(重慶師范大學(xué)數(shù)學(xué)學(xué)院,重慶 401331)
(重慶師范大學(xué)數(shù)學(xué)學(xué)院,重慶 401331)
討論了含參多目標(biāo)廣義博弈廣義Tykhonov適定性,并利用多目標(biāo)廣義博弈的間隙函數(shù)建立了含參多目標(biāo)廣義博弈和極小化問(wèn)題的廣義Tykhonov適定的等價(jià)關(guān)系.
間隙函數(shù);含參多目標(biāo)廣義博弈;適定性
擁有多個(gè)標(biāo)準(zhǔn)的博弈叫做多目標(biāo)博弈,或者叫做擁有向量支付的博弈.Blackwell[1]首先給出擁有向量支付的零和博弈.在1959年,Shapley[2]引入了向量支付博弈中的均衡.近年來(lái),研究多目標(biāo)博弈成為研究現(xiàn)實(shí)博弈問(wèn)題的一個(gè)有用的手段.多目標(biāo)博弈的研究中,其均衡的適定性為研究的重點(diǎn).2005年,Yang和Yu[3]研究了多目標(biāo)博弈的逼近序列和參數(shù)適定性;Yu[4]等人討論了單目標(biāo)博弈的各種適定性結(jié)果;Peng[5]得到了向量擬平衡問(wèn)題的廣義Tykhonov適定性,利用向量擬平衡問(wèn)題的間隙函數(shù)建立了向量擬平衡問(wèn)題系統(tǒng)廣義Tykhonov型適定性與極小化問(wèn)題廣義Tykhonov型適定性之間的一些等價(jià)關(guān)系;在文獻(xiàn)[6]中,Peng和Wu給出了多目標(biāo)廣義博弈的廣義Tykhonov型適定性的概念,并利用多目標(biāo)廣義博弈的間隙函數(shù)得到了多目標(biāo)廣義博弈和極小化問(wèn)題的廣義Tykhonov適定的等價(jià)關(guān)系.
[1]BLACKWELL D.An Analog of the Minimax Theorem for Vector Payoffs[J].Pac JMath,1956(6):1-8
[2]SHAPLEY L S.Equilibrium Points in Games with Vector Payoffs[J].Naval Research Logistics Quarterly,1959(6):57-61
[3]YANG H,YU J.Unified Approaches to Well-posedness with Some Applications[J].Journal of Global Optimization,2005(31):371-381
[4]YU J,YANG H,YU C.Well-posed Ky Fan's Point,Quasi-variational Inequality and Nash Equilibrium Problems[J].Nonlinear Analysis,2007(66):777-790
[5]PENG JW,WU SY.The Generalized TykhonovWell-posedness for System of Vector Euasiequilibrium Problems[J].Optimization Letters,2010(4):501-512
[6]PENG J W,WU S Y.The Well-posedness for Multiobjective Generalized Games[J].Journal of Optimization Theory and Applications,2011(150):416-423
[7]楊哲,蒲永健,郭心毅.確定性下多目標(biāo)博弈中弱Pareto-NS均衡的存在性[J].系統(tǒng)工程理論與實(shí)踐,2013,33(3):660-665
[8]BIANCHIM,KASSAY G,PINI R.Well-posedness for Vector Equilibrium Problems[J].Mathematical Methods of Operations Research,2009(170):171-182
[9]宋軍,徐鳳云.含參向量均衡問(wèn)題的適定性[J].南昌大學(xué)學(xué)報(bào):工科版,2010,32(3):272-276
含參多目標(biāo)廣義博弈的適定性
吳 曦
The Well-posedness of Generalized Game of Parametric Multiobjective
WU Xi
(School of Mathematics,Chongqing Normal University,Chongqing 401331,China)
This paper discusses the well-posedness of generalized game of parametric multiobjective and uses gap function of multiobjective generalized games to set up the equivalent relation between generalized Tykhonov well-posedness ofminimization problems and parametricmultiobjective generalized games.
gap function;generalized game of parametric multiobjective;well-posedness
李翠薇
O224
A
1672-058X(2014)02-0023-03
2013-07-27;
2013-09-09.
吳曦(1988-),女,重慶云陽(yáng)人,碩士研究生,從事最優(yōu)化方法及其應(yīng)用研究.