朱亦鳴+高春梅+陳麟
摘要: 為使在太赫茲?rùn)M電波模式下基于平行板波導(dǎo)的對(duì)稱的雙矩形諧振腔結(jié)構(gòu)在濾波、傳感等方面有更好的應(yīng)用,在理論上使用有限元方法對(duì)該結(jié)構(gòu)在太赫茲?rùn)M電波模式下進(jìn)行了理論上的模擬仿真,并使用時(shí)域太赫茲波譜系統(tǒng)在實(shí)驗(yàn)上對(duì)其理論仿真結(jié)果進(jìn)行了驗(yàn)證。理論和實(shí)驗(yàn)均表明在太赫茲?rùn)M電波模式下基于平行板波導(dǎo)的對(duì)稱的雙矩形諧振腔結(jié)構(gòu),對(duì)諧振頻率的選擇以及諧振頻率Q值的大小均與兩平行板的板間距有關(guān),即隨著板間距的增大,諧振頻點(diǎn)均出現(xiàn)了紅移,紅移的速率為136 GHz/mm,并且其Q值也隨著板間距的增大而變大。此結(jié)果對(duì)太赫茲?rùn)M電波模式下基于平行板波導(dǎo)的對(duì)稱的雙矩形諧振腔結(jié)構(gòu)在濾波、傳感等方面的應(yīng)用提供了參數(shù)上的依據(jù)。
關(guān)鍵詞: 諧振腔; 平行板波導(dǎo); 太赫茲; 有限元
中圖分類號(hào): TN 29文獻(xiàn)標(biāo)志碼: Adoi: 10.3969/j.issn.10055630.2014.04.010
引言近幾年隨著太赫茲技術(shù)的發(fā)展,越來越多的人開始關(guān)注并從事太赫茲應(yīng)用的研究[16]。在過去10年,由于發(fā)現(xiàn)了平行板波導(dǎo)結(jié)構(gòu)能夠低損耗無失真的傳輸太赫茲信號(hào),為太赫茲的應(yīng)用提供了技術(shù)上的突破,故而使其在太赫茲領(lǐng)域產(chǎn)生了廣泛的應(yīng)用[7]?;谄叫邪宀▽?dǎo)這一平臺(tái),設(shè)計(jì)了各種諧振結(jié)構(gòu)內(nèi)置于平行板波導(dǎo)中,如:凹槽、狹縫、布拉格光柵等可用作太赫茲傳感器[8]或者太赫茲濾波器[910]等。以上的應(yīng)用都是在平行板波導(dǎo)的TEM模式下實(shí)現(xiàn)的,雖然TEM模式可以實(shí)現(xiàn)低損耗、無失真?zhèn)鬏?,并且有很好的耦合效果,但是不能夠提供一個(gè)完美的禁帶,這是由它的一維結(jié)構(gòu)決定的[11]。由于以上原因研究人員對(duì)平行板波導(dǎo)的TE模式也進(jìn)行了研究,并且很快將研究范圍擴(kuò)大到了它的TE1模式[12],并且發(fā)現(xiàn)在該模式下可以實(shí)現(xiàn)低損耗和完美禁帶。隨后在TE1模式下,一些新的內(nèi)置于平行板波導(dǎo)的諧振結(jié)構(gòu)被提出[1314],比較出名的結(jié)構(gòu)是將平行板波導(dǎo)的內(nèi)表面造一個(gè)矩形凹槽,該凹槽垂直于波傳播方向。已有的研究發(fā)現(xiàn)這種諧振腔結(jié)構(gòu)雖然簡(jiǎn)單,但是太赫茲波從該結(jié)構(gòu)傳播過去時(shí)會(huì)產(chǎn)生極強(qiáng)的消失,其半高寬在已有的人工結(jié)構(gòu)中是最窄的[610],這意味著作為傳感器,它們將具有極高的靈敏度,并且諧振波段的選擇可以通過微調(diào)板間距來調(diào)節(jié),這為設(shè)計(jì)帶阻濾波器提供了一個(gè)方便的偏差修正方式[14]。由于此結(jié)構(gòu)有以上特性,有人在該結(jié)構(gòu)的基礎(chǔ)之上又提出了一種新的諧振腔結(jié)構(gòu),作為一種可調(diào)諧的濾波器[15],如圖1所示。本文主要對(duì)這種新的結(jié)構(gòu)的特性進(jìn)行了研究。1實(shí)驗(yàn)樣品設(shè)計(jì)本文采用的平板波導(dǎo)都是由金屬/絕緣層/金屬構(gòu)成,所用的金屬樣品材料是鋁,因?yàn)樵谔掌澆ǘ武X近似為理想導(dǎo)體(perfect electric conductor,PEC),所用的絕緣層材料是干燥空氣,因?yàn)楦稍锏目諝饪梢韵魵鈱?duì)太赫茲波的影響,其上的微結(jié)構(gòu)——凹槽(即諧振腔)的加工是使用微機(jī)械加工方法制得[16],該雙矩形諧振腔結(jié)構(gòu)的結(jié)構(gòu)示意圖如圖1所示。圖1(a)為該結(jié)構(gòu)的側(cè)視圖,該圖標(biāo)示出了微機(jī)械加工出的長(zhǎng)方形凹槽位于平行板波導(dǎo)的中心,該長(zhǎng)方形凹槽垂直于傳播的太赫茲波,圖中W為凹槽的寬度,H為凹槽的深度,D為兩個(gè)平行金屬板的板間距,并且這兩個(gè)金屬板為上下對(duì)稱疊放。圖1(b)為太赫茲入射面示意圖,即前視圖,該圖給出了入射面太赫茲波的電場(chǎng)方向,可以看出該電場(chǎng)方向平行于凹光學(xué)儀器槽,入射波沿著波導(dǎo)傳播后在輸出端被接收。圖1(c)為相機(jī)拍攝的該結(jié)構(gòu)的實(shí)物圖。在本實(shí)驗(yàn)中,為使實(shí)驗(yàn)操作方便,選用了長(zhǎng)為85 mm×6 mm×6 mm的鋁板,另外由于時(shí)域太赫茲波譜系統(tǒng)所產(chǎn)生的信號(hào)在0.2~0.5 THz波段信號(hào)強(qiáng)度最強(qiáng),因此為提高信噪比,本實(shí)驗(yàn)中設(shè)計(jì)的凹槽的參數(shù)為:深H為420 μm,寬W為470 μm,以使諧振頻率落在該波段內(nèi)。在本實(shí)驗(yàn)中為精確控制板間距,使用標(biāo)準(zhǔn)的塞規(guī)作為墊片來改變兩鋁板間的間距,受時(shí)域太赫茲波譜系統(tǒng)分辨率的限制,理論計(jì)算和實(shí)驗(yàn)測(cè)試的板間距最大值為900 μm,受時(shí)域太赫茲波譜系統(tǒng)聚焦在樣品上的太赫茲波焦點(diǎn)大小以及TE1模式下禁帶的限制,理論計(jì)算和實(shí)驗(yàn)測(cè)試的板間距最小值為600 μm,受本實(shí)驗(yàn)所用塞規(guī)所能實(shí)現(xiàn)的最小刻度差50 μm的限制,每隔50 μm進(jìn)行理論計(jì)算和測(cè)試一組數(shù)據(jù),一共7組數(shù)據(jù)。實(shí)驗(yàn)時(shí),實(shí)驗(yàn)設(shè)備內(nèi)濕度小于5%,實(shí)驗(yàn)室溫度控制在22~24 ℃。2理論計(jì)算與實(shí)驗(yàn)結(jié)果分析在理論計(jì)算上,使用基于時(shí)域有限差分方法算法的商業(yè)仿真軟件對(duì)這種雙矩形諧振腔結(jié)構(gòu)在不同的板間距下進(jìn)行了仿真計(jì)算,并將在不同的板間距下的沒有凹槽的平行板波導(dǎo)作為參考信號(hào),分別計(jì)算得到了他們的透射率譜圖、諧振頻點(diǎn)、半高寬以及Q值。在實(shí)驗(yàn)上,使用的是時(shí)域太赫茲波譜系統(tǒng)(TDS)系統(tǒng)對(duì)在不同的板間距下的基于平行板波導(dǎo)的雙矩諧振腔結(jié)構(gòu)進(jìn)行了實(shí)驗(yàn)驗(yàn)證,得到了時(shí)域信號(hào),并通過傅里葉變換得到了頻域譜圖,參考信號(hào)同樣為相應(yīng)板間距下沒有槽的平行板波導(dǎo)。系統(tǒng)的時(shí)域采樣時(shí)間為218.4 ps,所以頻率分辨率約為4.58 GHz。
圖2給出了雙矩諧振腔結(jié)構(gòu)在兩平行板間距為750 μm的實(shí)驗(yàn)與理論對(duì)比圖,選擇750 μm的板間距,首先是因?yàn)樗谒鶞y(cè)的數(shù)據(jù)組的中心,其次整個(gè)理論計(jì)算和實(shí)驗(yàn)測(cè)試的數(shù)據(jù)量較大,而其他的板間距與其有類似特點(diǎn),因此為避免不必要的重復(fù),本文在此只給了一組詳細(xì)的原始數(shù)據(jù)圖片,如圖2所示。圖2(a)中,雙矩諧振腔結(jié)構(gòu)的諧振頻點(diǎn)(即頻率消失的最大點(diǎn))實(shí)測(cè)值為405.6 GHz,理論值為407.5 GHz,頻率消失的頻段的半高寬為:實(shí)測(cè)值約為13.9 GHz,對(duì)應(yīng)Q值為31;理論值約為17 GHz,對(duì)應(yīng)Q值為24。圖2(b)為雙矩諧振腔結(jié)構(gòu)的諧振頻點(diǎn)407.5 GHz處的場(chǎng)分布圖,從該結(jié)構(gòu)諧振頻點(diǎn)的場(chǎng)分布圖上可以看出由于雙槽結(jié)構(gòu)是一種對(duì)稱結(jié)構(gòu),諧振頻點(diǎn)的選擇是由上下兩個(gè)凹槽共同產(chǎn)生作用,所以可以說由上下兩個(gè)凹槽共同作用形成駐波而出現(xiàn)這種帶阻現(xiàn)象。對(duì)基于平行板波導(dǎo)的雙矩諧振腔結(jié)構(gòu)在連續(xù)不同的板間距下進(jìn)行了模擬仿真,并對(duì)其做了相應(yīng)的實(shí)驗(yàn),并對(duì)他們進(jìn)行了理論仿真,理論計(jì)算和試驗(yàn)的諧振頻點(diǎn)的分布圖如圖3所示,從圖中可以看出在板間距為600~900 μm時(shí),在TE1模式下,雙矩諧振腔結(jié)構(gòu)的諧振頻點(diǎn)隨著板間距的增大出現(xiàn)了紅移。這種結(jié)構(gòu)的諧振頻點(diǎn)隨著板間距的紅移變化幾乎成線性變化,其紅移速率的理論值約為141 GHz/mm,實(shí)驗(yàn)值為143 GHz/mm,這種隨著板間距的減少諧振頻率增加的現(xiàn)象的存在意味著微調(diào)板間距可以彌補(bǔ)制造特定頻率的平行板諧振腔結(jié)構(gòu)中存在的誤差。在TE1模式下,對(duì)于太赫茲脈沖來說存在一個(gè)低的截止頻率符合公式fc =c/(2b),b為板間距。根據(jù)此公式我們可以算出截止頻率的變化速率為-c/(2b2),從公式中可以看出,這種變化的速率是成非線性變化,并且在0~1 mm變化速率快于諧振頻率隨著板間距的線性變化,因此隨著板間距的減少,在TE1模式下的諧振頻率可能會(huì)達(dá)到截止頻率,該諧振消失。本文還對(duì)不同板間距下的雙矩諧振腔結(jié)構(gòu)的透射率譜圖中的下降部分的半高寬做了數(shù)據(jù)上的對(duì)比,并計(jì)算了其Q值,其半高寬(FWHM)的數(shù)據(jù)如圖4(內(nèi)嵌)所示,該雙矩諧振腔結(jié)構(gòu)的半高寬隨著板間距的增大而減少,減少的速率為40 GHz/mm,從變化趨勢(shì)上來看,當(dāng)板間距變大時(shí),半高寬趨近于零。其Q值的數(shù)據(jù)如圖4所示,該雙矩諧振腔結(jié)構(gòu)的Q值隨著板間距的增大而增大,同樣從變化趨勢(shì)上來看,當(dāng)板間距變大時(shí),Q值趨于無窮大。
3結(jié)論本文主要在實(shí)驗(yàn)和理論上研究了在太赫茲?rùn)M電波模式下基于平行板波導(dǎo)的對(duì)稱的雙矩形諧振腔結(jié)構(gòu)的特性,本研究表明在太赫茲?rùn)M電波模式下基于平行板波導(dǎo)的對(duì)稱的雙矩形諧振腔結(jié)構(gòu)對(duì)諧振頻率的選擇以及諧振頻率Q值的大小均與兩平行板的板間距有關(guān),即隨著板間距的增大,諧振頻點(diǎn)均出現(xiàn)了紅移,紅移的速率為136 GHz/mm,并且其Q值也隨著板間距的增大而變大。從以上的研究數(shù)據(jù)上看,雙矩形諧振腔結(jié)構(gòu)作為濾波器和傳感器是一個(gè)不錯(cuò)的選擇。
參考文獻(xiàn):
[1]LIU J B,MENDIS R,DANIEL M,et al.A tapered parallelplatewaveguide probe for THz nearfield reflection imaging[J].Applied Physics Letters,2012,100(3):031101.
[2]ASTLEY V,REICHEL K S,JONES J,et al.Terahertz multichannel microfluidic sensor based on parallelplate waveguide resonant cavities[J].Applied Physics Letters,2012,100(23):231108.
[3]MENDIS R,ASTLEY V,LIU J B,et al.Terahertz microfluidic sensor based on a parallelplate waveguide resonant cavity[J]. Applied Physics Letters,2009,95(17):171113.
[4]NAGEL M,BOLIVAR P H,KURZ H.Modular parallelplate THz components for costefcient biosensing systems[J].Semiconductor Science and Technology,2005,20(7):S281S285.
[5]BINGHAM A L,GRISCHKOWSKY D.Terahertz twodimensional highQ photonic crystal waveguide cavities[J].Optics Letters,2008,33(4),348350.
[6]BINGHAM A L,GRISCHKOWSKY D.High Q,onedimensional terahertz photonic waveguides[J].Applied Physics Letters,2007,90(9):171113.
[7]MENDIS R,GRISCHKOWSKY D.Undistorted guidedwave propagation of subpicosecond terahertz pulses[J].Optics Letters,2001,26(11):846848.
[8]EUI S L,TAE I J.Tunable THz notch filter with a single groove inside parallelplate waveguides[J].Optics Letters,2012,20(29):2960529612.
[9]LEE E S,SO J K,PARK G S,et al.Terahertz band gaps induced by metal grooves inside parallelplate waveguides[J].Optics Letters,2012,20(61):61166123.
[10]LEE E S,LEE S G,KEE C S,et al.Terahertz notch and lowpass filters based on band gaps properties by using metal slits in tapered parallelplate waveguides[J].Optics Express,2011,19(16):1485214859.
[11]HARSH S S,LAMANS N,GRISCHKOWSKY D.High Q terahertz Bragg resonances within a metal parallel plate waveguide[J].Applied Physics Letters,2009,94(9):091118.
[12]MENDIS R,MITTLE D M.Comparison of the lowestorder transverse electric(TE1)and transversemagnetic(TEM)modes of the parallelplate waveguide for terahertz pulse applications[J].Optics Express,2009,17(17):1483914850.
[13]MENDIS R,MITTLEMAN D M.An investigation of the lowestorder transverseelectric(TE1)mode of the parallelplate waveguide for THz pulse propagation[J].Journal of the Optical Society of America B,2009,26(9):A6A13.
[14]ASTLEY V,REICHEL K S,JONES J,et al.A modematching analysis of dielectricfilled resonant cavities coupled to terahertz parallel plate waveguides[J].Optics Express,2012,20(21):2176621772.
[15]ASTLEY V,MCCRAKEN B,MENDIS R,et al.Analysis of rectangular resonant cavities in terahertz parallelplate waveguides[J].Optics Letters,2011,36(8):14521454.
[16]CHEN L,GAO C M,XU J M,et al.Observation of electromagnetically induced transparencylike transmission in terahertz asymmetric waveguidecavities systems[J].Optics Letters,2013,38(9):13791381.
3結(jié)論本文主要在實(shí)驗(yàn)和理論上研究了在太赫茲?rùn)M電波模式下基于平行板波導(dǎo)的對(duì)稱的雙矩形諧振腔結(jié)構(gòu)的特性,本研究表明在太赫茲?rùn)M電波模式下基于平行板波導(dǎo)的對(duì)稱的雙矩形諧振腔結(jié)構(gòu)對(duì)諧振頻率的選擇以及諧振頻率Q值的大小均與兩平行板的板間距有關(guān),即隨著板間距的增大,諧振頻點(diǎn)均出現(xiàn)了紅移,紅移的速率為136 GHz/mm,并且其Q值也隨著板間距的增大而變大。從以上的研究數(shù)據(jù)上看,雙矩形諧振腔結(jié)構(gòu)作為濾波器和傳感器是一個(gè)不錯(cuò)的選擇。
參考文獻(xiàn):
[1]LIU J B,MENDIS R,DANIEL M,et al.A tapered parallelplatewaveguide probe for THz nearfield reflection imaging[J].Applied Physics Letters,2012,100(3):031101.
[2]ASTLEY V,REICHEL K S,JONES J,et al.Terahertz multichannel microfluidic sensor based on parallelplate waveguide resonant cavities[J].Applied Physics Letters,2012,100(23):231108.
[3]MENDIS R,ASTLEY V,LIU J B,et al.Terahertz microfluidic sensor based on a parallelplate waveguide resonant cavity[J]. Applied Physics Letters,2009,95(17):171113.
[4]NAGEL M,BOLIVAR P H,KURZ H.Modular parallelplate THz components for costefcient biosensing systems[J].Semiconductor Science and Technology,2005,20(7):S281S285.
[5]BINGHAM A L,GRISCHKOWSKY D.Terahertz twodimensional highQ photonic crystal waveguide cavities[J].Optics Letters,2008,33(4),348350.
[6]BINGHAM A L,GRISCHKOWSKY D.High Q,onedimensional terahertz photonic waveguides[J].Applied Physics Letters,2007,90(9):171113.
[7]MENDIS R,GRISCHKOWSKY D.Undistorted guidedwave propagation of subpicosecond terahertz pulses[J].Optics Letters,2001,26(11):846848.
[8]EUI S L,TAE I J.Tunable THz notch filter with a single groove inside parallelplate waveguides[J].Optics Letters,2012,20(29):2960529612.
[9]LEE E S,SO J K,PARK G S,et al.Terahertz band gaps induced by metal grooves inside parallelplate waveguides[J].Optics Letters,2012,20(61):61166123.
[10]LEE E S,LEE S G,KEE C S,et al.Terahertz notch and lowpass filters based on band gaps properties by using metal slits in tapered parallelplate waveguides[J].Optics Express,2011,19(16):1485214859.
[11]HARSH S S,LAMANS N,GRISCHKOWSKY D.High Q terahertz Bragg resonances within a metal parallel plate waveguide[J].Applied Physics Letters,2009,94(9):091118.
[12]MENDIS R,MITTLE D M.Comparison of the lowestorder transverse electric(TE1)and transversemagnetic(TEM)modes of the parallelplate waveguide for terahertz pulse applications[J].Optics Express,2009,17(17):1483914850.
[13]MENDIS R,MITTLEMAN D M.An investigation of the lowestorder transverseelectric(TE1)mode of the parallelplate waveguide for THz pulse propagation[J].Journal of the Optical Society of America B,2009,26(9):A6A13.
[14]ASTLEY V,REICHEL K S,JONES J,et al.A modematching analysis of dielectricfilled resonant cavities coupled to terahertz parallel plate waveguides[J].Optics Express,2012,20(21):2176621772.
[15]ASTLEY V,MCCRAKEN B,MENDIS R,et al.Analysis of rectangular resonant cavities in terahertz parallelplate waveguides[J].Optics Letters,2011,36(8):14521454.
[16]CHEN L,GAO C M,XU J M,et al.Observation of electromagnetically induced transparencylike transmission in terahertz asymmetric waveguidecavities systems[J].Optics Letters,2013,38(9):13791381.
3結(jié)論本文主要在實(shí)驗(yàn)和理論上研究了在太赫茲?rùn)M電波模式下基于平行板波導(dǎo)的對(duì)稱的雙矩形諧振腔結(jié)構(gòu)的特性,本研究表明在太赫茲?rùn)M電波模式下基于平行板波導(dǎo)的對(duì)稱的雙矩形諧振腔結(jié)構(gòu)對(duì)諧振頻率的選擇以及諧振頻率Q值的大小均與兩平行板的板間距有關(guān),即隨著板間距的增大,諧振頻點(diǎn)均出現(xiàn)了紅移,紅移的速率為136 GHz/mm,并且其Q值也隨著板間距的增大而變大。從以上的研究數(shù)據(jù)上看,雙矩形諧振腔結(jié)構(gòu)作為濾波器和傳感器是一個(gè)不錯(cuò)的選擇。
參考文獻(xiàn):
[1]LIU J B,MENDIS R,DANIEL M,et al.A tapered parallelplatewaveguide probe for THz nearfield reflection imaging[J].Applied Physics Letters,2012,100(3):031101.
[2]ASTLEY V,REICHEL K S,JONES J,et al.Terahertz multichannel microfluidic sensor based on parallelplate waveguide resonant cavities[J].Applied Physics Letters,2012,100(23):231108.
[3]MENDIS R,ASTLEY V,LIU J B,et al.Terahertz microfluidic sensor based on a parallelplate waveguide resonant cavity[J]. Applied Physics Letters,2009,95(17):171113.
[4]NAGEL M,BOLIVAR P H,KURZ H.Modular parallelplate THz components for costefcient biosensing systems[J].Semiconductor Science and Technology,2005,20(7):S281S285.
[5]BINGHAM A L,GRISCHKOWSKY D.Terahertz twodimensional highQ photonic crystal waveguide cavities[J].Optics Letters,2008,33(4),348350.
[6]BINGHAM A L,GRISCHKOWSKY D.High Q,onedimensional terahertz photonic waveguides[J].Applied Physics Letters,2007,90(9):171113.
[7]MENDIS R,GRISCHKOWSKY D.Undistorted guidedwave propagation of subpicosecond terahertz pulses[J].Optics Letters,2001,26(11):846848.
[8]EUI S L,TAE I J.Tunable THz notch filter with a single groove inside parallelplate waveguides[J].Optics Letters,2012,20(29):2960529612.
[9]LEE E S,SO J K,PARK G S,et al.Terahertz band gaps induced by metal grooves inside parallelplate waveguides[J].Optics Letters,2012,20(61):61166123.
[10]LEE E S,LEE S G,KEE C S,et al.Terahertz notch and lowpass filters based on band gaps properties by using metal slits in tapered parallelplate waveguides[J].Optics Express,2011,19(16):1485214859.
[11]HARSH S S,LAMANS N,GRISCHKOWSKY D.High Q terahertz Bragg resonances within a metal parallel plate waveguide[J].Applied Physics Letters,2009,94(9):091118.
[12]MENDIS R,MITTLE D M.Comparison of the lowestorder transverse electric(TE1)and transversemagnetic(TEM)modes of the parallelplate waveguide for terahertz pulse applications[J].Optics Express,2009,17(17):1483914850.
[13]MENDIS R,MITTLEMAN D M.An investigation of the lowestorder transverseelectric(TE1)mode of the parallelplate waveguide for THz pulse propagation[J].Journal of the Optical Society of America B,2009,26(9):A6A13.
[14]ASTLEY V,REICHEL K S,JONES J,et al.A modematching analysis of dielectricfilled resonant cavities coupled to terahertz parallel plate waveguides[J].Optics Express,2012,20(21):2176621772.
[15]ASTLEY V,MCCRAKEN B,MENDIS R,et al.Analysis of rectangular resonant cavities in terahertz parallelplate waveguides[J].Optics Letters,2011,36(8):14521454.
[16]CHEN L,GAO C M,XU J M,et al.Observation of electromagnetically induced transparencylike transmission in terahertz asymmetric waveguidecavities systems[J].Optics Letters,2013,38(9):13791381.