明顯小于其他3種算法,因此抗噪能力更強(qiáng).在SNR為10 dB時,Toeplitz算法估計的幅值誤差值為9.24%,比其他3種算法的幅值估計更小,估計性能更優(yōu).隨著信噪比降低,4種方法的估計精度都出現(xiàn)了一定的衰減,但本文算法的衰減幅度更小.信噪比較高時,PMMUSIC和ROOTMUSIC算法性能比較接近,但仍優(yōu)于TLSESPRIT算法而差于Toeplitz算法.總的來說,Toeplitz算法較PMMUSIC,TLSESPRIT和ROOTMUSIC算法有更好的抗干擾性,在低信噪比的環(huán)境下,依然能夠獲得較好的參數(shù)估計性能.
3用電負(fù)荷中的實例分析
造成嚴(yán)重閃變的主要原因是工業(yè)負(fù)荷,尤其是那些大量使用電弧爐、軋鋼機(jī)和多組電焊機(jī)的鋼鐵企業(yè).在許多情況下,類似礦井絞車等大型波動性電動機(jī)負(fù)荷也會引起閃變問題.經(jīng)常會引起閃變的普通負(fù)荷是電弧爐(Electric Arc Furnace).電弧爐是非線性時變負(fù)荷,常常造成很大的電壓閃變和諧波畸變,大多數(shù)大電流波動在熔化初期產(chǎn)生.在此期間,廢鋼碎塊實際上會在兩個電極之間搭橋,在電爐變壓器二次側(cè)造成大電抗短路.熔化期一般造成1~10 Hz的電壓閃變.一旦熔化期結(jié)束,就進(jìn)入精煉期,通常極間會有穩(wěn)定的電弧,導(dǎo)致高功率的三相穩(wěn)定負(fù)荷.
在一煉鐵廠的電弧爐中取一相電流數(shù)據(jù), 利用Toeplitz方法對采樣數(shù)據(jù)進(jìn)行檢測分析.圖5為實時信號波形圖.采樣頻率為1 280 Hz,采樣時間為0.16 s.圖6為利用Toeplitz算法分析得到的實時信號幅頻特性圖.在內(nèi)存為2 GB,處理器為core2 extreme qx9770(3.2 GHz),操作系統(tǒng)win7,MATLAB7.0 版本下,該算法的用時為15.2 ms,利用Toeplitz算法可把基波和諧波間諧波信號有效提取出來(幅值在0.01 kA 以下省略);由圖6可知,頻率分別為 49.98,10.76,27.31,73.76,90.90,110.01,157.63,244.80,252.26和 350.54,376.34 Hz;幅值分別為 0.368 8,0.101 2,0.201 1,0.072 4,0.082 3,0.036 9,0.024 6,0.014 2,0.026 8,0.010 7和0.020 8 kA.實驗結(jié)果驗證了該算法能較好地處理實時數(shù)據(jù),準(zhǔn)確檢測出諧波和間諧波信號參數(shù),具有較好的可通用性.
4結(jié)論
1)本文在對幾種常用電力諧波檢測方法進(jìn)行比較的基礎(chǔ)上,結(jié)合最小二乘理論和旋轉(zhuǎn)不變性思想,提出了基于Toeplitz的諧波和間諧波檢測方法.
2)仿真實驗結(jié)果驗證了Toeplitz法好于 FFT法和另外幾個常見的空間子分解類諧波檢測方法,它具有較好的抗噪能力.
3)從實時數(shù)據(jù)分析得出,Toeplitz法能夠應(yīng)用于實時信號檢測中,是一種諧波間諧波分析的有效方法,可作為諧波間諧波檢測的一種新工具.
參考文獻(xiàn)
[1]林海雪.現(xiàn)代電能質(zhì)量的基本問題[J].電網(wǎng)技術(shù),2001,25(10):5-12.
LIN Haixue.Main problems of modern power quality[J].Power System Technology,2001,25(10):5-12.(In Chinese)
[2]肖湘寧,韓民曉,徐永海,等.電能質(zhì)量分析與控制[M].北京:中國電力出版社,2004:85-122.
XIAO Xiangning,HAN Minxiao,XU Yonghai,et al.The power quality analysis and control[M].Beijing: China Electric Power Press ,2004:85-122.(In Chinese)
[3]高賜威,張亮.電動汽車充電對電網(wǎng)影響的綜述[J].電網(wǎng)技術(shù),2011,35(2):127-131.
GAO Ciwei,ZHANG Liang.A survey of influence of electrics vehicle charging on power grid[J].Power System Technology,2011,35(2):127-131.(In Chinese)
[4]王永良,陳輝,彭應(yīng)寧,等.空間譜估計理論與算法[M]. 北京:清華大學(xué)出版社,2004:167-189.
WANG Yongliang,CHEN Hui,PENG Yingning.Spatial spectrum estimation theory and algorithm[M].Beijing:Tsinghua University Publishing House,2004:167-189.(In Chinese)
[5]高云鵬,滕召勝,溫和,等.凱塞窗插值 FFT 的電力諧波分析與應(yīng)用[J].中國電機(jī)工程學(xué)報,2010,30(4):43-48.
GAO Yunpeng,TENG Zhaosheng,WEN He,et al.Harmonicanalysis based on kaiser window interpolation FFTand itsapplication[J].Proceedings of the CSEE,2010,30(4):43-48.(In Chinese)
[6]張斌,孫靜.基于 Mallat 算法和快速傅里葉變換的電能質(zhì)量分析方法[J].電網(wǎng)技術(shù),2007,31(19):35-40.
ZHANG Bin,SUN Jing.A power quality analysis method based on Mallat algorithm and fast Fourier transform[J].Power System Technology,2007,31(19):35-40.(In Chinese)
[7]李麗,嚴(yán)正,王興志.IGG法和擴(kuò)展傅里葉結(jié)合的間諧波分析[J].電力系統(tǒng)及其自動化學(xué)報,2010,22(3):9-14.
LI Li,YAN Zheng,WANG Xingzhi. Interharmonic analysis using IGG and extended fourier[J]. Proceedings of the CSUEPSA, 2010,22(3):9-14.(In Chinese)
[8]杜天軍,陳光禹,雷勇.基于混疊補(bǔ)償小波變換的電力系統(tǒng)諧波檢測方法[J].中國電機(jī)工程學(xué)報,2005,25(3):43-48.
DU Tianjun,CHEN Guangju,LEI Yong.A novel method for power system harmonic detection based on wavelet transform with aliasing compensation[J]. Proceedings of the CSEE, 2005,25(3):43-48.(In Chinese)
[9]FERRERO A. High accuracy fourier analysis based on synchronous sampling techniques[J]. IEEE Transmission on Instrument and Measurement, 1992, 41(6): 780-785.
[10]蔡濤, 段善旭, 劉方銳. 基于實值 MUSIC 算法的電力諧波分析[J]. 電工技術(shù)學(xué)報, 2009, 24(12): 149-155.
CAI Tao,DUAN Shanxu, LIU Fangrui.Power harmonic analysis based on realvalued spectral MUSIC algorithm[J].Transactions of China ElectroTechnical Society,2009, 24(12):149-155.(In Chinese)
[11]REN Q S, WILLIS A J. Fast rootMUSIC algorithm [J] . IEE Electronics Letters, 1997, 33(6):450-451.
[12]RAO B D,HARI K V S.Performance analysis of RootMUSIC[J].IEEE Trans on ASSP,1989,37(12):1939-1949.
[13]張君俊, 楊洪耕. 間諧波參數(shù)估計的 TLSESPRIT算法[J]. 電力系統(tǒng)及其自動化學(xué)報, 2010, 22(2):70-74.
ZHANG Junjun, YANG Honggeng. TLSESPRIT for interharmonic estimation[J]. Proceedings of the CSUEPSA, 2010, 22(2): 70-74.(In Chinese)
[14]初憲武. 基于 TLSESPRIT 算法和自適應(yīng)神經(jīng)網(wǎng)絡(luò)的間諧波分析[J].電工電能新技術(shù),2010, 29(2): 17-20.
CHU Xianwu.Interharmonic analysis based on TLSESPRIT algorithm and adeline neural network[J].Advanced Technology of Electrical Engineering and Energy, 2010, 29(2): 17-20.(In Chinese)
LIN Haixue.Main problems of modern power quality[J].Power System Technology,2001,25(10):5-12.(In Chinese)
[2]肖湘寧,韓民曉,徐永海,等.電能質(zhì)量分析與控制[M].北京:中國電力出版社,2004:85-122.
XIAO Xiangning,HAN Minxiao,XU Yonghai,et al.The power quality analysis and control[M].Beijing: China Electric Power Press ,2004:85-122.(In Chinese)
[3]高賜威,張亮.電動汽車充電對電網(wǎng)影響的綜述[J].電網(wǎng)技術(shù),2011,35(2):127-131.
GAO Ciwei,ZHANG Liang.A survey of influence of electrics vehicle charging on power grid[J].Power System Technology,2011,35(2):127-131.(In Chinese)
[4]王永良,陳輝,彭應(yīng)寧,等.空間譜估計理論與算法[M]. 北京:清華大學(xué)出版社,2004:167-189.
WANG Yongliang,CHEN Hui,PENG Yingning.Spatial spectrum estimation theory and algorithm[M].Beijing:Tsinghua University Publishing House,2004:167-189.(In Chinese)
[5]高云鵬,滕召勝,溫和,等.凱塞窗插值 FFT 的電力諧波分析與應(yīng)用[J].中國電機(jī)工程學(xué)報,2010,30(4):43-48.
GAO Yunpeng,TENG Zhaosheng,WEN He,et al.Harmonicanalysis based on kaiser window interpolation FFTand itsapplication[J].Proceedings of the CSEE,2010,30(4):43-48.(In Chinese)
[6]張斌,孫靜.基于 Mallat 算法和快速傅里葉變換的電能質(zhì)量分析方法[J].電網(wǎng)技術(shù),2007,31(19):35-40.
ZHANG Bin,SUN Jing.A power quality analysis method based on Mallat algorithm and fast Fourier transform[J].Power System Technology,2007,31(19):35-40.(In Chinese)
[7]李麗,嚴(yán)正,王興志.IGG法和擴(kuò)展傅里葉結(jié)合的間諧波分析[J].電力系統(tǒng)及其自動化學(xué)報,2010,22(3):9-14.
LI Li,YAN Zheng,WANG Xingzhi. Interharmonic analysis using IGG and extended fourier[J]. Proceedings of the CSUEPSA, 2010,22(3):9-14.(In Chinese)
[8]杜天軍,陳光禹,雷勇.基于混疊補(bǔ)償小波變換的電力系統(tǒng)諧波檢測方法[J].中國電機(jī)工程學(xué)報,2005,25(3):43-48.
DU Tianjun,CHEN Guangju,LEI Yong.A novel method for power system harmonic detection based on wavelet transform with aliasing compensation[J]. Proceedings of the CSEE, 2005,25(3):43-48.(In Chinese)
[9]FERRERO A. High accuracy fourier analysis based on synchronous sampling techniques[J]. IEEE Transmission on Instrument and Measurement, 1992, 41(6): 780-785.
[10]蔡濤, 段善旭, 劉方銳. 基于實值 MUSIC 算法的電力諧波分析[J]. 電工技術(shù)學(xué)報, 2009, 24(12): 149-155.
CAI Tao,DUAN Shanxu, LIU Fangrui.Power harmonic analysis based on realvalued spectral MUSIC algorithm[J].Transactions of China ElectroTechnical Society,2009, 24(12):149-155.(In Chinese)
[11]REN Q S, WILLIS A J. Fast rootMUSIC algorithm [J] . IEE Electronics Letters, 1997, 33(6):450-451.
[12]RAO B D,HARI K V S.Performance analysis of RootMUSIC[J].IEEE Trans on ASSP,1989,37(12):1939-1949.
[13]張君俊, 楊洪耕. 間諧波參數(shù)估計的 TLSESPRIT算法[J]. 電力系統(tǒng)及其自動化學(xué)報, 2010, 22(2):70-74.
ZHANG Junjun, YANG Honggeng. TLSESPRIT for interharmonic estimation[J]. Proceedings of the CSUEPSA, 2010, 22(2): 70-74.(In Chinese)
[14]初憲武. 基于 TLSESPRIT 算法和自適應(yīng)神經(jīng)網(wǎng)絡(luò)的間諧波分析[J].電工電能新技術(shù),2010, 29(2): 17-20.
CHU Xianwu.Interharmonic analysis based on TLSESPRIT algorithm and adeline neural network[J].Advanced Technology of Electrical Engineering and Energy, 2010, 29(2): 17-20.(In Chinese)
LIN Haixue.Main problems of modern power quality[J].Power System Technology,2001,25(10):5-12.(In Chinese)
[2]肖湘寧,韓民曉,徐永海,等.電能質(zhì)量分析與控制[M].北京:中國電力出版社,2004:85-122.
XIAO Xiangning,HAN Minxiao,XU Yonghai,et al.The power quality analysis and control[M].Beijing: China Electric Power Press ,2004:85-122.(In Chinese)
[3]高賜威,張亮.電動汽車充電對電網(wǎng)影響的綜述[J].電網(wǎng)技術(shù),2011,35(2):127-131.
GAO Ciwei,ZHANG Liang.A survey of influence of electrics vehicle charging on power grid[J].Power System Technology,2011,35(2):127-131.(In Chinese)
[4]王永良,陳輝,彭應(yīng)寧,等.空間譜估計理論與算法[M]. 北京:清華大學(xué)出版社,2004:167-189.
WANG Yongliang,CHEN Hui,PENG Yingning.Spatial spectrum estimation theory and algorithm[M].Beijing:Tsinghua University Publishing House,2004:167-189.(In Chinese)
[5]高云鵬,滕召勝,溫和,等.凱塞窗插值 FFT 的電力諧波分析與應(yīng)用[J].中國電機(jī)工程學(xué)報,2010,30(4):43-48.
GAO Yunpeng,TENG Zhaosheng,WEN He,et al.Harmonicanalysis based on kaiser window interpolation FFTand itsapplication[J].Proceedings of the CSEE,2010,30(4):43-48.(In Chinese)
[6]張斌,孫靜.基于 Mallat 算法和快速傅里葉變換的電能質(zhì)量分析方法[J].電網(wǎng)技術(shù),2007,31(19):35-40.
ZHANG Bin,SUN Jing.A power quality analysis method based on Mallat algorithm and fast Fourier transform[J].Power System Technology,2007,31(19):35-40.(In Chinese)
[7]李麗,嚴(yán)正,王興志.IGG法和擴(kuò)展傅里葉結(jié)合的間諧波分析[J].電力系統(tǒng)及其自動化學(xué)報,2010,22(3):9-14.
LI Li,YAN Zheng,WANG Xingzhi. Interharmonic analysis using IGG and extended fourier[J]. Proceedings of the CSUEPSA, 2010,22(3):9-14.(In Chinese)
[8]杜天軍,陳光禹,雷勇.基于混疊補(bǔ)償小波變換的電力系統(tǒng)諧波檢測方法[J].中國電機(jī)工程學(xué)報,2005,25(3):43-48.
DU Tianjun,CHEN Guangju,LEI Yong.A novel method for power system harmonic detection based on wavelet transform with aliasing compensation[J]. Proceedings of the CSEE, 2005,25(3):43-48.(In Chinese)
[9]FERRERO A. High accuracy fourier analysis based on synchronous sampling techniques[J]. IEEE Transmission on Instrument and Measurement, 1992, 41(6): 780-785.
[10]蔡濤, 段善旭, 劉方銳. 基于實值 MUSIC 算法的電力諧波分析[J]. 電工技術(shù)學(xué)報, 2009, 24(12): 149-155.
CAI Tao,DUAN Shanxu, LIU Fangrui.Power harmonic analysis based on realvalued spectral MUSIC algorithm[J].Transactions of China ElectroTechnical Society,2009, 24(12):149-155.(In Chinese)
[11]REN Q S, WILLIS A J. Fast rootMUSIC algorithm [J] . IEE Electronics Letters, 1997, 33(6):450-451.
[12]RAO B D,HARI K V S.Performance analysis of RootMUSIC[J].IEEE Trans on ASSP,1989,37(12):1939-1949.
[13]張君俊, 楊洪耕. 間諧波參數(shù)估計的 TLSESPRIT算法[J]. 電力系統(tǒng)及其自動化學(xué)報, 2010, 22(2):70-74.
ZHANG Junjun, YANG Honggeng. TLSESPRIT for interharmonic estimation[J]. Proceedings of the CSUEPSA, 2010, 22(2): 70-74.(In Chinese)
[14]初憲武. 基于 TLSESPRIT 算法和自適應(yīng)神經(jīng)網(wǎng)絡(luò)的間諧波分析[J].電工電能新技術(shù),2010, 29(2): 17-20.
CHU Xianwu.Interharmonic analysis based on TLSESPRIT algorithm and adeline neural network[J].Advanced Technology of Electrical Engineering and Energy, 2010, 29(2): 17-20.(In Chinese)