国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

并聯(lián)運動模擬臺鉸鏈間隙誤差分析

2014-11-07 02:51趙姍姍孟立新張立中
科技資訊 2014年9期
關(guān)鍵詞:Matlab仿真

趙姍姍++孟立新++張立中

摘 要:球鉸聯(lián)接是多自由度并聯(lián)運動模擬臺中普遍采用的一種連接方式,但由于球鉸間隙的存在,使并聯(lián)模擬臺的運動精度明顯降低。利用機器人運動學(xué)中的D-H(Denavit-Hartenberg)法推導(dǎo)出鉸鏈間隙對并聯(lián)模擬臺運動的姿態(tài)角度的影響,采用MATLAB進行仿真分析。結(jié)果表明:針對所設(shè)計的并聯(lián)運動模擬臺,球鉸間隙為 mm時,并聯(lián)機構(gòu)的精度小于 mrad,滿足機構(gòu)運動精度要求。

關(guān)鍵詞:球鉸 間隙誤差 并聯(lián)模擬臺 D-H法 MATLAB仿真

中圖分類號:TH115;TP302.7 文獻標(biāo)識碼:A 文章編號:1672-3791(2014)03(c)-0084-02

球鉸理論上具有結(jié)構(gòu)簡單、運動靈活、耐磨性好和承載力強等優(yōu)點,常用于并聯(lián)運動模擬機構(gòu)。但由于球鉸間隙一般較大,對模擬臺運動精度的影響不可忽略[1]。

目前,提高球鉸精度和剛度的方法,主要有提高加工精度、提高表面質(zhì)量和采用鉸鏈消隙裝置等措施。但隨著精度的提高,成本和實現(xiàn)難度均大幅增加,因此,研究鉸鏈間隙對機構(gòu)精度的影響,從而根據(jù)機構(gòu)精度需要合理確定球鉸間隙,優(yōu)化精度分配,對提高并聯(lián)機構(gòu)的性價比意義重大。

1 具有SPS驅(qū)動支鏈的3-DOF并聯(lián)模擬臺的結(jié)構(gòu)

本文針對外場試驗用激光通信光端機運動模擬臺的技術(shù)指標(biāo)要求,設(shè)計了3-DOF(三自由度)并聯(lián)模擬臺的結(jié)構(gòu)[2],運動模擬臺位置精度要求為1 mrad,經(jīng)誤差分配,球鉸引起的誤差應(yīng)小于0.5 mrad,3-DOF并聯(lián)模擬臺如圖1所示。

如圖1所示,三自由度并聯(lián)運動模擬臺由三層平臺、三個驅(qū)動電動缸、四個過渡支撐桿和一個中心支撐組成。其中:三個平臺相互平行且同心,中平臺為多邊形,動平臺和中平臺之間有四個固定支撐,兩個縱向的電動缸成90°分配,橫向的電動缸中心線與基臺平行,且與兩個縱向電動缸垂直。其原理為控制三個電動缸的伸縮量,以實現(xiàn)并聯(lián)模擬臺橫滾、俯仰和偏航的角度,中心支撐主要承載整個搖擺臺的重量。

2 球鉸間隙模型分析

如圖2所示球鉸[3]可視為由連桿1和連桿2組成,根據(jù)連桿坐標(biāo)系設(shè)定的原則,分別在連桿1、2上建立三維直角坐標(biāo)系和,且為與靜平臺固連的球鉸球窩中心的靜坐標(biāo)系,為與驅(qū)動支鏈固連的球鉸球心的動坐標(biāo)系。

根據(jù)坐標(biāo)變換法(即為局部動坐標(biāo)系中任意點在整體靜坐標(biāo)系中的坐標(biāo)表達(dá)式):

其中,為動坐標(biāo)系中任意點在靜坐標(biāo)系中的坐標(biāo);為點在動坐標(biāo)系中的坐標(biāo);為動坐標(biāo)系原點在靜坐標(biāo)系中的坐標(biāo)(即坐標(biāo)系的平移矩陣)。

為動坐標(biāo)系的方向余弦陣(即坐標(biāo)的旋轉(zhuǎn)矩陣)。設(shè)初始狀態(tài)動坐標(biāo)系的原點與靜坐標(biāo)系的原點重合,產(chǎn)生間隙后的點為動坐標(biāo)系中的任意點,且設(shè)在局部動坐標(biāo)系中,則在局部動坐標(biāo)系中球鉸間隙隨機點的坐標(biāo)為:

在整體靜坐標(biāo)系中,球鉸間隙隨機點的坐標(biāo)為:

其中:為球鉸球心的平移間隙,為球鉸球心的轉(zhuǎn)角間隙,為靜平臺的半徑。

3 模擬臺姿態(tài)角度誤差分析

機器人運動學(xué)中的D-H法[4]是機器人連桿和關(guān)節(jié)建模的一種非常簡單的方法,可用于任何機構(gòu)的構(gòu)型。采用D-H法對運動模擬臺的SPS(電動缸兩端以球鉸聯(lián)接)單開支鏈進行分析計算,進而建立球鉸間隙與模擬臺姿態(tài)誤差角[5]度間的數(shù)學(xué)模型。

如圖3為單開支鏈的結(jié)構(gòu)簡圖,在局部動坐標(biāo)系中,定點。與上述同理,根據(jù)坐標(biāo)變換法,在整體靜坐標(biāo)系中,經(jīng)過旋轉(zhuǎn)平移后,的坐標(biāo)為:

其中:為動平臺上固定點與局部坐標(biāo)系原點之間的距離;為初始狀態(tài)下與之間的夾角;為中心支撐鉸鏈球心與基臺整體靜坐標(biāo)系的垂直距離(見圖3)。

初始狀態(tài)下,此時

驅(qū)動桿長為:

4 實例

如圖1所示并聯(lián)運動模擬臺結(jié)構(gòu)形式,已知:

球鉸間隙范圍 mm,任取局部動坐標(biāo)系坐標(biāo)原點,并且在局部動坐標(biāo)系中,隨機取點隨機取值,球鉸球心沿靜坐標(biāo)系三個軸的平移間隙。

如圖4所示,則:

同理可得:

計算得:

假設(shè)球鉸間隙只對搖擺臺的俯仰運動誤差有影響,即,則:

驅(qū)動桿長化簡得:

5 MATLAB編程與仿真

運用MATLAB進行編程仿真,得到球鉸間隙影響下并聯(lián)模擬臺的角度誤差。

由圖5可知,球鉸間隙對運動模擬臺橫滾角度的峰峰值為 mrad,方位和俯仰方向誤差與橫滾分析方法,經(jīng)誤差合成,由球鉸引起的最大誤差小于 mrad,滿足模擬臺角位置精度要求。

6 結(jié)論

運用D-H法和坐標(biāo)變換法分析了單開支鏈下球鉸間隙對模擬臺姿態(tài)角度精度的影響,建立了球鉸間隙與并聯(lián)機構(gòu)精度的簡單實用的數(shù)學(xué)模型,為運動模擬臺中球鉸的選擇提供了理論依據(jù)。

參考文獻

[1] 崔道碧.關(guān)節(jié)間隙對機器人末端執(zhí)行器位姿誤差的影響[J].湖南大學(xué)學(xué)報:自然科學(xué)版,1999,26(2):32-36.(CUI Dao-bi.Effect of Gap of Key Links on Location-posture Error for Tip Executing Apparatus of Robot[J].Journal of Hunan University(Natural Sciences Edition),1999,26(2):32-36.

[2] 汪勁松,白杰文,高猛,等.Stewart平臺鉸鏈間隙的精度分析[J].清華大學(xué)學(xué)報:自然科學(xué)版,2002,42(6):758-761.WANG Jin-song,BAI Jie-wen,GAO Meng,ZHENG Hao-jun,LI Tie-min.Accuracy analysis of joint-clearances in a Stewart platform[J].J T singhua Univ(Sci &Tech),2002,42(6):758-761.

[3] 梁輝,白志富,陳五一.一種驅(qū)動冗余并聯(lián)機床的鉸鏈間隙誤差分析[J].機床與液壓,2006(4):7-9.LIANG Hui,BAI Zhi-fu,CHEN Wu-yi.On the Joint Error of a Redundantly Actuated Parallel Machine Tool[J].Machine Tool and Hydraulics,2006(4):7-9.

[4] 洪嘉振.計算多體系統(tǒng)動力學(xué)[M].北京:高等教育出版社,1999:37-60.HONG Jia-zhen.Computational Dynamics of Multibody Systems[M].Beijing:Higher Education Press,1999:37-60.

[5] 焦國太,馮永和,王鋒,等.多因素影響下的機器人綜合位姿誤差分析方法[J].應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報,2004,12(4):435-442.Jiao Guo-tai Feng Yong-he,Wang Feng,et.Synthetically analysis of the robot pose error resulting from various factors[J].Journal of Basic Science and Engineering,2004,12(4):435-442.endprint

摘 要:球鉸聯(lián)接是多自由度并聯(lián)運動模擬臺中普遍采用的一種連接方式,但由于球鉸間隙的存在,使并聯(lián)模擬臺的運動精度明顯降低。利用機器人運動學(xué)中的D-H(Denavit-Hartenberg)法推導(dǎo)出鉸鏈間隙對并聯(lián)模擬臺運動的姿態(tài)角度的影響,采用MATLAB進行仿真分析。結(jié)果表明:針對所設(shè)計的并聯(lián)運動模擬臺,球鉸間隙為 mm時,并聯(lián)機構(gòu)的精度小于 mrad,滿足機構(gòu)運動精度要求。

關(guān)鍵詞:球鉸 間隙誤差 并聯(lián)模擬臺 D-H法 MATLAB仿真

中圖分類號:TH115;TP302.7 文獻標(biāo)識碼:A 文章編號:1672-3791(2014)03(c)-0084-02

球鉸理論上具有結(jié)構(gòu)簡單、運動靈活、耐磨性好和承載力強等優(yōu)點,常用于并聯(lián)運動模擬機構(gòu)。但由于球鉸間隙一般較大,對模擬臺運動精度的影響不可忽略[1]。

目前,提高球鉸精度和剛度的方法,主要有提高加工精度、提高表面質(zhì)量和采用鉸鏈消隙裝置等措施。但隨著精度的提高,成本和實現(xiàn)難度均大幅增加,因此,研究鉸鏈間隙對機構(gòu)精度的影響,從而根據(jù)機構(gòu)精度需要合理確定球鉸間隙,優(yōu)化精度分配,對提高并聯(lián)機構(gòu)的性價比意義重大。

1 具有SPS驅(qū)動支鏈的3-DOF并聯(lián)模擬臺的結(jié)構(gòu)

本文針對外場試驗用激光通信光端機運動模擬臺的技術(shù)指標(biāo)要求,設(shè)計了3-DOF(三自由度)并聯(lián)模擬臺的結(jié)構(gòu)[2],運動模擬臺位置精度要求為1 mrad,經(jīng)誤差分配,球鉸引起的誤差應(yīng)小于0.5 mrad,3-DOF并聯(lián)模擬臺如圖1所示。

如圖1所示,三自由度并聯(lián)運動模擬臺由三層平臺、三個驅(qū)動電動缸、四個過渡支撐桿和一個中心支撐組成。其中:三個平臺相互平行且同心,中平臺為多邊形,動平臺和中平臺之間有四個固定支撐,兩個縱向的電動缸成90°分配,橫向的電動缸中心線與基臺平行,且與兩個縱向電動缸垂直。其原理為控制三個電動缸的伸縮量,以實現(xiàn)并聯(lián)模擬臺橫滾、俯仰和偏航的角度,中心支撐主要承載整個搖擺臺的重量。

2 球鉸間隙模型分析

如圖2所示球鉸[3]可視為由連桿1和連桿2組成,根據(jù)連桿坐標(biāo)系設(shè)定的原則,分別在連桿1、2上建立三維直角坐標(biāo)系和,且為與靜平臺固連的球鉸球窩中心的靜坐標(biāo)系,為與驅(qū)動支鏈固連的球鉸球心的動坐標(biāo)系。

根據(jù)坐標(biāo)變換法(即為局部動坐標(biāo)系中任意點在整體靜坐標(biāo)系中的坐標(biāo)表達(dá)式):

其中,為動坐標(biāo)系中任意點在靜坐標(biāo)系中的坐標(biāo);為點在動坐標(biāo)系中的坐標(biāo);為動坐標(biāo)系原點在靜坐標(biāo)系中的坐標(biāo)(即坐標(biāo)系的平移矩陣)。

為動坐標(biāo)系的方向余弦陣(即坐標(biāo)的旋轉(zhuǎn)矩陣)。設(shè)初始狀態(tài)動坐標(biāo)系的原點與靜坐標(biāo)系的原點重合,產(chǎn)生間隙后的點為動坐標(biāo)系中的任意點,且設(shè)在局部動坐標(biāo)系中,則在局部動坐標(biāo)系中球鉸間隙隨機點的坐標(biāo)為:

在整體靜坐標(biāo)系中,球鉸間隙隨機點的坐標(biāo)為:

其中:為球鉸球心的平移間隙,為球鉸球心的轉(zhuǎn)角間隙,為靜平臺的半徑。

3 模擬臺姿態(tài)角度誤差分析

機器人運動學(xué)中的D-H法[4]是機器人連桿和關(guān)節(jié)建模的一種非常簡單的方法,可用于任何機構(gòu)的構(gòu)型。采用D-H法對運動模擬臺的SPS(電動缸兩端以球鉸聯(lián)接)單開支鏈進行分析計算,進而建立球鉸間隙與模擬臺姿態(tài)誤差角[5]度間的數(shù)學(xué)模型。

如圖3為單開支鏈的結(jié)構(gòu)簡圖,在局部動坐標(biāo)系中,定點。與上述同理,根據(jù)坐標(biāo)變換法,在整體靜坐標(biāo)系中,經(jīng)過旋轉(zhuǎn)平移后,的坐標(biāo)為:

其中:為動平臺上固定點與局部坐標(biāo)系原點之間的距離;為初始狀態(tài)下與之間的夾角;為中心支撐鉸鏈球心與基臺整體靜坐標(biāo)系的垂直距離(見圖3)。

初始狀態(tài)下,此時

驅(qū)動桿長為:

4 實例

如圖1所示并聯(lián)運動模擬臺結(jié)構(gòu)形式,已知:

球鉸間隙范圍 mm,任取局部動坐標(biāo)系坐標(biāo)原點,并且在局部動坐標(biāo)系中,隨機取點隨機取值,球鉸球心沿靜坐標(biāo)系三個軸的平移間隙。

如圖4所示,則:

同理可得:

計算得:

假設(shè)球鉸間隙只對搖擺臺的俯仰運動誤差有影響,即,則:

驅(qū)動桿長化簡得:

5 MATLAB編程與仿真

運用MATLAB進行編程仿真,得到球鉸間隙影響下并聯(lián)模擬臺的角度誤差。

由圖5可知,球鉸間隙對運動模擬臺橫滾角度的峰峰值為 mrad,方位和俯仰方向誤差與橫滾分析方法,經(jīng)誤差合成,由球鉸引起的最大誤差小于 mrad,滿足模擬臺角位置精度要求。

6 結(jié)論

運用D-H法和坐標(biāo)變換法分析了單開支鏈下球鉸間隙對模擬臺姿態(tài)角度精度的影響,建立了球鉸間隙與并聯(lián)機構(gòu)精度的簡單實用的數(shù)學(xué)模型,為運動模擬臺中球鉸的選擇提供了理論依據(jù)。

參考文獻

[1] 崔道碧.關(guān)節(jié)間隙對機器人末端執(zhí)行器位姿誤差的影響[J].湖南大學(xué)學(xué)報:自然科學(xué)版,1999,26(2):32-36.(CUI Dao-bi.Effect of Gap of Key Links on Location-posture Error for Tip Executing Apparatus of Robot[J].Journal of Hunan University(Natural Sciences Edition),1999,26(2):32-36.

[2] 汪勁松,白杰文,高猛,等.Stewart平臺鉸鏈間隙的精度分析[J].清華大學(xué)學(xué)報:自然科學(xué)版,2002,42(6):758-761.WANG Jin-song,BAI Jie-wen,GAO Meng,ZHENG Hao-jun,LI Tie-min.Accuracy analysis of joint-clearances in a Stewart platform[J].J T singhua Univ(Sci &Tech),2002,42(6):758-761.

[3] 梁輝,白志富,陳五一.一種驅(qū)動冗余并聯(lián)機床的鉸鏈間隙誤差分析[J].機床與液壓,2006(4):7-9.LIANG Hui,BAI Zhi-fu,CHEN Wu-yi.On the Joint Error of a Redundantly Actuated Parallel Machine Tool[J].Machine Tool and Hydraulics,2006(4):7-9.

[4] 洪嘉振.計算多體系統(tǒng)動力學(xué)[M].北京:高等教育出版社,1999:37-60.HONG Jia-zhen.Computational Dynamics of Multibody Systems[M].Beijing:Higher Education Press,1999:37-60.

[5] 焦國太,馮永和,王鋒,等.多因素影響下的機器人綜合位姿誤差分析方法[J].應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報,2004,12(4):435-442.Jiao Guo-tai Feng Yong-he,Wang Feng,et.Synthetically analysis of the robot pose error resulting from various factors[J].Journal of Basic Science and Engineering,2004,12(4):435-442.endprint

摘 要:球鉸聯(lián)接是多自由度并聯(lián)運動模擬臺中普遍采用的一種連接方式,但由于球鉸間隙的存在,使并聯(lián)模擬臺的運動精度明顯降低。利用機器人運動學(xué)中的D-H(Denavit-Hartenberg)法推導(dǎo)出鉸鏈間隙對并聯(lián)模擬臺運動的姿態(tài)角度的影響,采用MATLAB進行仿真分析。結(jié)果表明:針對所設(shè)計的并聯(lián)運動模擬臺,球鉸間隙為 mm時,并聯(lián)機構(gòu)的精度小于 mrad,滿足機構(gòu)運動精度要求。

關(guān)鍵詞:球鉸 間隙誤差 并聯(lián)模擬臺 D-H法 MATLAB仿真

中圖分類號:TH115;TP302.7 文獻標(biāo)識碼:A 文章編號:1672-3791(2014)03(c)-0084-02

球鉸理論上具有結(jié)構(gòu)簡單、運動靈活、耐磨性好和承載力強等優(yōu)點,常用于并聯(lián)運動模擬機構(gòu)。但由于球鉸間隙一般較大,對模擬臺運動精度的影響不可忽略[1]。

目前,提高球鉸精度和剛度的方法,主要有提高加工精度、提高表面質(zhì)量和采用鉸鏈消隙裝置等措施。但隨著精度的提高,成本和實現(xiàn)難度均大幅增加,因此,研究鉸鏈間隙對機構(gòu)精度的影響,從而根據(jù)機構(gòu)精度需要合理確定球鉸間隙,優(yōu)化精度分配,對提高并聯(lián)機構(gòu)的性價比意義重大。

1 具有SPS驅(qū)動支鏈的3-DOF并聯(lián)模擬臺的結(jié)構(gòu)

本文針對外場試驗用激光通信光端機運動模擬臺的技術(shù)指標(biāo)要求,設(shè)計了3-DOF(三自由度)并聯(lián)模擬臺的結(jié)構(gòu)[2],運動模擬臺位置精度要求為1 mrad,經(jīng)誤差分配,球鉸引起的誤差應(yīng)小于0.5 mrad,3-DOF并聯(lián)模擬臺如圖1所示。

如圖1所示,三自由度并聯(lián)運動模擬臺由三層平臺、三個驅(qū)動電動缸、四個過渡支撐桿和一個中心支撐組成。其中:三個平臺相互平行且同心,中平臺為多邊形,動平臺和中平臺之間有四個固定支撐,兩個縱向的電動缸成90°分配,橫向的電動缸中心線與基臺平行,且與兩個縱向電動缸垂直。其原理為控制三個電動缸的伸縮量,以實現(xiàn)并聯(lián)模擬臺橫滾、俯仰和偏航的角度,中心支撐主要承載整個搖擺臺的重量。

2 球鉸間隙模型分析

如圖2所示球鉸[3]可視為由連桿1和連桿2組成,根據(jù)連桿坐標(biāo)系設(shè)定的原則,分別在連桿1、2上建立三維直角坐標(biāo)系和,且為與靜平臺固連的球鉸球窩中心的靜坐標(biāo)系,為與驅(qū)動支鏈固連的球鉸球心的動坐標(biāo)系。

根據(jù)坐標(biāo)變換法(即為局部動坐標(biāo)系中任意點在整體靜坐標(biāo)系中的坐標(biāo)表達(dá)式):

其中,為動坐標(biāo)系中任意點在靜坐標(biāo)系中的坐標(biāo);為點在動坐標(biāo)系中的坐標(biāo);為動坐標(biāo)系原點在靜坐標(biāo)系中的坐標(biāo)(即坐標(biāo)系的平移矩陣)。

為動坐標(biāo)系的方向余弦陣(即坐標(biāo)的旋轉(zhuǎn)矩陣)。設(shè)初始狀態(tài)動坐標(biāo)系的原點與靜坐標(biāo)系的原點重合,產(chǎn)生間隙后的點為動坐標(biāo)系中的任意點,且設(shè)在局部動坐標(biāo)系中,則在局部動坐標(biāo)系中球鉸間隙隨機點的坐標(biāo)為:

在整體靜坐標(biāo)系中,球鉸間隙隨機點的坐標(biāo)為:

其中:為球鉸球心的平移間隙,為球鉸球心的轉(zhuǎn)角間隙,為靜平臺的半徑。

3 模擬臺姿態(tài)角度誤差分析

機器人運動學(xué)中的D-H法[4]是機器人連桿和關(guān)節(jié)建模的一種非常簡單的方法,可用于任何機構(gòu)的構(gòu)型。采用D-H法對運動模擬臺的SPS(電動缸兩端以球鉸聯(lián)接)單開支鏈進行分析計算,進而建立球鉸間隙與模擬臺姿態(tài)誤差角[5]度間的數(shù)學(xué)模型。

如圖3為單開支鏈的結(jié)構(gòu)簡圖,在局部動坐標(biāo)系中,定點。與上述同理,根據(jù)坐標(biāo)變換法,在整體靜坐標(biāo)系中,經(jīng)過旋轉(zhuǎn)平移后,的坐標(biāo)為:

其中:為動平臺上固定點與局部坐標(biāo)系原點之間的距離;為初始狀態(tài)下與之間的夾角;為中心支撐鉸鏈球心與基臺整體靜坐標(biāo)系的垂直距離(見圖3)。

初始狀態(tài)下,此時

驅(qū)動桿長為:

4 實例

如圖1所示并聯(lián)運動模擬臺結(jié)構(gòu)形式,已知:

球鉸間隙范圍 mm,任取局部動坐標(biāo)系坐標(biāo)原點,并且在局部動坐標(biāo)系中,隨機取點隨機取值,球鉸球心沿靜坐標(biāo)系三個軸的平移間隙。

如圖4所示,則:

同理可得:

計算得:

假設(shè)球鉸間隙只對搖擺臺的俯仰運動誤差有影響,即,則:

驅(qū)動桿長化簡得:

5 MATLAB編程與仿真

運用MATLAB進行編程仿真,得到球鉸間隙影響下并聯(lián)模擬臺的角度誤差。

由圖5可知,球鉸間隙對運動模擬臺橫滾角度的峰峰值為 mrad,方位和俯仰方向誤差與橫滾分析方法,經(jīng)誤差合成,由球鉸引起的最大誤差小于 mrad,滿足模擬臺角位置精度要求。

6 結(jié)論

運用D-H法和坐標(biāo)變換法分析了單開支鏈下球鉸間隙對模擬臺姿態(tài)角度精度的影響,建立了球鉸間隙與并聯(lián)機構(gòu)精度的簡單實用的數(shù)學(xué)模型,為運動模擬臺中球鉸的選擇提供了理論依據(jù)。

參考文獻

[1] 崔道碧.關(guān)節(jié)間隙對機器人末端執(zhí)行器位姿誤差的影響[J].湖南大學(xué)學(xué)報:自然科學(xué)版,1999,26(2):32-36.(CUI Dao-bi.Effect of Gap of Key Links on Location-posture Error for Tip Executing Apparatus of Robot[J].Journal of Hunan University(Natural Sciences Edition),1999,26(2):32-36.

[2] 汪勁松,白杰文,高猛,等.Stewart平臺鉸鏈間隙的精度分析[J].清華大學(xué)學(xué)報:自然科學(xué)版,2002,42(6):758-761.WANG Jin-song,BAI Jie-wen,GAO Meng,ZHENG Hao-jun,LI Tie-min.Accuracy analysis of joint-clearances in a Stewart platform[J].J T singhua Univ(Sci &Tech),2002,42(6):758-761.

[3] 梁輝,白志富,陳五一.一種驅(qū)動冗余并聯(lián)機床的鉸鏈間隙誤差分析[J].機床與液壓,2006(4):7-9.LIANG Hui,BAI Zhi-fu,CHEN Wu-yi.On the Joint Error of a Redundantly Actuated Parallel Machine Tool[J].Machine Tool and Hydraulics,2006(4):7-9.

[4] 洪嘉振.計算多體系統(tǒng)動力學(xué)[M].北京:高等教育出版社,1999:37-60.HONG Jia-zhen.Computational Dynamics of Multibody Systems[M].Beijing:Higher Education Press,1999:37-60.

[5] 焦國太,馮永和,王鋒,等.多因素影響下的機器人綜合位姿誤差分析方法[J].應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報,2004,12(4):435-442.Jiao Guo-tai Feng Yong-he,Wang Feng,et.Synthetically analysis of the robot pose error resulting from various factors[J].Journal of Basic Science and Engineering,2004,12(4):435-442.endprint

猜你喜歡
Matlab仿真
微信網(wǎng)絡(luò)的信息傳播模型研究
常規(guī)PID控制和常規(guī)模糊控制的比較
基于凸極效應(yīng)的混合動力車用IPMSM無傳感器控制的設(shè)計
感應(yīng)電機低速運行時自適應(yīng)狀態(tài)觀測器研究
人工神經(jīng)網(wǎng)絡(luò)的改進及其在入侵檢測中的應(yīng)用
基于相關(guān)分析法的系統(tǒng)辨識算法對比及仿真
MATLAB仿真在《控制工程基礎(chǔ)》教學(xué)中的應(yīng)用
基于相似度算法的偽碼起始位置變步長估計
基于運動單站的多觀測點交叉角無源定位技術(shù)
基于FPGA實現(xiàn)直接數(shù)字頻率合成脈沖線性調(diào)頻信號
博客| 卫辉市| 洪雅县| 淮滨县| 綦江县| 南溪县| 平顺县| 家居| 五华县| 姜堰市| 定襄县| 镇巴县| 镇江市| 南岸区| 略阳县| 汉沽区| 绥中县| 双辽市| 永康市| 法库县| 沈阳市| 岳普湖县| 江源县| 英德市| 青州市| 乐平市| 土默特左旗| 光泽县| 寻乌县| 新竹县| 浠水县| 海安县| 阳朔县| 五寨县| 麻栗坡县| 昆山市| 雅江县| 久治县| 桓仁| 无极县| 鸡泽县|