国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

利用和聲搜索算法求解投資組合最優(yōu)化研究

2014-09-19 14:44:23何紅拓守恒
商業(yè)研究 2014年4期

何紅+拓守恒

文章編號(hào):1001-148X(2014)04-0142-07

摘要:隨著社會(huì)的進(jìn)步, 經(jīng)濟(jì)呈多元化趨勢(shì)發(fā)展, 多元化的投資就顯得尤為重要。為了使投資收益盡可能大、風(fēng)險(xiǎn)盡可能小,通過對(duì)基數(shù)約束均值-方差模型進(jìn)行詳細(xì)分析,本文提出了基于和聲搜索算法的投資優(yōu)化組合求解算法,通過對(duì)5個(gè)投資案例進(jìn)行仿真測(cè)試,驗(yàn)證采用這種算法是有效可靠的。

關(guān)鍵詞:投資優(yōu)化組合;和聲搜索算法; 基數(shù)約束均值-方差模型

中圖分類號(hào):F83059 文獻(xiàn)標(biāo)識(shí)碼:A

收稿日期:2013-12-30

作者簡(jiǎn)介:何紅(1978-),女,陜西蒲城人,陜西理工學(xué)院歷史文化與旅游學(xué)院教師,研究方向:區(qū)域旅游經(jīng)濟(jì);拓守恒(1978-),男,寧夏中衛(wèi)人,陜西理工學(xué)院數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院副教授,研究方向:智能優(yōu)化算法與信息處理。

基金項(xiàng)目:陜西省教育廳專項(xiàng)科研計(jì)劃項(xiàng)目,項(xiàng)目編號(hào):12JK0147;陜西(高校)哲學(xué)社會(huì)科學(xué)重點(diǎn)研究基地漢水文化研究中心計(jì)劃項(xiàng)目,項(xiàng)目編號(hào):SLGH1248。受國(guó)際金融風(fēng)暴的影響,人們開始專注于多種投資理財(cái),投資者在進(jìn)行投資目標(biāo)選擇時(shí)必然要考慮投資的收益和風(fēng)險(xiǎn)問題,怎樣選擇最優(yōu)的投資優(yōu)化(Portfolio optimization: PO)方案成為重要課題。和聲搜索(Harmony Search:HS)算法是一種新型的群體智能優(yōu)化算法,近年來得到了廣泛應(yīng)用,但對(duì)投資組合優(yōu)化問題卻鮮有應(yīng)用。本文提出一種改進(jìn)的和聲搜索算法,并試圖用其進(jìn)行投資組合優(yōu)化問題求解。

一、CCMV投資優(yōu)化模型帶有基數(shù)約束的投資組合優(yōu)化模型 [1-2]是建立在MV模型基礎(chǔ)之上,引入了風(fēng)險(xiǎn)規(guī)避參數(shù),具體模型如下:minf(X)=(1-λ)?Re-λ?Ri(1)Ri=∑Di=1∑Dj=1xixjδij(2)Re=∑Di=1xiμi(3)st∑Di=1zi=K(4)∑Di=1xi=1 (5)ξizi≤xi≤ζizi, zi∈{0,1},i=1,…,D.(6)公式(1)中Re表示投資收益,Ri表示投資風(fēng)險(xiǎn),λ是風(fēng)險(xiǎn)規(guī)避參數(shù);公式(2)-(5)中,D表示可投資的資產(chǎn)總數(shù)目,μi是第i種投資的期望收益率(i=1,2,…,D),xi表示第i種資產(chǎn)的投資比例, δij表示第i種資產(chǎn)與第j中資產(chǎn)之間的協(xié)方差;zi表示第i中資產(chǎn)是否要選擇投資,若zi=1,表示選擇第i種資產(chǎn)進(jìn)行投資,zi=0,表示不對(duì)其進(jìn)行投資,K表示可選擇投資的資產(chǎn)總數(shù)量;ξi和ζi分別表示第i種投資在總投資中所占比例的下限和上限。從公式(1)的目標(biāo)函數(shù)可以看出:當(dāng)λ=0時(shí),不考慮投資風(fēng)險(xiǎn),優(yōu)化的目標(biāo)是收益最大化;反之,當(dāng)λ=0時(shí),不考慮投資收益,僅僅選擇投資風(fēng)險(xiǎn)最小的資產(chǎn)進(jìn)行投資。當(dāng)然,投資選擇需要同時(shí)考慮收益和風(fēng)險(xiǎn),目的是收益盡可能大,風(fēng)險(xiǎn)盡可能小。因此,需要在收益和風(fēng)險(xiǎn)之間找的一種平衡。當(dāng)λ在(0,1)之間任取值λ′,都會(huì)獲得相應(yīng)的期望收益Re′和風(fēng)險(xiǎn)值Ri′,所有λ在(0,1)中的取值,得到的(Re′,Ri′)就構(gòu)成了問題的有效前沿。CCMC模型是一種約束優(yōu)化問題,求解算法必須保證獲得的最優(yōu)解是可行解,一般對(duì)于約束優(yōu)化問題都采用約束處理技術(shù),比如罰函數(shù)法等,但是計(jì)算代價(jià)很大,并且效果不一定理想。由公式(4)-(5)可以看出約束條件是混合的二次整數(shù)規(guī)劃問題。對(duì)公式(4),如果K*=∑Di=1zi>K,根據(jù)風(fēng)險(xiǎn)規(guī)避參數(shù)Ci的值(公式7),采用輪盤賭算法隨機(jī)選擇(Ci值小的被選中概率較大)一些資產(chǎn)將其去除;反之,如果K*

二、利用和聲搜索算法求解CCMV投資優(yōu)化模型(一)標(biāo)準(zhǔn)HS算法HS算法中的幾個(gè)重要概念:(1)和聲記憶庫(kù)(harmony memory:HM),類似于遺傳算法中的種群,初始時(shí)在搜索空間內(nèi)隨機(jī)產(chǎn)生。HM=X1

X2

XHMS=x11x12…x1D

x21x22…x2D



xHMS1xHMS2…xHMSD(2)和聲記憶庫(kù)選擇概率(Harmony memory consideration rate:HMCR)。(3)音高調(diào)整概率(pitch-adjusting rate:PAR)。(4)音高調(diào)整步長(zhǎng)(pitch bandwidth:BW)。標(biāo)準(zhǔn)和聲搜索算法思想如下:(1)產(chǎn)生新和聲Xnew=(x1,x2,…,xD),產(chǎn)生方法如下:if rand

{xnewi=xai(a=U{1,2,…,HMS}

if rand

xnewi=xnewi±rand×BW(i)}

else

xnewi=xLi+rand×(xUi-xLi) (2)判斷Xnew是否比和聲記憶庫(kù)最差和聲Xidworst(idworst是HM中最差和聲的索引)。如果是,將其用Xnew替換。(3)重復(fù)(1)(2)直到結(jié)束條件滿足。(二)改進(jìn)的HS算法HS算法具有很強(qiáng)的全局探索能力,但是求解精度較低,學(xué)者們對(duì)HS做了很多改進(jìn) [3-4],并且在實(shí)踐中得到了很好應(yīng)用。例如無線傳感器網(wǎng)絡(luò)優(yōu)化,電力系統(tǒng)優(yōu)化配置等工程優(yōu)化領(lǐng)域[5-10]。本文提出一種動(dòng)態(tài)降維調(diào)整策略對(duì)和聲搜索算法改進(jìn),將其應(yīng)用于投資組合優(yōu)化問題。由于投資組合優(yōu)化問題是高維復(fù)雜優(yōu)化問題,算法容易陷入局部搜索而丟失全局最優(yōu)解。本文算法的主要思想是對(duì)一個(gè)高維復(fù)雜優(yōu)化問題,為了保證算法的全局探索能力,在搜索開始時(shí)采用多維度擾動(dòng),隨著搜索的進(jìn)行逐步減少擾動(dòng)維數(shù)。到了后期,為了獲得高精度的最優(yōu)解,算法進(jìn)行少維度調(diào)整,主要進(jìn)行局部搜索,算法偽代碼如下:

基于動(dòng)態(tài)降維調(diào)整策略的和聲搜索算法While t

If rand < PAR  xnewi=xnewi±rand?BW(i); %規(guī)則②

EndIf

Else xnewi = xLi  + rand?(xUi -xLi ); %規(guī)則③

EndEndIF

EndFor t=t+1;EndWhile本文算法流程如圖1所示。在本文算法中,調(diào)整概率TP=TPmax-(TPmax-TPmin)?(t/Tmax)2 隨著迭代次數(shù)的增加逐步減小(如圖2),其中TPmax 和TPmin分別為最大調(diào)整概率值和最小調(diào)整概率值。在算法優(yōu)化開始時(shí),以較大的概率TPmax進(jìn)行擾動(dòng),主要進(jìn)行全局探索優(yōu)化,隨著搜索的進(jìn)行,調(diào)整概率TP隨之變小,使得搜索逐步從全局探索變?yōu)榫植课⒄{(diào)。設(shè)置J=ceil(rand*D)是為了防止優(yōu)化調(diào)整概率太小,可能導(dǎo)致所有維都得不到調(diào)整。因此,需要從1到D中隨機(jī)選取一維J ,使得該維必須得到調(diào)整,避免了算法“空轉(zhuǎn)”。(類似于差分進(jìn)化算法進(jìn)行交叉時(shí),隨機(jī)選擇1個(gè)J,使其能夠得到交叉的機(jī)會(huì))。另外,本文算法中的參數(shù)PAR和BW與算法IHS[4]中的更新一致,根據(jù)算法的迭代動(dòng)態(tài)更新。對(duì)于投資組合優(yōu)化問題,和聲記憶庫(kù)HM中每一個(gè)和聲X就是一種投資分配方案,通過本文的動(dòng)態(tài)和聲調(diào)整策略,使其HM的中和聲得到優(yōu)化。由于CCMV模型中不同的λ會(huì)產(chǎn)生不同的最優(yōu)投資方案,可以讓λ從0以較小的步長(zhǎng)變化到1,這樣產(chǎn)生的多個(gè)最優(yōu)投資形成了最優(yōu)有效前言,具體方法如下列偽代碼:For λ=0:step:1利用本文和聲搜索算法計(jì)算最優(yōu)投資方案X*;計(jì)算此時(shí)的風(fēng)險(xiǎn)與收益(Re,Ri),并將其記錄在最優(yōu)前端(Pareto)集合中。

End圖1 基于動(dòng)態(tài)降維調(diào)整的和聲搜索算法流程圖圖2調(diào)整概率TP變化曲線三、仿真實(shí)驗(yàn)為了評(píng)估本文算法對(duì)投資組合優(yōu)化問題的優(yōu)化性能,選取5組測(cè)試數(shù)據(jù)(HangSeng 31種資產(chǎn); DAX100 85種資產(chǎn);FTSE100 89種資產(chǎn);S&P100 98種資產(chǎn);Nikkei 225種資產(chǎn)),測(cè)試數(shù)據(jù)來源于http://peoplebrunelacuk/~mastjjb/jeb/orlib/portinfohtml。實(shí)驗(yàn)1問題參數(shù)設(shè)置:準(zhǔn)備投資資產(chǎn)總數(shù)K不限,投資比例下上限不限,λ=0:002:1(讓λ從0以步長(zhǎng)002變化到1)。實(shí)驗(yàn)2問題參數(shù)設(shè)置:準(zhǔn)備投資資產(chǎn)總數(shù)K=10,投資比例下上限:ξi=001,ζi=1,λ=0:002:1。本文算法參數(shù)設(shè)置如表1。算法仿真實(shí)驗(yàn)是在Lenovo PC電腦Inter(R) Core(TM) i5-3407CPU @32GHz, 4GB內(nèi)存,Windows XP操作系統(tǒng),所有測(cè)試程序采用Matlab R2009a編寫。為了比較本文算法的性能,將其和遺傳算法(GA)、粒子群優(yōu)化(PSO)算法、模擬退火算法(SA)、禁忌搜索(TS)進(jìn)行比較,保證比較的公平性,對(duì)每一個(gè)測(cè)試問題,算法獨(dú)立運(yùn)行20次,選取平均值進(jìn)行比較。實(shí)驗(yàn)結(jié)果的評(píng)價(jià)指標(biāo)如下:(1)到最優(yōu)前端平均距離(Mean Euclidian distance)。根據(jù)λ計(jì)算得到的收益與風(fēng)險(xiǎn)的有效前沿與標(biāo)準(zhǔn)最優(yōu)前端之間的平均距離。(2)收益率誤差方差(Variance of return error)。(3)收益率誤差均值(Mean return error)。實(shí)驗(yàn)1的測(cè)試結(jié)果如表2,本文算法獲得的最優(yōu)有效前端如圖3-圖7。

表1 本文算法參數(shù)設(shè)置HMSHMCRPARBWTP目標(biāo)函數(shù)評(píng)價(jià)次數(shù)FEs100.99PARmax=0.99

PARmin=0.1BWmax=(xU-xL)/20

BWmin=(xU-xL)/(1e+8)TPmax=0.6

TPmin=5/D1000D

表2 實(shí)驗(yàn)1測(cè)試結(jié)果比較測(cè)試數(shù)據(jù)[]評(píng)價(jià)指標(biāo)[]GA[]PSO[]TS[]SA[]本文算法HangSeng[]到最優(yōu)前端平均距離[]5.9007E-04[]7.4137E-04[]5.9764E-04[]6.0520E-04[]9.71433E-07D=31[]收益率誤差方差[]0.2898 []0.3928 []0.2904 []0.2913 []0.0251[]收益率誤差均值[]0.1064 []0.1301 []0.1070 []0.1093 []0.0101DAX100[]到最優(yōu)前端平均距離[]1.1499E-03[]1.3617E-03[]1.2407E-03[]1.1801E-03[]3.3906E-06D=85[]收益率誤差方差[]0.3073 []0.3928 []0.2904 []0.2913 []0.2008[]收益率誤差均值[]0.1151 []0.1301 []0.1070 []0.1093 []0.0217FTSE100 []到最優(yōu)前端平均距離[]3.0260E-04[]3.3286E-04[]3.1773E-04[]3.2530E-04[]3.6412E-06D=89[]收益率誤差方差[]0.5021 []0.5360 []0.7030 []0.6694 []0.2571[]收益率誤差均值[]0.0574 []0.0638 []0.0578 []0.0579 []0.0319S&P100 []到最優(yōu)前端平均距離[]6.2033E-04[]7.8676E-04[]6.2033E-04[]6.2033E-04[]3.8627E-06D=98[]收益率誤差方差[]0.6097 []0.6857 []1.0011 []0.9504 []0.2880[]收益率誤差均值[]0.2130 []0.2460 []0.1248 []0.1474 []0.0268Nikkei[]到最優(yōu)前端平均距離[]1.5024E-03[]2.8747E-04[]1.5130E-04[]1.8610E-04[]1.0058E-05 D=225[]收益率誤差方差[]0.2112 []0.4253 []0.2178 []0.2105 []0.1836[]收益率誤差均值[]0.9332 []0.1401 []0.0737 []0.0723 []0.1900

實(shí)驗(yàn)2的測(cè)試結(jié)果如表3,本文算法獲得最優(yōu)有效前沿和標(biāo)準(zhǔn)最優(yōu)前沿比較如圖8-圖12。從表2可以看出對(duì)于實(shí)驗(yàn)1,5組測(cè)試數(shù)據(jù),“本文算法獲得最優(yōu)前端”距離“標(biāo)準(zhǔn)最優(yōu)前端”的平均距離都小于1E-05,非常接近最優(yōu)前端,并且本文算法對(duì)3個(gè)評(píng)價(jià)指標(biāo)的測(cè)試結(jié)果都明顯好于GA、PSO、TS和SA。由圖3-圖7來看,本文算法獲得的最優(yōu)前端和標(biāo)準(zhǔn)最優(yōu)前端幾乎是重疊的,并且分布非常均勻,說明本文算法在不對(duì)投資比例和投資數(shù)目做限制時(shí)是可行有效的。

表3實(shí)驗(yàn)2測(cè)試結(jié)果比較測(cè)試數(shù)據(jù)[]評(píng)價(jià)指標(biāo)[]GA[]PSO[]TS[]SA[]本文算法HangSeng[]到最優(yōu)前端平均距離[]3.9E-03[]4.9E-03[]3.95E-03[]4.0E-03[]7.73E-05D=31[]收益率誤差方差[]1.6541[]2.2421[]1.6578[]1.6628[]1.6205[]收益率誤差均值[]0.6072[]0.7427[]0.6107[]0.6238[]0.6051DAX100[]到最優(yōu)前端平均距離[]7.6E-03[]9.0E-03[]8.2E-03[]7.8E-03[]1.47E-04D=85[]收益率誤差方差[]1.7541[]2.2421[]1.6578[]1.6628[]1.2642[]收益率誤差均值[]0.6572[]0.7427[]0.6107[]0.6238[]0.7093FTSE100 []到最優(yōu)前端平均距離[]2.0E-03[]2.2E-03[]2.1E-03[]2.15E-03[]3.72E-05D=89[]收益率誤差方差[]2.866[]3.0596[]4.0123[]3.8205[]2.6632[]收益率誤差均值[]0.3277[]0.364[]0.3298[]0.3304[]0.394S&P100[]到最優(yōu)前端平均距離[]4.1E-03[]5.2E-03[]4.1E-03[]4.1E-03[]7.34E-05D=98[]收益率誤差方差[]3.4802[]3.9136[]5.7139[]5.4247[]3.6033[]收益率誤差均值[]1.2158[]1.404[]0.7125[]0.8416[]0.9746Nikkei[]到最優(yōu)前端平均距離[]9.93E-03[]1.9E-03[]1E-03[]1.23E-03[]7.73E-05D=225[]收益率誤差方差[]1.2056[]2.4274[]1.2431[]1.2017[]1.1805[]收益率誤差均值[]5.3266[]0.7997[]0.4207[]0.4126[]0.6051圖3 實(shí)驗(yàn)1中數(shù)據(jù)HangSeng(D=31)的最優(yōu)前沿比較圖4 實(shí)驗(yàn)1中數(shù)據(jù)DAX100(D=85)的最優(yōu)前沿比較圖5 實(shí)驗(yàn)1中數(shù)據(jù)FTSE100(D=89)的最優(yōu)前沿比較圖6 實(shí)驗(yàn)1中數(shù)據(jù)S&P100(D=98)的最優(yōu)前沿比較

endprint

從表3可以看出對(duì)于實(shí)驗(yàn)2,5組測(cè)試數(shù)據(jù),“本文算法獲得最優(yōu)前端”距離“標(biāo)準(zhǔn)最優(yōu)前端”的平均距離都小于1E-04,也很接近最優(yōu)前端。與GA、PSO、TS、SA相比,本文算法對(duì)第1個(gè)評(píng)價(jià)指標(biāo)的測(cè)試結(jié)果明顯占優(yōu),對(duì)其它2個(gè)指標(biāo)也具有一定的優(yōu)勢(shì)。由圖8-圖12可以看出(標(biāo)準(zhǔn)最優(yōu)前端是在沒有對(duì)投資數(shù)目和投資比例做限制時(shí)獲得的),本文算法獲得的最優(yōu)前端和標(biāo)準(zhǔn)最優(yōu)前端也很接近,并且分布也較為均勻。圖7 實(shí)驗(yàn)1中數(shù)據(jù)Nikkei(D=225)的最優(yōu)前沿比較圖8 實(shí)驗(yàn)2中數(shù)據(jù)HangSeng(D=31)的最優(yōu)前沿比較圖9 實(shí)驗(yàn)2中數(shù)據(jù)DAX100(D=85)的最優(yōu)前沿比較圖10 實(shí)驗(yàn)2中數(shù)據(jù)FTSE100(D=89)的最優(yōu)前沿比較圖11 實(shí)驗(yàn)2中數(shù)據(jù)S&P100(D=98)的最優(yōu)前沿比較圖12 實(shí)驗(yàn)2中數(shù)據(jù)Nikkei(D=225)的最優(yōu)前沿比較

四、結(jié)論分析本文提出的動(dòng)態(tài)調(diào)整策略是為了在全局探索(Exploration)和局部開發(fā)(Exploitation)之間實(shí)現(xiàn)有效平衡,在迭代初期需要較強(qiáng)的全局?jǐn)_動(dòng)能力,此時(shí)可以在優(yōu)化目標(biāo)向量 xnew上加大擾動(dòng)力度,增強(qiáng)種群多樣性,使其具有較強(qiáng)的全局探索能力。隨著優(yōu)化的進(jìn)行,到了后期,多數(shù)個(gè)體可能已經(jīng)聚集在了全局最優(yōu)解附近,此時(shí)開始加強(qiáng)局部最優(yōu)解的探索。為了有較高的成功率,對(duì)優(yōu)化目標(biāo)向量 xnew,選擇較少的維數(shù)進(jìn)行優(yōu)化調(diào)整,從而增強(qiáng)算法的求解精度。通過2個(gè)實(shí)驗(yàn)來看,本文算法對(duì)投資組合優(yōu)化問題的求解是可行有效的。

參考文獻(xiàn):

[1] T.J. Chang, N. Meade, J.E. Beasley, Y.M. Sharaiha, Heuristics for cardinality constrained portfolio optimization[J].Computers & Operations Research,2000,27:1271-1302.

[2] 王貞. 幾類投資組合優(yōu)化模型及其算法[D].西安:西安電子科技大學(xué),2012.

[3] Q.K. Pan, P.N. Suganthan, M.F. Tasgetiren, J.J. Liang, A self-adaptive global best harmony search algorithm for continuous optimization problems, Appl.Math. Comput. 2010,No.216:830-848.

[4] M. Mahdavi, M. Fesanghary, and E. Damangir.An improved harmony search algorithm for solving optimization problems[J]. Appl. Math.Comput., 2007,188(2):1567-1579.

[5] Hoang D C, Yadav P, Kumar R, et al. A robust harmony search algorithm based clustering protocol for wireless sensor networks[C]//Communications Workshops (ICC), 2010 IEEE International Conference on. IEEE, 2010: 1-5.

[6] Jaberipour M, Khorram E. Solving the sum-of-ratios problems by a harmony search algorithm[J].Journal of computational and applied mathematics, 2010, 234(3): 733-742.

[7] Poursha M, Khoshnoudian F, Moghadam A S. Harmony search based algorithms for the optimum cost design of reinforced concrete cantilever retaining walls[J].International Journal of Civil Engineering, 2011, 9(1): 1-8.

[8] Khazali A H, Kalantar M. Optimal reactive power dispatch based on harmony search algorithm [J].International Journal of Electrical Power & Energy Systems, 2011, 33(3): 684-692.

[9] Khazali A H, Parizad A, Kalantar M. Optimal voltage/reactive control by an improve harmony search algorithm[J].Int. Rev. Electr. Eng.-I. v5, 2010: 217-224.

[10]Khorram E, Jaberipour M. Harmony search algorithm for solving combined heat and power economic dispatch problems[J].Energy Conversion and Management, 2011, 52(2): 1550-1554.

A Solution to Portfolio Optimization Problems based on Harmony

Search Algorithm HE Hong1,TUO Shou-heng2

(1. School of History and Tourism, Shaanxi University of Technology, Hanzhong 723000,China;2. School

of Mathematics and Computer Science, Shaanxi University of Technology, Hanzhong 723000, China)

Abstract:With the progress of the society, economy has appeared diversified development trends, so it is important to build diversified portfolios. To make investment profit as large as possible, and to make the investment risk as small as possible, we analyze cardinality constrained mean-variance (CCMV) model in detail, and propose an improved harmony search algorithm to solve portfolio optimization problems. Finally, five portfolio problems are used to test the proposed algorithm. The results show that the proposed algorithm has some advantages in precision.

Key words:portfolio optimization; Harmony Search Algorithm; Cardinality Constrained Mean-Variance Model

(責(zé)任編輯:關(guān)立新)

endprint

從表3可以看出對(duì)于實(shí)驗(yàn)2,5組測(cè)試數(shù)據(jù),“本文算法獲得最優(yōu)前端”距離“標(biāo)準(zhǔn)最優(yōu)前端”的平均距離都小于1E-04,也很接近最優(yōu)前端。與GA、PSO、TS、SA相比,本文算法對(duì)第1個(gè)評(píng)價(jià)指標(biāo)的測(cè)試結(jié)果明顯占優(yōu),對(duì)其它2個(gè)指標(biāo)也具有一定的優(yōu)勢(shì)。由圖8-圖12可以看出(標(biāo)準(zhǔn)最優(yōu)前端是在沒有對(duì)投資數(shù)目和投資比例做限制時(shí)獲得的),本文算法獲得的最優(yōu)前端和標(biāo)準(zhǔn)最優(yōu)前端也很接近,并且分布也較為均勻。圖7 實(shí)驗(yàn)1中數(shù)據(jù)Nikkei(D=225)的最優(yōu)前沿比較圖8 實(shí)驗(yàn)2中數(shù)據(jù)HangSeng(D=31)的最優(yōu)前沿比較圖9 實(shí)驗(yàn)2中數(shù)據(jù)DAX100(D=85)的最優(yōu)前沿比較圖10 實(shí)驗(yàn)2中數(shù)據(jù)FTSE100(D=89)的最優(yōu)前沿比較圖11 實(shí)驗(yàn)2中數(shù)據(jù)S&P100(D=98)的最優(yōu)前沿比較圖12 實(shí)驗(yàn)2中數(shù)據(jù)Nikkei(D=225)的最優(yōu)前沿比較

四、結(jié)論分析本文提出的動(dòng)態(tài)調(diào)整策略是為了在全局探索(Exploration)和局部開發(fā)(Exploitation)之間實(shí)現(xiàn)有效平衡,在迭代初期需要較強(qiáng)的全局?jǐn)_動(dòng)能力,此時(shí)可以在優(yōu)化目標(biāo)向量 xnew上加大擾動(dòng)力度,增強(qiáng)種群多樣性,使其具有較強(qiáng)的全局探索能力。隨著優(yōu)化的進(jìn)行,到了后期,多數(shù)個(gè)體可能已經(jīng)聚集在了全局最優(yōu)解附近,此時(shí)開始加強(qiáng)局部最優(yōu)解的探索。為了有較高的成功率,對(duì)優(yōu)化目標(biāo)向量 xnew,選擇較少的維數(shù)進(jìn)行優(yōu)化調(diào)整,從而增強(qiáng)算法的求解精度。通過2個(gè)實(shí)驗(yàn)來看,本文算法對(duì)投資組合優(yōu)化問題的求解是可行有效的。

參考文獻(xiàn):

[1] T.J. Chang, N. Meade, J.E. Beasley, Y.M. Sharaiha, Heuristics for cardinality constrained portfolio optimization[J].Computers & Operations Research,2000,27:1271-1302.

[2] 王貞. 幾類投資組合優(yōu)化模型及其算法[D].西安:西安電子科技大學(xué),2012.

[3] Q.K. Pan, P.N. Suganthan, M.F. Tasgetiren, J.J. Liang, A self-adaptive global best harmony search algorithm for continuous optimization problems, Appl.Math. Comput. 2010,No.216:830-848.

[4] M. Mahdavi, M. Fesanghary, and E. Damangir.An improved harmony search algorithm for solving optimization problems[J]. Appl. Math.Comput., 2007,188(2):1567-1579.

[5] Hoang D C, Yadav P, Kumar R, et al. A robust harmony search algorithm based clustering protocol for wireless sensor networks[C]//Communications Workshops (ICC), 2010 IEEE International Conference on. IEEE, 2010: 1-5.

[6] Jaberipour M, Khorram E. Solving the sum-of-ratios problems by a harmony search algorithm[J].Journal of computational and applied mathematics, 2010, 234(3): 733-742.

[7] Poursha M, Khoshnoudian F, Moghadam A S. Harmony search based algorithms for the optimum cost design of reinforced concrete cantilever retaining walls[J].International Journal of Civil Engineering, 2011, 9(1): 1-8.

[8] Khazali A H, Kalantar M. Optimal reactive power dispatch based on harmony search algorithm [J].International Journal of Electrical Power & Energy Systems, 2011, 33(3): 684-692.

[9] Khazali A H, Parizad A, Kalantar M. Optimal voltage/reactive control by an improve harmony search algorithm[J].Int. Rev. Electr. Eng.-I. v5, 2010: 217-224.

[10]Khorram E, Jaberipour M. Harmony search algorithm for solving combined heat and power economic dispatch problems[J].Energy Conversion and Management, 2011, 52(2): 1550-1554.

A Solution to Portfolio Optimization Problems based on Harmony

Search Algorithm HE Hong1,TUO Shou-heng2

(1. School of History and Tourism, Shaanxi University of Technology, Hanzhong 723000,China;2. School

of Mathematics and Computer Science, Shaanxi University of Technology, Hanzhong 723000, China)

Abstract:With the progress of the society, economy has appeared diversified development trends, so it is important to build diversified portfolios. To make investment profit as large as possible, and to make the investment risk as small as possible, we analyze cardinality constrained mean-variance (CCMV) model in detail, and propose an improved harmony search algorithm to solve portfolio optimization problems. Finally, five portfolio problems are used to test the proposed algorithm. The results show that the proposed algorithm has some advantages in precision.

Key words:portfolio optimization; Harmony Search Algorithm; Cardinality Constrained Mean-Variance Model

(責(zé)任編輯:關(guān)立新)

endprint

從表3可以看出對(duì)于實(shí)驗(yàn)2,5組測(cè)試數(shù)據(jù),“本文算法獲得最優(yōu)前端”距離“標(biāo)準(zhǔn)最優(yōu)前端”的平均距離都小于1E-04,也很接近最優(yōu)前端。與GA、PSO、TS、SA相比,本文算法對(duì)第1個(gè)評(píng)價(jià)指標(biāo)的測(cè)試結(jié)果明顯占優(yōu),對(duì)其它2個(gè)指標(biāo)也具有一定的優(yōu)勢(shì)。由圖8-圖12可以看出(標(biāo)準(zhǔn)最優(yōu)前端是在沒有對(duì)投資數(shù)目和投資比例做限制時(shí)獲得的),本文算法獲得的最優(yōu)前端和標(biāo)準(zhǔn)最優(yōu)前端也很接近,并且分布也較為均勻。圖7 實(shí)驗(yàn)1中數(shù)據(jù)Nikkei(D=225)的最優(yōu)前沿比較圖8 實(shí)驗(yàn)2中數(shù)據(jù)HangSeng(D=31)的最優(yōu)前沿比較圖9 實(shí)驗(yàn)2中數(shù)據(jù)DAX100(D=85)的最優(yōu)前沿比較圖10 實(shí)驗(yàn)2中數(shù)據(jù)FTSE100(D=89)的最優(yōu)前沿比較圖11 實(shí)驗(yàn)2中數(shù)據(jù)S&P100(D=98)的最優(yōu)前沿比較圖12 實(shí)驗(yàn)2中數(shù)據(jù)Nikkei(D=225)的最優(yōu)前沿比較

四、結(jié)論分析本文提出的動(dòng)態(tài)調(diào)整策略是為了在全局探索(Exploration)和局部開發(fā)(Exploitation)之間實(shí)現(xiàn)有效平衡,在迭代初期需要較強(qiáng)的全局?jǐn)_動(dòng)能力,此時(shí)可以在優(yōu)化目標(biāo)向量 xnew上加大擾動(dòng)力度,增強(qiáng)種群多樣性,使其具有較強(qiáng)的全局探索能力。隨著優(yōu)化的進(jìn)行,到了后期,多數(shù)個(gè)體可能已經(jīng)聚集在了全局最優(yōu)解附近,此時(shí)開始加強(qiáng)局部最優(yōu)解的探索。為了有較高的成功率,對(duì)優(yōu)化目標(biāo)向量 xnew,選擇較少的維數(shù)進(jìn)行優(yōu)化調(diào)整,從而增強(qiáng)算法的求解精度。通過2個(gè)實(shí)驗(yàn)來看,本文算法對(duì)投資組合優(yōu)化問題的求解是可行有效的。

參考文獻(xiàn):

[1] T.J. Chang, N. Meade, J.E. Beasley, Y.M. Sharaiha, Heuristics for cardinality constrained portfolio optimization[J].Computers & Operations Research,2000,27:1271-1302.

[2] 王貞. 幾類投資組合優(yōu)化模型及其算法[D].西安:西安電子科技大學(xué),2012.

[3] Q.K. Pan, P.N. Suganthan, M.F. Tasgetiren, J.J. Liang, A self-adaptive global best harmony search algorithm for continuous optimization problems, Appl.Math. Comput. 2010,No.216:830-848.

[4] M. Mahdavi, M. Fesanghary, and E. Damangir.An improved harmony search algorithm for solving optimization problems[J]. Appl. Math.Comput., 2007,188(2):1567-1579.

[5] Hoang D C, Yadav P, Kumar R, et al. A robust harmony search algorithm based clustering protocol for wireless sensor networks[C]//Communications Workshops (ICC), 2010 IEEE International Conference on. IEEE, 2010: 1-5.

[6] Jaberipour M, Khorram E. Solving the sum-of-ratios problems by a harmony search algorithm[J].Journal of computational and applied mathematics, 2010, 234(3): 733-742.

[7] Poursha M, Khoshnoudian F, Moghadam A S. Harmony search based algorithms for the optimum cost design of reinforced concrete cantilever retaining walls[J].International Journal of Civil Engineering, 2011, 9(1): 1-8.

[8] Khazali A H, Kalantar M. Optimal reactive power dispatch based on harmony search algorithm [J].International Journal of Electrical Power & Energy Systems, 2011, 33(3): 684-692.

[9] Khazali A H, Parizad A, Kalantar M. Optimal voltage/reactive control by an improve harmony search algorithm[J].Int. Rev. Electr. Eng.-I. v5, 2010: 217-224.

[10]Khorram E, Jaberipour M. Harmony search algorithm for solving combined heat and power economic dispatch problems[J].Energy Conversion and Management, 2011, 52(2): 1550-1554.

A Solution to Portfolio Optimization Problems based on Harmony

Search Algorithm HE Hong1,TUO Shou-heng2

(1. School of History and Tourism, Shaanxi University of Technology, Hanzhong 723000,China;2. School

of Mathematics and Computer Science, Shaanxi University of Technology, Hanzhong 723000, China)

Abstract:With the progress of the society, economy has appeared diversified development trends, so it is important to build diversified portfolios. To make investment profit as large as possible, and to make the investment risk as small as possible, we analyze cardinality constrained mean-variance (CCMV) model in detail, and propose an improved harmony search algorithm to solve portfolio optimization problems. Finally, five portfolio problems are used to test the proposed algorithm. The results show that the proposed algorithm has some advantages in precision.

Key words:portfolio optimization; Harmony Search Algorithm; Cardinality Constrained Mean-Variance Model

(責(zé)任編輯:關(guān)立新)

endprint

景泰县| 井研县| 宣武区| 舞阳县| 松滋市| 康保县| 苍梧县| 上犹县| 塘沽区| 洛阳市| 阿克陶县| 遂川县| 阳朔县| 广宁县| 文山县| 宁都县| 萍乡市| 东乡| 巴彦县| 鄄城县| 金阳县| 湟源县| 通渭县| 都江堰市| 富宁县| 湘乡市| 灵宝市| 嘉义县| 镇康县| 无锡市| 中西区| 井研县| 安新县| 和平县| 新龙县| 塔河县| 岚皋县| 宜黄县| 岗巴县| 宁强县| 玉屏|