国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

SIRT1/SIRT3信號(hào)軸基因表達(dá)的影響

2014-09-24 21:59李方暉肖琳覃飛劉承宜
體育學(xué)刊 2014年4期
關(guān)鍵詞:運(yùn)動(dòng)訓(xùn)練骨骼肌

李方暉+肖琳+覃飛+劉承宜

摘要:觀察8周中等強(qiáng)度低負(fù)荷量訓(xùn)練對(duì)老齡雌性大鼠腓腸肌Bax和Bcl-2蛋白水平及去乙酰化酶1(SIRT1)/去乙?;?(SIRT3)軸基因信使核糖核酸(mRNA)表達(dá)的影響。16只18月齡雌性SD大鼠隨機(jī)分為對(duì)照組和運(yùn)動(dòng)組(各8只)。運(yùn)動(dòng)組在跑臺(tái)上以15 km/h(60%~75%VO2max)進(jìn)行有氧運(yùn)動(dòng),15 min/d,5 d/周,持續(xù)運(yùn)動(dòng)8周;對(duì)照組自由生活。第8周末運(yùn)動(dòng)后24 h宰殺并測(cè)定腓腸肌指數(shù)、蛋白免疫印跡法測(cè)定腓腸肌Bax和Bcl-2蛋白水平;逆轉(zhuǎn)錄聚合酶鏈?zhǔn)椒磻?yīng)(RT-PCR)測(cè)定SIRT3、SIRT1、錳超氧化物歧化酶(MnSOD)、半胱氨酸蛋白酶-3(Caspase-3)、過氧化物酶體增殖活化受體γ輔助活化因子-1α(PGC-1α)、線粒體轉(zhuǎn)錄因子A(TFAM)和核呼吸因子1(NRF1) mRNA水平。結(jié)果顯示,運(yùn)動(dòng)組腓腸肌質(zhì)量(P<0.05)和腓腸肌指數(shù)均顯著增加(P<0.01)、Bax蛋白水平顯著降低(P<0.05),Bcl-2蛋白水平和Bcl-2/Bax值顯著增加(P<0.05);運(yùn)動(dòng)組SIRT3、SIRT1、PGC-1α、NRF1、TFAM、MnSOD mRNA水平顯著增加(P<0.05),Caspase-3 mRNA水平顯著降低(P<0.05)。結(jié)果表明:中等強(qiáng)度低負(fù)荷訓(xùn)練可延緩老齡雌性大鼠肌細(xì)胞凋亡信號(hào)的改變;SIRT1/SIRT3軸介導(dǎo)的內(nèi)穩(wěn)態(tài)機(jī)制在中等強(qiáng)度低負(fù)荷訓(xùn)練提升老齡大鼠骨骼肌線粒體更新速率及抗氧化酶水平起重要作用。

關(guān)鍵詞:運(yùn)動(dòng)生物化學(xué);運(yùn)動(dòng)訓(xùn)練;骨骼??;第三類去乙酰化酶;內(nèi)穩(wěn)態(tài);老齡大鼠

中圖分類號(hào):G804.7文獻(xiàn)標(biāo)志碼:A文章編號(hào):1006-7116(2014)04-0140-05

Effects of 8-week medium intensity low load training on proteins Bax and Bcl-2 and the gene expression of signal axis SIRT1/SIRT3 of skeletal muscle of

aged female rats

LI Fang-hui1,XIAO Lin1,QING Fei2,LIU Cheng-yi2

(1.School of Physical Education and Health,Zhaoqing University,Zhaoqing 526061,China;

2.Laboratory of Laser Sports Medicine,South China Normal University,Guangzhou 510006,China)

Abstract: In order to observe the effects of 8-week medium intensity low load training on the levels of proteins Bax and Bcl-2 and the gene messenger RNA (mRNA) expression of axis sirtuin 1 (SIRT1)/sirtuin 3 (SIRT3) of gastrocnemius of aged rats, the authors divided 16 18-month old female SD rats randomly into a control group and an exercise group, each of which contained 8 rats, let the rats in the exercise group do an aerobic exercise on a treadmill for consecutive 8 weeks, at a speed of 15 km/h (with 60%~75%VO2max), 15 minutes a day, 5 days a week, let the rats in the control group live freely, in 24 hours after rat exercising at the end of week 8, killed the rats, measured gastrocnemius index, measured the levels of proteins Bax and Bcl-2 of gastrocnemius by means of Western blot analysis, measured the mRNA levels of SIRT3, SIRT1, manganese superoxide dismutase (MnSOD), Caspase 3, peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1α), mitochondrial transcription factor A (TFAM) and nuclear respiratory factor 1 (NRF1) by means of RT-PCR, and revealed the following findings: as for the rats in the exercise group, their gastrocnemius mass and gastrocnemius index increased significantly (P<0.05 and P<0.01 respectively), their protein Bax level decreased significantly (P<0.05), their protein Bcl-2 level and Bcl-2/Bax ratio increased significantly (P<0.05); their mRNA levels of SIRT3, SIRT1, PGC-1α, NRF1, TFAM and MnSOD increased significantly (P<0.05), their mRNA level of Caspase-3 decreased significantly (P<0.05). The said findings indicated the followings: medium intensity low load training could delay the changing of muscle cell apoptosis signal of aged rats; the homeostatic mechanism mediated by axis SIRT1/SIRT3 played an important role in medium intensity low load training increasing the mitochondria refreshing rate and antioxidase level of skeletal muscle of aged rats.

endprint

Key words: sports biochemistry;sports training;skeletal muscle;type 3 sirtuins;homeostasis;aged rat

肌肉衰減綜合癥(Sarcopenia)作為一種以骨骼肌質(zhì)量和肌力衰減為主要特征的增齡性機(jī)能退化征,長期以來為人們所忽視[1]。Sarcopenia引發(fā)的骨質(zhì)減少、運(yùn)動(dòng)平衡能力下降將增加肢體殘疾、心血管病變、心理疾病等發(fā)生幾率[2]。流行病學(xué)調(diào)查顯示,近13%的60歲以上的老年人受Sarcopenia困擾,該比例在80歲以上老人高達(dá)50%[3]。肌細(xì)胞凋亡被認(rèn)為在Sarcopenia發(fā)展進(jìn)程中起關(guān)鍵作用[1,4]。弱化肌細(xì)胞凋亡信號(hào)、阻止肌細(xì)胞大范圍地進(jìn)入凋亡程序是延緩Sarcopenia發(fā)生重要機(jī)制[4]。文獻(xiàn)報(bào)道,體力活動(dòng)不足是Sarcopenia誘因之一,而運(yùn)動(dòng)能延緩骨骼肌衰老[5],這與體育活動(dòng)能抑制衰老骨骼肌凋亡有關(guān)[6]。Song等[6]研究發(fā)現(xiàn),中等強(qiáng)度大負(fù)荷量運(yùn)動(dòng)后老齡大鼠腓腸肌凋亡顯著減少。Pasini等[7]研究也發(fā)現(xiàn),8周大強(qiáng)度運(yùn)動(dòng)使18月齡大鼠Sarcopenia得到明顯改善,而這與線粒體細(xì)胞色素C氧化酶活性增加有關(guān)。漆正堂等[1]研究同樣證實(shí),8周耐力運(yùn)動(dòng)可通過調(diào)控線粒體功能來拮抗Sarcopenia肌細(xì)胞凋亡。最新研究發(fā)現(xiàn),中等強(qiáng)度低負(fù)荷量訓(xùn)練(Low-loads Medium-intensity Exercise,LME)可用于Sarcopenia的防護(hù)[5],但缺乏深入的機(jī)理研究。

III型組蛋白去乙?;讣易?Sirtuins,SIRTs)是乙酰胺腺嘌呤二核苷酸(Nicotimide Adenosine Dinucleotide+,NAD+)依賴的去乙?;?。SIRTs包括7個(gè)成員。其中,盡管SIRT1和SIRT3分別位于細(xì)胞核和線粒體中,但在調(diào)控線粒體功能中具有協(xié)同作用[8]。Brenmoehl等[9]將之稱為SIRT1/SIRT3雙重調(diào)控軸。本研究在觀察8周LME對(duì)18月齡雌性大鼠骨骼肌凋亡相關(guān)因子表達(dá)影響的基礎(chǔ)上,探討SIRT1/SIRT3軸對(duì)肌細(xì)胞凋亡的調(diào)控機(jī)制,為體育運(yùn)動(dòng)防護(hù)Sarcopenia提供理論依據(jù)。

1實(shí)驗(yàn)對(duì)象與方法

1.1實(shí)驗(yàn)動(dòng)物分組、運(yùn)動(dòng)方案及取材

16只18月齡雌性SD大鼠購于廣州中醫(yī)藥大學(xué)動(dòng)物中心,體質(zhì)量為(378±11) g。在室溫20~24 ℃、光照時(shí)間07:00~19:00,分籠飼養(yǎng),適應(yīng)性喂養(yǎng)1周后,隨機(jī)分為對(duì)照組和運(yùn)動(dòng)組(各8只)。負(fù)荷強(qiáng)度參照Bejma等[10]18月齡大鼠訓(xùn)練負(fù)荷進(jìn)行。運(yùn)動(dòng)組進(jìn)行為期8周、速度15 m/min、坡度5°,每天15 min跑臺(tái)運(yùn)動(dòng)。負(fù)荷強(qiáng)度對(duì)18月齡大鼠來說相當(dāng)于60% ~75%VO2max[10]。8周最后一次運(yùn)動(dòng)后24 h后將大鼠麻醉處死取材,取大鼠后肢腓腸肌,腓腸肌指數(shù)的計(jì)算:腓腸肌指數(shù)=[腓腸肌質(zhì)量(mg)/體質(zhì)量(g)][7]。

1.2信使核糖核酸測(cè)定

每組取6個(gè)樣本。加入1 mL的Trizol進(jìn)行總RNA提取。按試劑說明書操作步驟提取細(xì)胞總RNA并進(jìn)行逆轉(zhuǎn)錄反應(yīng)和PCR反應(yīng)。試劑購于大連寶生物公司。去乙?;?(Sirtuin 3,SIRT3)、去乙?;?(Sirtuin1,SIRT1)、錳超氧化物歧化酶(Manganese Superoxide Dismutase,MnSOD)、半胱氨酸蛋白酶-3(Caspase-3)、過氧化物酶體增殖活化受體γ輔助活化因子1α (Peroxisome Proliferator-activated Receptor-γ Coactivator-1,PGC-1α)、線粒體轉(zhuǎn)錄因子A(Mitochondrial Transcription Factor A,TFAM)和核呼吸因子(Nuclear Respiratory Factor 1,NRF1)擴(kuò)增引物見文獻(xiàn)[11]。β-actin作為內(nèi)參,并根據(jù)公式2-△△Ct計(jì)算目的基因的相對(duì)表達(dá)量。

1.3蛋白免疫印跡

蛋白提取與濃度測(cè)定后離心5 min轉(zhuǎn)至-80 ℃保存?zhèn)溆?。Bax、Bcl-2分離膠濃度為8%。麗春紅預(yù)染后,用1%TBST配置5%的脫脂牛奶對(duì)NC膜封閉2 h。分別用5%脫脂牛奶和5% BSA配置Bax和Bcl-2的一抗4 ℃搖床過夜。內(nèi)參為GAPDH。目的條帶的二抗均孵育2 h,洗膜后X射線膠片曝光顯影。詳細(xì)操作見文獻(xiàn)[6]。

1.4數(shù)據(jù)處理及分析

所有實(shí)驗(yàn)數(shù)據(jù)均以“均值±標(biāo)準(zhǔn)差”( ±s)表示,統(tǒng)計(jì)分析用SPSS17.0軟件完成,組間比較采用獨(dú)立樣本T檢驗(yàn),P<0.05表示統(tǒng)計(jì)具有顯著性意義。蛋白免疫印跡使用Image-ProPlus6.0進(jìn)行灰度分析。

2結(jié)果及分析

2.1運(yùn)動(dòng)大鼠腓腸肌指數(shù)的改變

表1顯示,8周后,與對(duì)照組比較,運(yùn)動(dòng)組腓腸肌質(zhì)量平均增加30.0%(P<0.05),腓腸肌指數(shù)增加37.5%(P<0.01),但體質(zhì)量沒有顯著性差異(P>0.05)。

表1大鼠體質(zhì)量、腓腸肌質(zhì)量及腓腸肌指數(shù)( ±s)

組別 n/只 體質(zhì)量/g 腓腸肌

質(zhì)量/g 腓腸肌

指數(shù)/%

對(duì)照組

運(yùn)動(dòng)組 8

8 378.8±65.7

378.0±27.6 0.61±0.16

0.79±0.131) 1.6±0.20

2.2±0.112)

1)與對(duì)照組比較,P<0.05;2)與對(duì)照組比較,P<0.01

2.2運(yùn)動(dòng)大鼠腓腸肌Bax、Bcl-2蛋白水平及Bcl-2/

Bax值的改變

鑒于圖1顯示的GAPDH在對(duì)照組和運(yùn)動(dòng)組蛋白表達(dá)相對(duì)恒定,故本研究以GAPDH作為Bax和Bcl-2蛋白表達(dá)的內(nèi)部參照,即對(duì)照組和運(yùn)動(dòng)組Bax和Bcl-2蛋白表達(dá)的灰度值分別與該組的GAPDH蛋白灰度值進(jìn)行校正,將校正后的Bax和Bcl-2以及Bcl-2/Bax值分別進(jìn)行比較,進(jìn)而反映兩組間的蛋白表達(dá)變化。圖1、表2結(jié)果顯示,與對(duì)照組相比,運(yùn)動(dòng)組腓腸肌Bax蛋白減少了12.2%(P<0.05),Bcl-2蛋白水平增加12.1%(P<0.05),Bcl-2/Bax值增加28.0%(P<0.05)。

圖1大鼠腓腸肌中Bax、Bcl-2蛋白表達(dá)的免疫印跡圖

表2大鼠骨骼肌Bax、Bcl-2蛋白表達(dá)及

Bcl-2/Bax值( ±s)變化

組別 n/只 Bax/灰度值 Bcl-2/灰度值 Bcl-2/Bax比值/%

對(duì)照組

運(yùn)動(dòng)組 8

8 0.056 0±0.006

0.049 2±0.0011) 0.600±0.160

0.670±0.0301) 10.70±0.20

13.70±0.511)

1)與對(duì)照組比較,P<0.05

2.3運(yùn)動(dòng)大鼠腓腸肌SIRT1/SIRT3信號(hào)軸基因mRNA的表達(dá)改變

表3結(jié)果顯示,與對(duì)照組比較,運(yùn)動(dòng)組SIRT3、SIRT1、PGC-1α、NRF1、TFAM、MnSOD mRNA水平分別增加了150%、140%、104%、380%、160%、97%,Caspase-3 mRNA減少了50%,差異有顯著性意義(P<0.05)。

表3各組大鼠骨骼肌SIRT1/SIRT3軸基因mRNA表達(dá)變化( ±s)

組別 n/只 SIRT3 SIRT1 PGC-1α NRF1 TFAM MnSOD Caspase-3

endprint

對(duì)照組

運(yùn)動(dòng)組 8

8 1.00±0.00

2.50±0.241) 1.00±0.00

2.41±0.631) 1.00±0.00

2.04±0.111) 1.00±0.00

4.80±0.401) 1.00±0.00

2.60±0.131) 1.00±0.00

1.97±0.41) 1.00±0.00

0.5±0.061)

1)與對(duì)照組比較,P<0.05

3討論

3.18周中等強(qiáng)度低負(fù)荷量訓(xùn)練對(duì)大鼠腓腸肌質(zhì)量和凋亡相關(guān)因子表達(dá)的影響

蛋白質(zhì)合成減少和分解增加導(dǎo)致的肌肉質(zhì)量下降是Sarcopenia發(fā)生機(jī)制之一。力量訓(xùn)練能增加肌肉蛋白質(zhì)合成,從而延緩老年人肌肉質(zhì)量和肌力下降[12]。但也有研究認(rèn)為,耐力運(yùn)動(dòng)能減損力量訓(xùn)練積累起來的肌肉質(zhì)量[12]。這也使得人們對(duì)耐力運(yùn)動(dòng)可否用于防治Sarcopenia仍存在爭議。Pasini等[7]研究發(fā)現(xiàn),8周中等強(qiáng)度大負(fù)荷量耐力運(yùn)動(dòng)可將18月齡雄性大鼠股四頭肌質(zhì)量增加近38%。本研究結(jié)果顯示,8周中等負(fù)荷低強(qiáng)度訓(xùn)練后大鼠的腓腸肌重量增加約30.0%,腓腸肌指數(shù)增加37.5%。值得指出的是,18月齡雌性大鼠到20月齡時(shí)腓腸肌質(zhì)量減少11.2%[6]。提示中等負(fù)荷低強(qiáng)度訓(xùn)練不僅延緩Sarcopenia骨骼肌丟失,甚至進(jìn)一步增加老齡大鼠腓腸肌質(zhì)量。然而,Andersen等[13]將18月齡雌性大鼠分為運(yùn)動(dòng)前、9周低強(qiáng)度大負(fù)荷量跑臺(tái)運(yùn)動(dòng)組及20月齡安靜對(duì)照組。結(jié)果卻發(fā)現(xiàn),與安靜組相比,18月齡雌性大鼠經(jīng)過9周運(yùn)動(dòng)后腓腸肌質(zhì)量雖有顯著增加,但仍明顯低于運(yùn)動(dòng)前。這一結(jié)果說明運(yùn)動(dòng)強(qiáng)度是體育運(yùn)動(dòng)對(duì)抗Sarcopenia肌肉質(zhì)量丟失的關(guān)鍵參數(shù)。

肌細(xì)胞凋亡被認(rèn)為在Sarcopenia病理進(jìn)程起關(guān)鍵作用[4]。Bcl-2是參與調(diào)控線粒體凋亡途徑的凋亡抑制蛋白,而Bax是促凋亡蛋白。值得指出的是,當(dāng)Bcl-2/Bax值增大,細(xì)胞更趨向于存活;Bcl-2/Bax值減小細(xì)胞則趨向于凋亡[6]。圖1和表2顯示,運(yùn)動(dòng)組Bcl-2蛋白表達(dá)增加20%,Bax蛋白表達(dá)減少10%,Bcl-2/Bax值增加33.3%,Caspase-3 mRNA表達(dá)減少50%。Song等[6]研究也證實(shí),與27月齡雌性安靜大鼠相比,12周中等強(qiáng)度大負(fù)荷量運(yùn)動(dòng)后的同齡大鼠腓腸肌Bcl-2蛋白表達(dá)及Bcl-2/Bax值顯著增加、Bax和Caspase-3蛋白表達(dá)則顯著減少。本實(shí)驗(yàn)與Song等[6]采用的運(yùn)動(dòng)強(qiáng)度一致,而本研究采用低負(fù)荷量,說明負(fù)荷量是對(duì)抗Sarcopenia的非必需參數(shù),這與上述運(yùn)動(dòng)強(qiáng)度抗肌肉質(zhì)量丟失相似。

3.2去乙酰化酶介導(dǎo)中等強(qiáng)度低負(fù)荷量訓(xùn)練的內(nèi)穩(wěn)態(tài)康復(fù)作用

功能內(nèi)穩(wěn)態(tài)(Function-Specific Homeostasis,F(xiàn)SH)是維持功能充分穩(wěn)定發(fā)揮的負(fù)反饋機(jī)制[14]。SIRTs具有抗衰老效應(yīng)[14]。研究表明,SIRTs是FSH最貼切標(biāo)示物,存在FSH特異的SIRTs活性(FSH-Specific SIRT Activities,F(xiàn)ASAs)[14]。Baker等[15]研究表明,體育運(yùn)動(dòng)可促進(jìn)遠(yuǎn)離FSH的功能恢復(fù)。Costford等[16]研究發(fā)現(xiàn),與健康者相比,老齡2型糖尿病患者骨骼肌代謝失調(diào)與SIRTs活性低于FASAs有關(guān),而運(yùn)動(dòng)訓(xùn)練能將患者骨骼肌SIRTs活性康復(fù)至FASAs,提示體育運(yùn)動(dòng)可通過調(diào)節(jié)SIRT1維持骨骼肌FSH。

然而,骨骼肌遠(yuǎn)離FSH將導(dǎo)致細(xì)胞凋亡,誘發(fā)Sarcopenia[4]。肌細(xì)胞凋亡與SIRT1和SIRT3活性低于FASAs有關(guān)[17]。本研究結(jié)果顯示,中等強(qiáng)度低負(fù)荷訓(xùn)練可顯著增加老齡大鼠腓腸肌SIRT3和SIRT1 mRNA表達(dá)。Kang等[18]對(duì)22月齡大鼠進(jìn)行12周中等強(qiáng)度跑臺(tái)運(yùn)動(dòng)干預(yù)后也發(fā)現(xiàn),運(yùn)動(dòng)后大鼠骨骼肌SIRT1蛋白表達(dá)顯著高于安靜組。Lanza等[19]對(duì)59~76歲健康受試者進(jìn)行為期4年、每周6 d、每天不少于1 h的中等強(qiáng)度耐力運(yùn)動(dòng)后發(fā)現(xiàn),骨骼肌SIRT3蛋白表達(dá)增加,甚至高于青年人,提示中等強(qiáng)度低負(fù)荷訓(xùn)練使衰老骨骼肌SIRT3和SIRT1表達(dá)水平康復(fù)到FASAs,后者可提高凋亡閾值、抑制肌細(xì)胞凋亡。由此可見,中等強(qiáng)度運(yùn)動(dòng)是促進(jìn)肌細(xì)胞SIRT3和SIRT1基因表達(dá)的必需參數(shù)。此外,研究表明,力竭運(yùn)動(dòng)和高強(qiáng)度間歇訓(xùn)練均能促進(jìn)老年人骨骼肌SIRT1和SIRT3表達(dá)[20],提示體育運(yùn)動(dòng)刺激SIRT1和SIRT3表達(dá)與運(yùn)動(dòng)方式和運(yùn)動(dòng)強(qiáng)度有關(guān)[14,21]。

3.3SIRT1/SIRT3軸雙重調(diào)控線粒體更新和抗氧化酶的表達(dá)

線粒體功能充分穩(wěn)定發(fā)揮由線粒體內(nèi)穩(wěn)態(tài)(Mitochondrial Function-Specific Homeostasis,MTH)維持。維持MTH需要高水平的線粒體更新速率保證線粒體新老更替。體力活動(dòng)缺乏的老年人骨骼肌代謝紊亂與線粒體遠(yuǎn)離MTH密切相關(guān)[22]。SIRT1/SIRT3軸在維持MTH過程中具有協(xié)同效應(yīng)[23]。研究表明,SIRT1/SIRT3軸可雙重調(diào)控線粒體代謝酶的活性[8]。Cantó等[11]研究證實(shí),SIRTs催化底物NAD﹢能激活SIRT1/SIRT3軸,進(jìn)而更有效地維持衰老小鼠骨骼肌MTH。然而,SIRT1/SIRT3軸任一個(gè)基因敲除都會(huì)導(dǎo)致線粒體更新受阻[24]。

線粒體更新主要由PGC-1α介導(dǎo)。PGC-1α是SIRT1/SIRT3軸下游的調(diào)控因子[25]。衰老導(dǎo)致PGC-1α活性下調(diào)將導(dǎo)致肌細(xì)胞遠(yuǎn)離MTH[26]。PGC-1α活性下調(diào)與SIRT1和SIRT3水平低于FASAs有關(guān)[23]。PGC-1α可調(diào)控下游基因表達(dá)促進(jìn)線粒體生物合成,如NRF1和TFAM。NRF1進(jìn)一步上調(diào)TFAM基因表達(dá),而TFAM促進(jìn)mtDNA復(fù)制[27]。本研究結(jié)果顯示,LME顯著性增加老齡大鼠腓腸肌PGC-1α、TFAM、NRF1 mRNA水平,提示LME通過上調(diào)SIRT1/SIRT3軸調(diào)控PGC-1α表達(dá),后者促進(jìn)TFAM與NRF1表達(dá),最終維持衰老骨骼肌MTH。

MnSOD位于線粒體內(nèi),是維持MTH抗氧化酶之一[26]。研究發(fā)現(xiàn),MnSOD表達(dá)減少會(huì)導(dǎo)致肌細(xì)胞遠(yuǎn)離MTH[27]。MnSOD也是PGC-1α下游靶基因[28]。因此,衰老MnSOD表達(dá)減少也可能與SIRT1/SIRT3軸對(duì)PGC-1α調(diào)控缺失有關(guān)[29]。本研究結(jié)果顯示,中等強(qiáng)度低負(fù)荷訓(xùn)練使衰老腓腸肌MnSOD、PGC-1α、SIRT1和SIRT3 mRNA表達(dá)增加,提示中等強(qiáng)度低負(fù)荷訓(xùn)練可通過SIRT1/SIRT3軸雙重調(diào)控PGC-1α來促進(jìn)MnSOD表達(dá),實(shí)現(xiàn)對(duì)衰老骨骼肌MTH康復(fù),后者將有利于阻止肌細(xì)胞進(jìn)入線粒體依賴的凋亡程序。

8周中等強(qiáng)度低負(fù)荷量訓(xùn)練增加老齡雌性大鼠腓腸肌的Bcl-2蛋白水平和Bcl-2/Bax比值、抑制Bax蛋白和Caspase-3 mRNA表達(dá),提示8周中等強(qiáng)度低負(fù)荷量訓(xùn)練可抑制老齡大鼠骨骼肌細(xì)胞凋亡、減少Sarcopenia肌肉質(zhì)量丟失、延緩骨骼肌衰老;SIRT1/SIRT3軸介導(dǎo)中等強(qiáng)度低負(fù)荷量訓(xùn)練有利于對(duì)老齡大鼠腓腸肌內(nèi)穩(wěn)態(tài)的維持。

參考文獻(xiàn):

[1] 漆正堂,賀杰,張媛,等. 65%~75%最大強(qiáng)度的耐力運(yùn)動(dòng)對(duì)老齡小鼠骨骼肌線粒體氧化應(yīng)激與膜電位的影響[J]. 體育科學(xué),2010,30(10):46-51.

endprint

[2] Ortega F B,Silventoinen K,Tynelius P,et al. Muscular strength in male adolescents and premature death:cohort study of one million participants[J]. BMJ,2012,345:e7279.

[3] Von Haehling S,Morley J E,Anker S D. From muscle wasting to sarcopenia and myopenia:update 2012[J]. J Cachexia Sarcopenia Muscle,2012,3(4):213-217.

[4] Marzetti E. Skeletal muscle apoptotic signaling predicts thigh muscle volume and gait speed in community-dwelling older persons:an exploratory study[J]. PLoS One,2012,7(2):e32829.

[5] Fonseca H,Powers S K,Gon?alves D,et al. Physical inactivity is a major contributor to ovariectomy-induced sarcopenia[J]. Int J Sports Med,2012,33(4):268-78.

[6] Song W,Kwak H B,Lawler J M. Exercise training attenuates age-induced changes in apoptotic signaling in rat skeletal muscle[J]. Antioxid Redox Signal,2006,8:517-528.

[7] Pasini E,Le Douairon Lahaye S,F(xiàn)lati V,et al. Effects of treadmill exercise and training frequency on anabolic signaling pathways in the skeletal muscle of aged rats[J]. Exp Gerontol,2012,47(1):23-28.

[8] Hirschey M D,Shimazu T,Capra J A,et al. SIRT1 and SIRT3 deacetylate homologous substrates:AceCS1,2 and HMGCS1,2[J]. Aging (Albany NY),2011,3(6):635-642.

[9] Brenmoehl J,Hoeflich A. Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3[J]. Mitochondrion,2013 [Epub ahead of print].

[10] Bejma J,Ji L L. Aging and acute exercise enhance free radical generation in rat skeletal muscle[J]. J Appl Physiol,1999,87(1):465-470.

[11] Cantó C,Houtkooper R H,Pirinen E,et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity[J]. Cell Metab,2012,15(6):838-847.

[12] Baar K. Training for endurance and strength:lessons from cell signaling[J]. Med Sci Sports Exerc,2006,38(11):1939-1944.

[13] Andersen N B,Andreassen T T,Orskov H,et al. Growth hormone and mild exercise in combination increases markedly muscle mass and tetanic tension in old rats[J]. Eur J Endocrinol,2000,143(3):409-418.

[14] 李方暉,曹偉,趙軍,等. Sirtuins去乙?;傅墓δ芗捌湓隗w育科學(xué)中的應(yīng)用[J]. 體育學(xué)刊,2011,18(6):138-144.

[15] Baker J,Meisner B A,Logan A J,et al. Physical activity and successful aging in Canadian older adults[J]. J Aging Phys Act,2009,17(2):223-235.

[16] Costford S R,Bajpeyi S,Pasarica M,et al. Skeletal muscle NAMPT is induced by exercise in humans[J]. Am J Physiol Endocrinol Metab,2010,298(1):E117-126.

[17] Park S J,Ahmad F,Philp A,et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases[J]. Cell,2012,148(3):421-433.

[18] Kang C. Exercise training attenuates aging-associated mitochondrial dysfunction in rat skeletal muscle:Role of PGC-1α[J]. Exp Gerontol,2013,48(11):1343-1350.

[19] Lanza I R,Short D K. Endurance exercise as a countermeasure for aging[J]. Diabetes,2008,57(11):2933-2942.

[20] Radak Z,Bori Z. Age-dependent changes in 8-oxoguanine-DNA glycosylase activity are modulated by adaptive responses to physical exercise in human skeletal muscle[J]. Free Radic Biol Med,2011,51(2):417-423.

endprint

[21] 王海濤. 運(yùn)動(dòng)對(duì)骨骼肌線粒體去乙酰化酶3(SIRT3)的影響[J]. 體育科學(xué),2011,31(1):85-88.

[22] Safdar A,Hamadeh M J,Kaczor J J,et al. Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults[J]. PLoS One,2010,5(5):e10778.

[23] Nogueiras R,Habegger K M,Chaudhary N,et al. Sirtuin 1 and sirtuin 3:physiological modulators of metabolism[J]. Physiol Rev,2012,92(3):1479-1514.

[24] Palacios O M,Carmona J J,Michan S,et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle[J]. Aging (Albany NY),2009,1(9):771-783.

[25] Nemoto S. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1(alpha)[J]. J Biol Chem,2005,280(16):16456-16460.

[26] Li L,Mühlfeld C. Mitochondrial biogenesis and PGC-1α deacetylation by chronic treadmill exercise:differential response in cardiac and skeletal muscle[J]. Basic Res Cardiol,2011,106(6):1221-1234.

[27] Ji L L. Modulation of skeletal muscle antioxidant defense by exercise: Role of redox signaling[J]. Free Radic Biol Med,2008,44(2):142-152.

[28] Olmos Y,Valle I,Borniquel S,et al. Mutual dependence of Foxo3a and PGC-1alpha in the induction of oxidative stress genes[J]. J Biol Chem,2009,284(21):14476-14484.

[29] Zhang Y,Ikeno Y,Qi W,et al. Mice deficient in both Mn superoxide dismutase and glutathione peroxidase-1 have increased oxidative damage and a greater incidence of pathology but no reduction in longevity[J]. J Gerontol A Biol Sci Med Sci,2009,64(12):1212-1220.

endprint

[21] 王海濤. 運(yùn)動(dòng)對(duì)骨骼肌線粒體去乙?;?(SIRT3)的影響[J]. 體育科學(xué),2011,31(1):85-88.

[22] Safdar A,Hamadeh M J,Kaczor J J,et al. Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults[J]. PLoS One,2010,5(5):e10778.

[23] Nogueiras R,Habegger K M,Chaudhary N,et al. Sirtuin 1 and sirtuin 3:physiological modulators of metabolism[J]. Physiol Rev,2012,92(3):1479-1514.

[24] Palacios O M,Carmona J J,Michan S,et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle[J]. Aging (Albany NY),2009,1(9):771-783.

[25] Nemoto S. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1(alpha)[J]. J Biol Chem,2005,280(16):16456-16460.

[26] Li L,Mühlfeld C. Mitochondrial biogenesis and PGC-1α deacetylation by chronic treadmill exercise:differential response in cardiac and skeletal muscle[J]. Basic Res Cardiol,2011,106(6):1221-1234.

[27] Ji L L. Modulation of skeletal muscle antioxidant defense by exercise: Role of redox signaling[J]. Free Radic Biol Med,2008,44(2):142-152.

[28] Olmos Y,Valle I,Borniquel S,et al. Mutual dependence of Foxo3a and PGC-1alpha in the induction of oxidative stress genes[J]. J Biol Chem,2009,284(21):14476-14484.

[29] Zhang Y,Ikeno Y,Qi W,et al. Mice deficient in both Mn superoxide dismutase and glutathione peroxidase-1 have increased oxidative damage and a greater incidence of pathology but no reduction in longevity[J]. J Gerontol A Biol Sci Med Sci,2009,64(12):1212-1220.

endprint

[21] 王海濤. 運(yùn)動(dòng)對(duì)骨骼肌線粒體去乙?;?(SIRT3)的影響[J]. 體育科學(xué),2011,31(1):85-88.

[22] Safdar A,Hamadeh M J,Kaczor J J,et al. Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults[J]. PLoS One,2010,5(5):e10778.

[23] Nogueiras R,Habegger K M,Chaudhary N,et al. Sirtuin 1 and sirtuin 3:physiological modulators of metabolism[J]. Physiol Rev,2012,92(3):1479-1514.

[24] Palacios O M,Carmona J J,Michan S,et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle[J]. Aging (Albany NY),2009,1(9):771-783.

[25] Nemoto S. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1(alpha)[J]. J Biol Chem,2005,280(16):16456-16460.

[26] Li L,Mühlfeld C. Mitochondrial biogenesis and PGC-1α deacetylation by chronic treadmill exercise:differential response in cardiac and skeletal muscle[J]. Basic Res Cardiol,2011,106(6):1221-1234.

[27] Ji L L. Modulation of skeletal muscle antioxidant defense by exercise: Role of redox signaling[J]. Free Radic Biol Med,2008,44(2):142-152.

[28] Olmos Y,Valle I,Borniquel S,et al. Mutual dependence of Foxo3a and PGC-1alpha in the induction of oxidative stress genes[J]. J Biol Chem,2009,284(21):14476-14484.

[29] Zhang Y,Ikeno Y,Qi W,et al. Mice deficient in both Mn superoxide dismutase and glutathione peroxidase-1 have increased oxidative damage and a greater incidence of pathology but no reduction in longevity[J]. J Gerontol A Biol Sci Med Sci,2009,64(12):1212-1220.

endprint

猜你喜歡
運(yùn)動(dòng)訓(xùn)練骨骼肌
鳶尾素(Irisin):運(yùn)動(dòng)誘導(dǎo)骨骼肌自噬的新靶點(diǎn)
毛蕊花苷對(duì)遞增負(fù)荷運(yùn)動(dòng)小鼠骨骼肌損傷的保護(hù)作用
淺談高中體育特長生的培養(yǎng)策略
運(yùn)動(dòng)處方的研究與應(yīng)用
淺談運(yùn)動(dòng)訓(xùn)練中教練員應(yīng)具備的基本素質(zhì)
人在籃球運(yùn)動(dòng)中是否能自由地支配自己的行為
淺談田徑短跑項(xiàng)目運(yùn)動(dòng)員訓(xùn)練后的恢復(fù)方法
本體感覺的研究進(jìn)展與現(xiàn)狀
骨骼肌細(xì)胞自噬介導(dǎo)的耐力運(yùn)動(dòng)應(yīng)激與適應(yīng)
飲水添加硼不影響烏雞骨骼肌品質(zhì)
喀喇沁旗| 孟村| 炉霍县| 城市| 綦江县| 咸阳市| 临沧市| 文安县| 海阳市| 三穗县| 翁牛特旗| 梓潼县| 尖扎县| 徐水县| 彰武县| 扶沟县| 樟树市| 百色市| 镇坪县| 堆龙德庆县| 杨浦区| 富阳市| 怀来县| 石泉县| 加查县| 桂阳县| 玉林市| 赤壁市| 鄂托克前旗| 山西省| 和田县| 甘孜县| 平顶山市| 淮北市| 化隆| 文登市| 金堂县| 塔城市| 达日县| 工布江达县| 乐都县|