趙楠 郭婷婷 于毅等
摘要:為研究低溫冷藏對(duì)桃小食心蟲(chóng)越冬幼蟲(chóng)耐寒能力的影響,測(cè)定了4℃低溫冷藏90~210 d期間其過(guò)冷卻點(diǎn)(SCP)、結(jié)冰點(diǎn)(FP)以及甘油、海藻糖和氨基酸含量的變化。結(jié)果顯示:冷藏時(shí)間對(duì)桃小食心蟲(chóng)的過(guò)冷卻點(diǎn)和結(jié)冰點(diǎn)影響顯著,冷藏90~210 d期間其SCP和FP先升高后降低,第180 d最高(-7.73℃和-4.67℃),第210 d最低(-13.35℃和-10.58℃);甘油含量在冷藏第150 d最高(21.37 μg/mg),而此時(shí)海藻糖含量最低(21.78 μg/mg);在冷藏期間蟲(chóng)體內(nèi)均檢測(cè)到17種氨基酸,冷藏第180 d谷氨酸含量達(dá)到最高(3.73 mg/100mg)。
關(guān)鍵詞:桃小食心蟲(chóng);低溫冷藏;過(guò)冷卻點(diǎn);甘油;海藻糖;氨基酸
中圖分類(lèi)號(hào):S186文獻(xiàn)標(biāo)識(shí)號(hào):A文章編號(hào):1001-4942(2014)07-0107-05
AbstractTo investigate the effects of cold storage on cold tolerance of Carposina sasakii Matsumura (Lepidoptera: Carposinidae) overwintering larvae, the supercooling point (SCP), freezing point (FP) and variations of glycerinum, trehalose and amino acid contents were measured during stored at 4℃ for 90~210 days. The results indicated that cold storage time had significant influences on SCP and FP of Carposina sasakii Matsumura overwintering larvae. The SCP and FP increased firstly and then decreased during storage, and had the highest values (-7.73℃ and -4.67℃) on the 180th day and the lowest values (-13.35℃ and -10.58℃) on the 210th day respectively. The content of glycerin was the highest (21.37 μg/mg) while that of trehalose was the lowest (21.78 μg/mg) on the 150th day. Seventeen kinds of amino acids were detected throughout the whole cold storage and the content of Glu reached the maximum (3.73 mg/100mg) on the 180th day.
Key wordsCarposina sasakii Matsumura; Cold storage; Supercooling point (SCP); Glycerin; Trehalose; Amino acids
昆蟲(chóng)在全球分布廣泛,經(jīng)歷著復(fù)雜的環(huán)境變化,其基本行為、生長(zhǎng)發(fā)育、越冬存活和進(jìn)化途徑等無(wú)不受溫度的影響[1,2]。對(duì)于溫帶地區(qū)的昆蟲(chóng)而言,冬季低溫是其存活的重要障礙,其耐寒性的高低已經(jīng)成為種群生存與發(fā)展的重要前提,關(guān)系到其分布、繁殖及下一年的發(fā)生動(dòng)態(tài)[3]。因此,昆蟲(chóng)的耐寒性已作為一個(gè)熱點(diǎn)領(lǐng)域被廣泛研究[4~6]。在許多昆蟲(chóng)的耐寒性研究中,過(guò)冷卻點(diǎn)(supercooling point,SCP) 和結(jié)冰點(diǎn)(freezing point,F(xiàn)P)常用來(lái)作為衡量其耐寒性強(qiáng)弱的重要指標(biāo)[7~11],昆蟲(chóng)的過(guò)冷卻能力與耐寒性密切相關(guān)[8]。昆蟲(chóng)過(guò)冷卻點(diǎn)被發(fā)現(xiàn)后的很長(zhǎng)一段時(shí)間內(nèi),人們認(rèn)為高于過(guò)冷卻點(diǎn)以上的低溫對(duì)昆蟲(chóng)是沒(méi)有傷害的[8]。Sturgess 和 Goulding[12]及Salt[13]發(fā)現(xiàn)高于0℃以上的低溫也會(huì)對(duì)生物造成生理或物理?yè)p害,但麗蠅幼蟲(chóng)(Calliphora)在溫度達(dá)到過(guò)冷卻點(diǎn)時(shí)卻沒(méi)有個(gè)體死亡[14],因此,昆蟲(chóng)的結(jié)冰不耐受性并不意味著昆蟲(chóng)能忍受結(jié)冰以上的任何溫度,時(shí)間是這類(lèi)存活試驗(yàn)中的一個(gè)重要因素[4]。因此,測(cè)定恒定低溫下昆蟲(chóng)的過(guò)冷卻能力對(duì)研究昆蟲(chóng)的耐寒性具有重要的意義。已有發(fā)現(xiàn)顯示越冬昆蟲(chóng)體內(nèi)的水、脂肪、甘油、山梨醇、氨基酸、脂肪酸和總糖類(lèi)等小分子耐寒性物質(zhì)也與耐寒性關(guān)系密切[11,15~17]。
桃小食心蟲(chóng)(Carposina sasakii Matsumura)屬鱗翅目(Lepidoptera)蛀果蛾科(Carposinidae),寄主繁多,廣泛分布于我國(guó)北部及西北地區(qū)蘋(píng)果、梨、杏以及山楂產(chǎn)區(qū),是我國(guó)北方果區(qū)重要害蟲(chóng)[18,19]。王鵬等[20]曾對(duì)桃小食心蟲(chóng)越冬幼蟲(chóng)體內(nèi)的含水量、總蛋白含量、糖原含量和總脂肪含量進(jìn)行了測(cè)定,發(fā)現(xiàn)越冬期幼蟲(chóng)含水量、總蛋白含量、糖原含量的變化均與過(guò)冷卻能力變化一致,呈先減后增的趨勢(shì),而總脂肪含量則一直降低,越冬幼蟲(chóng)體內(nèi)生理生化物質(zhì)的動(dòng)態(tài)變化與其抗寒能力密切相關(guān)。本試驗(yàn)著重研究了桃小食心蟲(chóng)在恒定溫度(4℃)下的過(guò)冷卻點(diǎn)、結(jié)冰點(diǎn)和甘油、海藻糖、氨基酸含量的動(dòng)態(tài)變化,以期為桃小食心蟲(chóng)耐寒性研究提供數(shù)據(jù)支持。
1材料與方法
1.1供試蟲(chóng)源
桃小食心蟲(chóng)為2011年10月份采自山東萊蕪地區(qū)山楂上脫果自然結(jié)繭的健康越冬蟲(chóng)源。采回后于10月20日存放于盛有濕度為20%鋸末的花盆中(鋸末、花盆經(jīng)過(guò)高溫干燥鼓風(fēng)烘箱120℃滅菌24 h),花盆表層用保鮮膜覆蓋并封好,將其放于恒溫4℃冰箱中保存待用,從冷藏90 d開(kāi)始于每月上旬取出適量蟲(chóng)繭進(jìn)行不同試驗(yàn),試驗(yàn)時(shí)間分別為:冷藏90 d(1月20日)、120 d(2月20日)、 150 d(3月20日)、180 d (4月20日)、 210 d(5月20日),自越冬幼蟲(chóng)解除滯育至越冬代幼蟲(chóng)出土止。
1.2桃小食心蟲(chóng)過(guò)冷卻點(diǎn)和結(jié)冰點(diǎn)的測(cè)定
采用熱電偶方法進(jìn)行過(guò)冷卻點(diǎn)的測(cè)定,所用儀器為SUN-Ⅱ型智能昆蟲(chóng)過(guò)冷卻點(diǎn)測(cè)定儀。測(cè)定時(shí)將熱敏電阻的測(cè)溫探頭固定在蟲(chóng)體腹部,以-30℃冰箱作為低溫槽。蟲(chóng)體的溫度變化經(jīng)數(shù)據(jù)采集器采集后輸入計(jì)算機(jī),自動(dòng)記錄測(cè)試數(shù)據(jù),并繪出溫度變化曲線(xiàn)圖。蟲(chóng)體溫度隨著環(huán)境溫度呈非線(xiàn)性速率降溫,讀出幼蟲(chóng)的過(guò)冷卻點(diǎn)(supercooling point,SCP)值和結(jié)冰點(diǎn)(freezing point,F(xiàn)P)值。每次選取20頭健康試蟲(chóng)進(jìn)行測(cè)定。
1.3桃小食心蟲(chóng)體內(nèi)甘油、海藻糖含量的測(cè)定
甘油、海藻糖含量的測(cè)定方法:低溫冷藏90~210 d,每隔30 d取出適量健康蟲(chóng)繭,具體測(cè)定和標(biāo)準(zhǔn)曲線(xiàn)繪制參考郭海波(2006)[17]和丁慧梅(2011)[21]的方法。
計(jì)算方法:蟲(chóng)體甘油含量(μg/mg)=從標(biāo)準(zhǔn)曲線(xiàn)查得的甘油含量(μg/mL)×樣品稀釋量(mL)/蟲(chóng)體質(zhì)量(mg)
蟲(chóng)體海藻糖含量(μg/mg)=從標(biāo)準(zhǔn)曲線(xiàn)查得的海藻糖含量(μg/mL)×樣品稀釋量(mL)/蟲(chóng)體質(zhì)量(mg)
1.4桃小食心蟲(chóng)體內(nèi)氨基酸含量的測(cè)定
采用日立835-50 型氨基酸自動(dòng)分析儀對(duì)不同冷藏時(shí)間的桃小食心蟲(chóng)體內(nèi)18種氨基酸的含量進(jìn)行分析。每次選取不少于10頭桃小食心蟲(chóng)于60℃烘箱中烘至恒重后研磨成粉末,并轉(zhuǎn)移至已稱(chēng)重的聚四氟乙烯試管中,稱(chēng)重后,加入6 mol/L HCl 10 mL,置于108~110℃烘箱中,水解 24 h,取出后過(guò)濾,取上清液1 mL,加1 mL緩沖液,用氨基酸自動(dòng)分析儀分析,進(jìn)樣量50 μL。本試驗(yàn)在山東大學(xué)微生物公共實(shí)驗(yàn)室進(jìn)行。
1.5數(shù)據(jù)處理
采用SPSS 17.0 for windows軟件進(jìn)行組間均值數(shù)據(jù)的One-Way ANOVA方差分析。
2結(jié)果與分析
2.1冷藏時(shí)間對(duì)桃小食心蟲(chóng)過(guò)冷卻點(diǎn)和結(jié)冰點(diǎn)的影響
桃小食心蟲(chóng)的SCP和FP隨著冷藏時(shí)間的延長(zhǎng)呈現(xiàn)出先上升后下降的趨勢(shì)(圖1)。不同冷藏時(shí)間桃小食心蟲(chóng)越冬幼蟲(chóng)的過(guò)冷卻點(diǎn)和結(jié)冰點(diǎn)存在顯著性差異(F= 12.82,df=4,P<0.05;F=18.445,df=4,P﹤0.05),冷藏90~180 d,SCP和FP呈現(xiàn)上升趨勢(shì),第180 d時(shí)最高,分別為-7.73℃和-4.67℃,第210 d,SCP和FP數(shù)值驟降,其值達(dá)到最低,分別為-13.35℃和-10.58℃。
3結(jié)論與討論
本研究中對(duì)SCP和FP的測(cè)定結(jié)果表明,從冷藏90 d始至180 d(即1月份到4月份),雖然試蟲(chóng)一直處于4℃恒溫條件下,但其SCP和FP的變化仍與同時(shí)期外界環(huán)境溫度的變化有著相似的趨勢(shì),是逐漸升高的。推測(cè)是因?yàn)槔ハx(chóng)體內(nèi)生物鐘的原因?qū)е缕浯蚱仆饨绾銣兀尸F(xiàn)自然節(jié)律的季節(jié)性變化。家蠶的研究中也發(fā)現(xiàn)類(lèi)似現(xiàn)象,試驗(yàn)以體內(nèi)物質(zhì)“酯酶A4”計(jì)量家蠶休眠時(shí)間,不管外界環(huán)境如何,時(shí)間到了總能打破休眠[22]。這與自然條件下桃小食心蟲(chóng)越冬幼蟲(chóng)的過(guò)冷卻點(diǎn)和結(jié)冰點(diǎn)的變化趨勢(shì)略有差異[20],自然條件下過(guò)冷卻點(diǎn)和結(jié)冰點(diǎn)最低溫出現(xiàn)在3月份,3~6月份逐漸升高,而本試驗(yàn)中210 d(5月份)SCP和FP值達(dá)到最低,是恒定低溫誘導(dǎo)還是桃小食心蟲(chóng)自身生理生化物質(zhì)變化導(dǎo)致其耐寒能力的變化有待進(jìn)一步探明。
同一昆蟲(chóng)同一蟲(chóng)態(tài)過(guò)冷卻點(diǎn)的分布不盡相同:在潛葉象甲體內(nèi),其過(guò)冷卻點(diǎn)比較集中,多數(shù)在-20℃左右[23];而一種螨蟲(chóng)[24]中過(guò)冷卻點(diǎn)差異非常大,為-4~-43℃。本研究發(fā)現(xiàn)同一批次處理下的桃小食心蟲(chóng)越冬幼蟲(chóng)過(guò)冷卻點(diǎn)差異較大,范圍為-5.89~-19.91℃(90 d),與上述結(jié)果類(lèi)似,這可能是蟲(chóng)體自身原因引起的。
昆蟲(chóng)在越冬期間,隨著冬季到來(lái)會(huì)做出一系列的生理生化反應(yīng)以適應(yīng)冬季低溫[25]。越冬期間昆蟲(chóng)體內(nèi)聚集低分子量的糖或醇,如甘油、多元醇、糖等通過(guò)增加昆蟲(chóng)體內(nèi)束縛水的含量,或直接與酶及其他蛋白質(zhì)相互作用起到保護(hù)生物系統(tǒng)的作用[1],甘油的合成和積累與多種因素有關(guān),如蟲(chóng)體水分含量、溫度、光照以及蟲(chóng)齡等。 Young 和 Block[26]發(fā)現(xiàn)短光照、低溫、低濕能誘導(dǎo)Alaskozetes antarcticus(甲螨)體內(nèi)甘油積累。張擁軍[27]曾發(fā)現(xiàn)二化螟越冬幼蟲(chóng)體內(nèi)的甘油含量變化與耐寒能力的變化一致。而本研究中桃小食心蟲(chóng)在冷藏期間甘油含量變化與過(guò)冷卻點(diǎn)、結(jié)冰點(diǎn)基本一致,可見(jiàn)冷藏過(guò)程中桃小食心蟲(chóng)積累甘油作為體內(nèi)的耐寒性物質(zhì),以提高自身的耐寒能力。昆蟲(chóng)血淋巴中的氨基酸能調(diào)節(jié)血淋巴的滲透壓,是昆蟲(chóng)游離狀態(tài)蛋白質(zhì)的主要構(gòu)成成分,因此昆蟲(chóng)體內(nèi)的游離氨基酸含量與耐寒性也存在相關(guān)性[27]。本研究發(fā)現(xiàn),在過(guò)冷卻點(diǎn)和結(jié)冰點(diǎn)最高的第180 d,谷氨酸、天冬氨酸、賴(lài)氨酸、丙氨酸、纈氨酸、絲氨酸、蘇氨酸和甘氨酸含量也達(dá)到最大值。另外,低溫冷藏期間谷氨酸和天冬氨酸的含量最高,且在冷藏初期至150 d谷氨酸、天冬氨酸所占氨基酸的百分含量均增加,因此推測(cè)谷氨酸、天冬氨酸可能是桃小食心蟲(chóng)越冬的主要耐寒性物質(zhì)。
參考文獻(xiàn):
[1]Lee R E, Denlinger D L. Insects at low temperature [M]. New York: Chapman and Hall, 1991.
[2]宋修超, 崔寧寧, 鄭方強(qiáng), 等.變溫貯藏僵蚜對(duì)煙蚜繭蜂耐寒能力的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2012, 23(9):2515-2520.
[3]McDonald J R, Head J, Bale J S, et al. Cold tolerance, overwintering and establishment potential of Thrips palmi[J]. Physiol. Entomol. , 2000, 25: 159-166.
[4]Smme L. The physiology of cold hardiness in terrestrial arthropods [J]. European Journal of Entomology, 1999, 96: 1-10.
[5]Bale J S. Insects and low temperatures: from molecular biology to distributions and abundance [J]. Philos. Trans. R. Soc. B. Bio. Sci., 2002, 357(1423): 849-862.
[6]Sinclair B J, Vernon P, Klok C J, et al. Insects at low temperatures: an ecological perspective[J]. Trends Ecol. Evol. , 2003, 18: 257-262.
[7]Nedved O, Lavy D, Verhoef H A. Modelling the time-temperature relationship in cold injury and effect of high temperature interruptions on survival in a chill-sensitive collembolan [J]. Functional Ecology, 1998, 12: 816-824.
[8]Renault D, Salin C, Vannier G, et al. Survival at low temperatures in insects: what is the ecological significance of the supercooling point[J]. Cryoletters, 2002, 23: 217-228.
[9]Chen B, Kang L. Cold hardiness and supercooling capacity in the pea leafminer Liriomyza huidobrensis[J]. Cryoletters, 2002, 23: 173-182.
[10]Colinet H, Renault D, Hance T, et al. The impact of fluctuating thermal regimes on the survival of a cold-exposed parasitic wasp, Aphidius colemani[J]. Physiological Entomology, 2006, 31: 234-240.
[11]強(qiáng)承魁, 杜予州, 于玲雅, 等.水稻二化螟越冬幼蟲(chóng)耐寒性物質(zhì)的動(dòng)態(tài)變化[J].應(yīng)用生態(tài)學(xué)報(bào), 2008, 19(3):599-605.
[12]Sturgess B T, Goulding R L. Tolerance of three species of larval Cliironomidae to physicochemical stress factors occurring in stabilization lagoons[J]. Entomological Society of America, 1968, 61(4):903-906.
[13]Salt R W. The survival of insects at low temperatures [J]. Symposia of the society for biology, 1969, 23: 331-350.
[14]Block W, Erzinclioglu Y Z, Worl M R. Survival of freezing in Calliphora larvae[J]. Cryoletters, 1988, 9:86-93.
[15]Li Y P, Gong H, Park H Y. Enzymes of fatty acid metabolism in overwintering mature larvae of the pine needle gall midge, Thecodiplosis japonensis[J]. Entomologia Sinica, 2000, 7(2):135-141.
[16]梁中貴, 張衛(wèi)光, 劉學(xué)輝, 等. 松阿扁葉蜂越冬幼蟲(chóng)體內(nèi)抗寒物質(zhì)分析[J].昆蟲(chóng)知識(shí), 2005,42(6):695-699.
[17]郭海波.中華通草蛉成蟲(chóng)越冬與滯育的生理生化機(jī)制[D]. 泰安: 山東農(nóng)業(yè)大學(xué), 2006.
[18]劉玉升, 程家安, 牟吉元. 桃小食心蟲(chóng)研究概況[J].山東農(nóng)業(yè)大學(xué)學(xué)報(bào), 1997, 28(2): 207-214.
[19]Dong S K, Joon H L, Myong S Y. Spring emergence pattern of Carposina sasakii (Lepidoptera: Carposinidae) in apple orchards in Koera and its forecasting models based on degree days[J]. Environ. Entomol, 2000, 29(6):1188-1198.
[20]王鵬,凌飛,于毅,等.桃小食心蟲(chóng)越冬幼蟲(chóng)過(guò)冷卻能力及體內(nèi)生化物質(zhì)動(dòng)態(tài)[J].生態(tài)學(xué)報(bào), 2011,31(3):638-645.
[21]丁慧梅. 桃小食心蟲(chóng)滯育期間生化指標(biāo)含量的動(dòng)態(tài)變化[D]. 北京: 北京林業(yè)大學(xué), 2011.
[22]周振清, 尚紹英. 日本發(fā)現(xiàn)計(jì)量家蠶休眠時(shí)間的物質(zhì)[J]. 昆蟲(chóng)知識(shí), 1990, 27(4):250.
[23]Coulson S J, Bale J S. Supercooling and survival of the beech leaf mining weevil Rhynchaenus fagi L. (Coleoptera:Curculionidae)[J]. Journal of Insect Physiol., 1996, 42:617-623.
[24]Sjursen H, Smme L. Seasonal changes in tolerance to cold and desiccation in Phauloppia sp. (Acari,Oribatida) from Finse, Norway [J]. Journal of Insect Physiol., 2000, 46:1387-1396.
[25]景曉紅, 康樂(lè).昆蟲(chóng)耐寒性的研究[J].生態(tài)學(xué)報(bào), 2002,22(12):2202-2207.
[26]Young S R, Block W. Experimental studies on the cold tolerance of Alaskozetes antarcticus[J]. J. Insect Phsiol. , 1980, 26:189-200.
[27]張擁軍.二化螟越冬幼蟲(chóng)耐寒性及其機(jī)理研究[D]. 武漢:華中農(nóng)業(yè)大學(xué), 2007.
[4]Smme L. The physiology of cold hardiness in terrestrial arthropods [J]. European Journal of Entomology, 1999, 96: 1-10.
[5]Bale J S. Insects and low temperatures: from molecular biology to distributions and abundance [J]. Philos. Trans. R. Soc. B. Bio. Sci., 2002, 357(1423): 849-862.
[6]Sinclair B J, Vernon P, Klok C J, et al. Insects at low temperatures: an ecological perspective[J]. Trends Ecol. Evol. , 2003, 18: 257-262.
[7]Nedved O, Lavy D, Verhoef H A. Modelling the time-temperature relationship in cold injury and effect of high temperature interruptions on survival in a chill-sensitive collembolan [J]. Functional Ecology, 1998, 12: 816-824.
[8]Renault D, Salin C, Vannier G, et al. Survival at low temperatures in insects: what is the ecological significance of the supercooling point[J]. Cryoletters, 2002, 23: 217-228.
[9]Chen B, Kang L. Cold hardiness and supercooling capacity in the pea leafminer Liriomyza huidobrensis[J]. Cryoletters, 2002, 23: 173-182.
[10]Colinet H, Renault D, Hance T, et al. The impact of fluctuating thermal regimes on the survival of a cold-exposed parasitic wasp, Aphidius colemani[J]. Physiological Entomology, 2006, 31: 234-240.
[11]強(qiáng)承魁, 杜予州, 于玲雅, 等.水稻二化螟越冬幼蟲(chóng)耐寒性物質(zhì)的動(dòng)態(tài)變化[J].應(yīng)用生態(tài)學(xué)報(bào), 2008, 19(3):599-605.
[12]Sturgess B T, Goulding R L. Tolerance of three species of larval Cliironomidae to physicochemical stress factors occurring in stabilization lagoons[J]. Entomological Society of America, 1968, 61(4):903-906.
[13]Salt R W. The survival of insects at low temperatures [J]. Symposia of the society for biology, 1969, 23: 331-350.
[14]Block W, Erzinclioglu Y Z, Worl M R. Survival of freezing in Calliphora larvae[J]. Cryoletters, 1988, 9:86-93.
[15]Li Y P, Gong H, Park H Y. Enzymes of fatty acid metabolism in overwintering mature larvae of the pine needle gall midge, Thecodiplosis japonensis[J]. Entomologia Sinica, 2000, 7(2):135-141.
[16]梁中貴, 張衛(wèi)光, 劉學(xué)輝, 等. 松阿扁葉蜂越冬幼蟲(chóng)體內(nèi)抗寒物質(zhì)分析[J].昆蟲(chóng)知識(shí), 2005,42(6):695-699.
[17]郭海波.中華通草蛉成蟲(chóng)越冬與滯育的生理生化機(jī)制[D]. 泰安: 山東農(nóng)業(yè)大學(xué), 2006.
[18]劉玉升, 程家安, 牟吉元. 桃小食心蟲(chóng)研究概況[J].山東農(nóng)業(yè)大學(xué)學(xué)報(bào), 1997, 28(2): 207-214.
[19]Dong S K, Joon H L, Myong S Y. Spring emergence pattern of Carposina sasakii (Lepidoptera: Carposinidae) in apple orchards in Koera and its forecasting models based on degree days[J]. Environ. Entomol, 2000, 29(6):1188-1198.
[20]王鵬,凌飛,于毅,等.桃小食心蟲(chóng)越冬幼蟲(chóng)過(guò)冷卻能力及體內(nèi)生化物質(zhì)動(dòng)態(tài)[J].生態(tài)學(xué)報(bào), 2011,31(3):638-645.
[21]丁慧梅. 桃小食心蟲(chóng)滯育期間生化指標(biāo)含量的動(dòng)態(tài)變化[D]. 北京: 北京林業(yè)大學(xué), 2011.
[22]周振清, 尚紹英. 日本發(fā)現(xiàn)計(jì)量家蠶休眠時(shí)間的物質(zhì)[J]. 昆蟲(chóng)知識(shí), 1990, 27(4):250.
[23]Coulson S J, Bale J S. Supercooling and survival of the beech leaf mining weevil Rhynchaenus fagi L. (Coleoptera:Curculionidae)[J]. Journal of Insect Physiol., 1996, 42:617-623.
[24]Sjursen H, Smme L. Seasonal changes in tolerance to cold and desiccation in Phauloppia sp. (Acari,Oribatida) from Finse, Norway [J]. Journal of Insect Physiol., 2000, 46:1387-1396.
[25]景曉紅, 康樂(lè).昆蟲(chóng)耐寒性的研究[J].生態(tài)學(xué)報(bào), 2002,22(12):2202-2207.
[26]Young S R, Block W. Experimental studies on the cold tolerance of Alaskozetes antarcticus[J]. J. Insect Phsiol. , 1980, 26:189-200.
[27]張擁軍.二化螟越冬幼蟲(chóng)耐寒性及其機(jī)理研究[D]. 武漢:華中農(nóng)業(yè)大學(xué), 2007.
[4]Smme L. The physiology of cold hardiness in terrestrial arthropods [J]. European Journal of Entomology, 1999, 96: 1-10.
[5]Bale J S. Insects and low temperatures: from molecular biology to distributions and abundance [J]. Philos. Trans. R. Soc. B. Bio. Sci., 2002, 357(1423): 849-862.
[6]Sinclair B J, Vernon P, Klok C J, et al. Insects at low temperatures: an ecological perspective[J]. Trends Ecol. Evol. , 2003, 18: 257-262.
[7]Nedved O, Lavy D, Verhoef H A. Modelling the time-temperature relationship in cold injury and effect of high temperature interruptions on survival in a chill-sensitive collembolan [J]. Functional Ecology, 1998, 12: 816-824.
[8]Renault D, Salin C, Vannier G, et al. Survival at low temperatures in insects: what is the ecological significance of the supercooling point[J]. Cryoletters, 2002, 23: 217-228.
[9]Chen B, Kang L. Cold hardiness and supercooling capacity in the pea leafminer Liriomyza huidobrensis[J]. Cryoletters, 2002, 23: 173-182.
[10]Colinet H, Renault D, Hance T, et al. The impact of fluctuating thermal regimes on the survival of a cold-exposed parasitic wasp, Aphidius colemani[J]. Physiological Entomology, 2006, 31: 234-240.
[11]強(qiáng)承魁, 杜予州, 于玲雅, 等.水稻二化螟越冬幼蟲(chóng)耐寒性物質(zhì)的動(dòng)態(tài)變化[J].應(yīng)用生態(tài)學(xué)報(bào), 2008, 19(3):599-605.
[12]Sturgess B T, Goulding R L. Tolerance of three species of larval Cliironomidae to physicochemical stress factors occurring in stabilization lagoons[J]. Entomological Society of America, 1968, 61(4):903-906.
[13]Salt R W. The survival of insects at low temperatures [J]. Symposia of the society for biology, 1969, 23: 331-350.
[14]Block W, Erzinclioglu Y Z, Worl M R. Survival of freezing in Calliphora larvae[J]. Cryoletters, 1988, 9:86-93.
[15]Li Y P, Gong H, Park H Y. Enzymes of fatty acid metabolism in overwintering mature larvae of the pine needle gall midge, Thecodiplosis japonensis[J]. Entomologia Sinica, 2000, 7(2):135-141.
[16]梁中貴, 張衛(wèi)光, 劉學(xué)輝, 等. 松阿扁葉蜂越冬幼蟲(chóng)體內(nèi)抗寒物質(zhì)分析[J].昆蟲(chóng)知識(shí), 2005,42(6):695-699.
[17]郭海波.中華通草蛉成蟲(chóng)越冬與滯育的生理生化機(jī)制[D]. 泰安: 山東農(nóng)業(yè)大學(xué), 2006.
[18]劉玉升, 程家安, 牟吉元. 桃小食心蟲(chóng)研究概況[J].山東農(nóng)業(yè)大學(xué)學(xué)報(bào), 1997, 28(2): 207-214.
[19]Dong S K, Joon H L, Myong S Y. Spring emergence pattern of Carposina sasakii (Lepidoptera: Carposinidae) in apple orchards in Koera and its forecasting models based on degree days[J]. Environ. Entomol, 2000, 29(6):1188-1198.
[20]王鵬,凌飛,于毅,等.桃小食心蟲(chóng)越冬幼蟲(chóng)過(guò)冷卻能力及體內(nèi)生化物質(zhì)動(dòng)態(tài)[J].生態(tài)學(xué)報(bào), 2011,31(3):638-645.
[21]丁慧梅. 桃小食心蟲(chóng)滯育期間生化指標(biāo)含量的動(dòng)態(tài)變化[D]. 北京: 北京林業(yè)大學(xué), 2011.
[22]周振清, 尚紹英. 日本發(fā)現(xiàn)計(jì)量家蠶休眠時(shí)間的物質(zhì)[J]. 昆蟲(chóng)知識(shí), 1990, 27(4):250.
[23]Coulson S J, Bale J S. Supercooling and survival of the beech leaf mining weevil Rhynchaenus fagi L. (Coleoptera:Curculionidae)[J]. Journal of Insect Physiol., 1996, 42:617-623.
[24]Sjursen H, Smme L. Seasonal changes in tolerance to cold and desiccation in Phauloppia sp. (Acari,Oribatida) from Finse, Norway [J]. Journal of Insect Physiol., 2000, 46:1387-1396.
[25]景曉紅, 康樂(lè).昆蟲(chóng)耐寒性的研究[J].生態(tài)學(xué)報(bào), 2002,22(12):2202-2207.
[26]Young S R, Block W. Experimental studies on the cold tolerance of Alaskozetes antarcticus[J]. J. Insect Phsiol. , 1980, 26:189-200.
[27]張擁軍.二化螟越冬幼蟲(chóng)耐寒性及其機(jī)理研究[D]. 武漢:華中農(nóng)業(yè)大學(xué), 2007.