馬曉麗等
摘要:通過(guò)選擇培養(yǎng)基,從紅花根際土中分離出8株溶磷效果好的解磷細(xì)菌。鉬銻抗比色法測(cè)量其溶磷能力,通過(guò)形態(tài)學(xué)、生理生化表型測(cè)定,結(jié)合16S rDNA基因序列同源性分析鑒定,并對(duì)獲得的溶磷效果較好的菌株進(jìn)行盆栽試驗(yàn)。試驗(yàn)結(jié)果表明:8株菌分為以下幾個(gè)屬,CM1 和 CM6屬于假單胞菌屬(Pseudomonas),CM4、CM7、CM8屬于芽孢桿菌屬(Bacillus),CM2、CM3、CM5分別屬于根瘤菌屬(Bradyrhizobium)、鏈霉菌屬(Streptomyces)、不動(dòng)桿菌屬(Acinetobacter)。CM5、CM6兩株菌對(duì)紅花生長(zhǎng)有明顯的促進(jìn)作用。
關(guān)鍵詞:紅花;溶磷細(xì)菌;篩選和鑒定;促生
中圖分類(lèi)號(hào): S154.3文獻(xiàn)標(biāo)志碼: A文章編號(hào):1002-1302(2014)09-0318-05
通信作者:張霞,教授,碩士生導(dǎo)師,從事植物遺傳研究。E-mail:xiazh@shzu.edu.cn。磷是植物生長(zhǎng)發(fā)育所必需的營(yíng)養(yǎng)元素[1],缺磷可導(dǎo)致農(nóng)作物產(chǎn)量明顯降低。土壤全磷含量雖然較高,但易與土壤中的金屬離子相結(jié)合形成難溶的磷化物,只有少量磷肥可以被植物吸收利用。當(dāng)季的作物對(duì)施入磷肥的利用率僅為25%,因此,磷被認(rèn)為是限制性營(yíng)養(yǎng)元素[2]。紅花生長(zhǎng)發(fā)育受化學(xué)肥料尤其是磷酸鹽肥料影響較大,但使用這些化學(xué)肥料會(huì)增加土壤及水污染,過(guò)量使用磷肥會(huì)造成水體富營(yíng)養(yǎng)化[3],同時(shí)會(huì)積累一些重金屬,威脅人類(lèi)的健康。另一方面,長(zhǎng)期使用化學(xué)肥料會(huì)導(dǎo)致土壤結(jié)構(gòu)退化[4]。如今,基于化學(xué)肥料價(jià)格及對(duì)農(nóng)業(yè)系統(tǒng)可持續(xù)發(fā)展的考慮,人們對(duì)生物肥料的關(guān)注越來(lái)越高。
一些細(xì)菌可以提供植物生長(zhǎng)所需的磷,同時(shí)扮演了溶磷微生物的角色。土壤中存在大量有溶磷能力的微生物,稱(chēng)為溶磷微生物[5]。溶磷微生物能將難以被植物吸收的磷元素轉(zhuǎn)化為易于吸收利用的狀態(tài),提高磷元素的利用率,從而提高作物產(chǎn)量,也減少了磷肥的過(guò)度使用。利用溶磷微生物將難溶性磷酸鹽轉(zhuǎn)變?yōu)榭扇苄粤资欠浅S斜匾摹H芰孜⑸锾岣哂行Я缀康耐瑫r(shí),還可改善施用化學(xué)磷肥所帶來(lái)的環(huán)境污染。因此研究根際磷細(xì)菌,對(duì)發(fā)展溶磷微生物肥料具有重要的現(xiàn)實(shí)意義。目前已有的溶磷微生物種類(lèi)很多,有細(xì)菌、真菌、放線菌等,溶磷能力差異較大[6]。所以,從根際土中篩選出溶磷能力好的溶磷微生物,制成生物肥料來(lái)提高磷素利用率成為研究熱點(diǎn)。
本研究從紅花根際土中篩選出8株溶磷細(xì)菌,并對(duì)8株溶磷細(xì)菌進(jìn)行了鑒定,同時(shí)在溫室條件下,選取3株溶磷效果較好并且具有良好溶磷穩(wěn)定性的解磷菌接種紅花,研究了3株解磷菌對(duì)紅花盛花期生長(zhǎng)的影響。該研究以期為紅花生物肥料菌種資源與應(yīng)用提供一定的理論依據(jù)。
1材料與方法
1.1材料
供試植物:紅花(Carthamus tinctorius L.)種子,品種“新紅4號(hào)”,產(chǎn)地新疆石河子。
供試培養(yǎng)基:蒙金娜無(wú)機(jī)培養(yǎng)基:葡萄糖 10 g,瓊脂20 g,(NH4)2SO4 0.5 g,NaCl 0.3 g,KCl 0.3 g,F(xiàn)eSO4·7H2O 0.03 g,MgSO4·4H2O 0.03 g,MgSO4·7H2O 0.3 g,磷礦粉 10 g,酵母膏0.4 g,蒸餾水1 000 mL,pH值7.0~7.5;蒙金娜無(wú)機(jī)液體培養(yǎng)基:配方同蒙金娜無(wú)機(jī)培養(yǎng)基,不加瓊脂。
蒙金娜有機(jī)培養(yǎng)基:葡萄糖 10g,瓊脂20g,(NH4)2SO4 0.5 g,NaCl 0.3 g,KCl 0.3 g,F(xiàn)eSO4·7H2O 0.03g,MgSO4·4H2O 0.03 g,MgSO4·7H2O 0.3 g,卵磷脂0.2 g,碳酸鈣 5 g,酵母膏0.4 g,蒸餾水1 000 mL,pH值7.0~7.5;蒙金娜有機(jī)液體培養(yǎng)基:配方同蒙金娜有機(jī)培養(yǎng)基,不加瓊脂。
溶磷細(xì)菌純培養(yǎng)保藏培養(yǎng)基(NA):牛肉膏5.0 g,蛋白胨10.0 g,NaCl 5.0 g,瓊脂20 g,水1 000 mL,pH值7.0~7.2;溶磷細(xì)菌培養(yǎng)培養(yǎng)基(NB):配方同NA,不添加瓊脂。
1.2方法
1.2.1紅花室內(nèi)培育選取粒大、飽滿(mǎn)、色白的紅花種子,在40 ℃溫水中浸泡10 min,轉(zhuǎn)入冷水中冷卻,取出晾干后播種。每盆播20粒紅花種子,室溫15 ~20 ℃下培養(yǎng)至發(fā)芽。
1.2.2紅花大田定植移栽紅花幼苗之前,對(duì)移栽地進(jìn)行精耕細(xì)耙,以減少樣地空間異質(zhì)性。待紅花幼苗生長(zhǎng)30 d后,選擇生長(zhǎng)狀況相對(duì)一致的幼苗移栽至試驗(yàn)大田中。大田設(shè)在石河子大學(xué)節(jié)水灌溉試驗(yàn)站(兵團(tuán)灌溉試驗(yàn)站石河子大學(xué)分站)(北緯40°16′58.4″~46°43′31.8″,東經(jīng)82°30′32″~89°01′02″)。此區(qū)域?qū)俚湫痛箨懶愿珊蛋敫珊禋夂?,樣地具體概況見(jiàn)表1。
1.2.3土壤樣品的采集紅花伸長(zhǎng)期從樣地里挖出整株紅花,抖掉根周?chē)缮⒌耐寥溃⑾赂街诩t花根上的土壤,裝入封口袋密封后帶回實(shí)驗(yàn)室,過(guò)1 mm篩后,放入4 ℃冰箱保存?zhèn)溆谩?/p>
1.2.4紅花根際溶磷細(xì)菌分離純化及篩選稱(chēng)取5 g保存的土壤樣品,加入45 mL無(wú)菌水與10粒滅菌玻璃珠,常溫200 r/min振蕩25 min,按10倍稀釋法稀釋樣品。采用10-4、10-5、10-6稀釋濃度,使用蒙金娜固體培養(yǎng)基培養(yǎng)。30 ℃恒溫培養(yǎng)5 d。測(cè)量解磷圈直徑(D)、菌落直徑(d),根據(jù)D/d大小來(lái)初步確定菌株的解磷能力。挑取單菌落至NA培養(yǎng)基培養(yǎng)2~3 d,置于4 ℃冰箱保存。解磷細(xì)菌的復(fù)篩采用鉬銻抗比色法[7]。通過(guò)初篩,選擇8株溶磷圈較大的菌株,分別接種于30 mL NB培養(yǎng)基中,120 r/min、28 ℃培養(yǎng)36 h,并用無(wú)菌水制成108 CFU/mL懸浮菌液。每瓶接種1 mL細(xì)菌菌液于滅菌的蒙金娜液體搖瓶培養(yǎng)基中,重復(fù)3次。以接種等量滅活細(xì)菌液作對(duì)照,搖床培養(yǎng)(28 ℃,160 r/min)5 d。鉬銻抗比色法測(cè)定上清液有效磷含量及測(cè)定上清液pH值。endprint
1.2.5溶磷細(xì)菌的鑒定
1.2.5.1理化性質(zhì)及形態(tài)學(xué)分類(lèi)按照文獻(xiàn)[8]作形態(tài)與生理生化分析。
1.2.5.216S rDNA鑒定使用細(xì)菌16S rDNA的通用引物8F(5′-AGAGTTTGATCCTGGCTCAG-3′)和1492R(5′-CGGTTACCTTGTTACGACTT-3′)進(jìn)行擴(kuò)增。PCR擴(kuò)增經(jīng)瓊脂糖凝膠電泳檢測(cè)產(chǎn)物后,送至北京三博遠(yuǎn)志測(cè)序部測(cè)序。將得到的序列提交到GenBank數(shù)據(jù)庫(kù),利用BLAST與GenBank數(shù)據(jù)庫(kù)中的序列進(jìn)行比對(duì),用ClustalX1.81軟件將相近序列進(jìn)行多重序列分析,利用MEGA V.4.0軟件構(gòu)建系統(tǒng)發(fā)育樹(shù)(Bootstrap=1 000)。
1.2.6溶磷細(xì)菌的溫室試驗(yàn)將3株溶磷效果好的溶磷菌活化,接種于液體培養(yǎng)基中,28 ℃、200 r/min振蕩培養(yǎng)2 d后,發(fā)酵液離心(4 ℃,4 000 r) 5 min,無(wú)菌生理鹽水洗菌體3次,用無(wú)菌生理鹽水制成108 CFU/mL懸浮菌液,接種紅花幼苗(苗齡20 d),每株接種量8 mL,以接種生理鹽水作對(duì)照,每個(gè)處理3個(gè)重復(fù),溫室培養(yǎng),培養(yǎng)基質(zhì)為土壤 ∶蛭石 ∶沙子=3 ∶1 ∶1的混合基質(zhì),每盆4 kg,土壤有機(jī)質(zhì)為9.8 g/kg,速效磷為6.5 mg/kg,速效鉀為155 mg/kg,堿解氮為35.9 mg/kg。紅花接種90 d后測(cè)株高、莖粗、葉片數(shù)、根長(zhǎng)、莖干質(zhì)量。
2結(jié)果與分析
2.1紅花根際磷細(xì)菌的分離與篩選
用選擇培養(yǎng)基平板從紅花根際土中分離出10株能產(chǎn)生溶磷圈的細(xì)菌。利用解磷圈直徑(D)、菌落生長(zhǎng)直徑(d)的比值作為解磷菌相對(duì)解磷能力的指標(biāo),10個(gè)菌株D/d值在1.87~4.03,D/d>4的有1株,2 2.2溶磷細(xì)菌溶磷能力測(cè)定 測(cè)定結(jié)果見(jiàn)表3。不同菌株的溶磷量在181.34~283.14 mg/L之間,顯著高于對(duì)照(P<0.05),說(shuō)明8株菌株都有較強(qiáng)的溶磷能力。其中CM6的總解磷量為283.14 mg/L,顯著高于其他菌株,解磷效果最強(qiáng)。CM4的總解磷量最低,為181.34 mg/L。 2.3溶磷細(xì)菌的鑒定 2.3.1溶磷細(xì)菌的形態(tài)學(xué)特征對(duì)8株溶磷細(xì)菌的形態(tài)及菌落特征觀察,可以得到,菌株CM4、CM7、CM8為芽孢革蘭形,表面光滑,濕潤(rùn),邊緣整齊,除CM5無(wú)鞭毛外,CM1、CM2、CM6均有極生鞭毛;CM3為革蘭氏陽(yáng)性菌,菌落灰白色,不規(guī)則形,干燥,不透明,不易挑取,結(jié)果見(jiàn)表4。 2.3.2溶磷細(xì)菌的生理生化特性對(duì)8株溶磷細(xì)菌的生理生化鑒定有氧化酶、接觸酶、淀粉水解、吲哚試驗(yàn)、甲基紅測(cè)試等,結(jié)果見(jiàn)表5。8株菌在接觸媒試驗(yàn)中均表現(xiàn)為陽(yáng)性,而在氧化酶反應(yīng)、淀粉酶試驗(yàn)及吲哚試驗(yàn)中,陰性與陽(yáng)性各占50%,甲基紅試驗(yàn)中,陽(yáng)性為12.5%。其中,CM1、CM6淀粉水解及甲基紅反應(yīng)為陰性,其余均為陽(yáng)性;CM4、CM7、CM8甲基紅反應(yīng)、氧化酶反應(yīng)為陰性,其余均為陽(yáng)性;CM2淀粉水解、甲基紅反應(yīng)及吲哚反應(yīng)為陰性,其余為陽(yáng)性;CM3全為陽(yáng)性、CM5接觸酶反應(yīng)及需氧反應(yīng)為陽(yáng)性,其余均為陰性。 2.3.316SrDNA 鑒定分別以8個(gè)菌株DNA為模板,采用表58株溶磷細(xì)菌生理生化特性 試驗(yàn)名稱(chēng)CM1CM2CM3CM4CM5CM6CM7CM8需氧反應(yīng)++++++++氧化酶試驗(yàn)+++--+--過(guò)氧化氫酶試驗(yàn)++++++++淀粉酶試驗(yàn)--++--++甲基紅試驗(yàn)--+-----吲哚試驗(yàn)+-++-+--注:“-”為陰性反應(yīng);“+”為陽(yáng)性反應(yīng)。 通用引物擴(kuò)增出長(zhǎng)約1 500 bp的片段,瓊脂糖凝膠電泳檢測(cè)后進(jìn)行測(cè)序。將8株菌16S rDNA基因序列提交到GenBank數(shù)據(jù)庫(kù),其登錄號(hào)分別為KC844218、KC844219、KC844220、KC844221、KC844222、KC844223、KC844224、KC844225,通過(guò)Blast工具在GenBank數(shù)據(jù)庫(kù)中與已發(fā)表的16S rDNA基因序列進(jìn)行同源性比對(duì),與相近序列聯(lián)配比較構(gòu)建系統(tǒng)發(fā)育樹(shù)。由系統(tǒng)發(fā)育樹(shù)(圖1)可知,8株菌隸屬于假單胞菌屬(Pseudomonas)、根瘤菌屬(Bradyrhizobium)、鏈霉菌屬(Streptomyces)、芽孢桿菌屬(Bacillus)、不動(dòng)桿菌屬(Acinetobacter),分別與已知種熒光假單胞菌(Pseudomonas fluorescens)、解淀粉芽孢桿菌(Bacillus amyloliquefaciens)、地衣芽孢桿菌(Bacillus licheniformis)、鏈霉菌屬(Streptomyces)、苜蓿中華根瘤菌(Sinorhizobium meliloti)、乙酸鈣不動(dòng)桿菌(Acinetobacter calcoaceticus)、銅綠色假單胞菌(Pseudomonas)、芽孢桿菌(Bacillus sp.)系統(tǒng)發(fā)育關(guān)系接近,序列同源性分別達(dá)到99%。再結(jié)合細(xì)菌的培養(yǎng)特征、生理生化測(cè)定結(jié)果和系統(tǒng)發(fā)育分析結(jié)果,初步確定8株菌中:CM1 和 CM6屬于假單胞菌屬(Pseudomonas),CM4、CM7、CM8屬于芽孢桿菌屬(Bacillus),CM2、CM3、CM5分別屬于根瘤菌屬(Bradyrhizobium)、鏈霉菌屬(Streptomyces)、不動(dòng)桿菌屬(Acinetobacter)。菌株CM1、CM2、CM3、CM4、CM5、CM6、CM7、CM8分別鑒定為Pseudomonas sp.、Sinorhizobium meliloti、Streptomyces、Bacillus licheniformis、Acinetobacter calcoaceticus、Pseudomonas fluorescens、Bacillus amyloliquefaciens、Bacillus mojavensis。
2.4解磷菌菌株對(duì)紅花的促生長(zhǎng)作用
在溫室條件下,將紅花分別接種CM1、CM5、CM6,90 d后測(cè)株高、莖粗、葉片數(shù)、根長(zhǎng)、莖干質(zhì)量。結(jié)果如表6所示,接種3株溶磷菌后,紅花的株高、莖粗、葉片數(shù)、根長(zhǎng)、莖干質(zhì)量,菌處理的各項(xiàng)指標(biāo)均超過(guò)未處理的對(duì)照,除CM1外,接種CM5、CM6各項(xiàng)指標(biāo)顯著提高(P<0.05),說(shuō)明除CM1外,其余兩株溶磷細(xì)菌對(duì)紅花生長(zhǎng)具有促進(jìn)作用。
3討論
從紅花根際土壤中分離出8株具有較好解磷效果的溶磷細(xì)菌,分別為CM1、CM2、CM3、CM4、CM5、CM6、CM7、CM8。經(jīng)生理生化及16S rDNA 鑒定后,分為以下幾個(gè)屬:假單胞菌屬(Pseudomonas)、根瘤菌屬(Bradyrhizobium)、鏈霉菌屬(Streptomyces)、芽孢桿菌屬(Bacillus)、不動(dòng)桿菌屬(Acinetobacter),菌株CM1、CM2、CM3、CM4、CM5、CM6、CM7、CM8分別鑒定為Pseudomonas sp.、Sinorhizobium meliloti、Streptomyces、Bacillus licheniformis、Acinetobacter calcoaceticus、Pseudomonas fluorescens、Bacillus amyloliquefaciens、Bacillus mojavensis。
接種3株具有穩(wěn)定遺傳能力的溶磷細(xì)菌CM1、CM5、CM6后,CM5、CM6菌株顯著增加了紅花植株株高、莖粗、葉片數(shù)、根長(zhǎng)、莖干重,說(shuō)明這2株溶磷細(xì)菌能夠促進(jìn)紅花對(duì)營(yíng)養(yǎng)物質(zhì)的吸收。這3株菌被定義為促進(jìn)植物生長(zhǎng)的根際細(xì)菌[10],能夠促進(jìn)植物生長(zhǎng),有效阻止病原菌侵染植物。有研究結(jié)果表明,接種溶磷微生物后,成功地減少了植物染病的概率[11-12]。
多數(shù)研究者認(rèn)為,微生物的解磷作用,主要取決于其分泌有機(jī)酸的能力以及它們的螯合能力[13]。Fankem等發(fā)現(xiàn)解磷微生物解磷能力隨著土壤pH值降低而升高,與分泌的有機(jī)酸產(chǎn)物相關(guān)[14]。Hinsinger發(fā)現(xiàn)根部釋放的有機(jī)配體也能夠改變土壤中有效磷的濃度[15]。相關(guān)研究發(fā)現(xiàn)熒光假單胞菌分泌葡萄糖酸和草酸;芽孢桿菌屬分泌檸檬酸和葡萄糖酸,解淀粉芽孢桿菌及地衣芽孢桿菌分別分泌乳酸和異戊酸[16]。本試驗(yàn)中,pH值與對(duì)照相比較有所降低,說(shuō)明8株菌產(chǎn)生相應(yīng)的酸,但解磷能力與分泌有機(jī)酸這兩者之間是否有必然的聯(lián)系,需要進(jìn)一步研究。
解磷微生物優(yōu)勢(shì)之一是其繁殖速率,能夠滿(mǎn)足植物根際對(duì)磷的需求。印度農(nóng)業(yè)研究所研究溶磷菌對(duì)小麥和水稻產(chǎn)量及磷吸收影響的研究結(jié)果表明:接種溶磷菌使其產(chǎn)量及對(duì)磷的吸收均有所增加[17]。Ratti等研究表明,檸檬草接種溶磷微生物后,與對(duì)照相比,其高度及生物量都顯著升高[18]。Hazarika等指出,使用溶磷微生物肥料顯著增加了茶樹(shù)植株高度[19]。Mustafa等研究發(fā)現(xiàn),接種磷細(xì)菌對(duì)其他植物也存在促進(jìn)效果[20]。Belimov等的研究結(jié)果表明,土壤接種混合微生物后,植物根部對(duì)磷素及氮素的吸收明顯升高[21]。生物肥料的施用對(duì)農(nóng)業(yè)生產(chǎn)及保護(hù)環(huán)境具有重大意義。本試驗(yàn)以紅花根際土為研究對(duì)象,從紅花根際土中分離、篩選及鑒定出8株溶磷能力好的解磷細(xì)菌。選取3株溶磷效果較好并且具有穩(wěn)定遺傳能力的溶磷細(xì)菌接種紅花,其中兩株菌能夠促進(jìn)紅花生長(zhǎng)。本研究為紅花生物肥料菌種資源提供一定的理論基礎(chǔ),對(duì)紅花微生物肥料研究具有一定意義。后期將會(huì)重點(diǎn)研究紅花菌根真菌接種后對(duì)紅花根際磷細(xì)菌的影響,以期了解菌根真菌、解磷細(xì)菌及植物營(yíng)養(yǎng)三者之間的關(guān)系,為微生物肥料的研究提供理論依據(jù)。
參考文獻(xiàn):
[1]貝盞臨,張欣. 靈武長(zhǎng)棗根際溶磷菌的分離研究[J]. 江蘇農(nóng)業(yè)科學(xué),2012,40(4):311-313.
[2]Abou-Aly H,Mady M A,Moussa S. Interaction effect between phosphate dissolving microorganisms and Boron on growth,endogenous phytohormones and yield of squash(Cucurbita pepo L.)[C]. The first scientific conference of the agriculture chemistry and environment society,Cairo,Egypt. 2006.
[3]聶素梅,徐曉鋒,苗艷芳. 蔬菜地磷淋失調(diào)控途徑的研究[J]. 江蘇農(nóng)業(yè)科學(xué),2011(1):179-180.
[4]Singh Y P,Dwivedi R,Dwivedi S V. Effect of bio-fertilizers and graded dose of nitrogen on growth and flower yield of calendula(Callendula officinalis)[J]. Plant Arch,2008,8(2):957-958.
[5]Ehteshami S R,Aghaalikhani M,Khavazi K,et al. Effect of phosphate solubilizing microorganisms on quantitative and qualitative characteristics of maize(Zea mays L.)under water deficit stress[J]. Pakistan Journal of Biological Sciences,2007,10(20):3585-3591.
[6]Bojinova D,Velkova R,Ivanova R. Solubilization of Morocco phosphorite by Aspergillus niger[J]. Bioresource Technology,2008,99(15):7348-7353.endprint
[7]鮑士旦. 土壤農(nóng)化分析[M]. 3版.北京:中國(guó)農(nóng)業(yè)出版社,2000:74-76.
[8]東秀珠,蔡妙英. 常見(jiàn)細(xì)菌系統(tǒng)鑒定手冊(cè)[M]. 北京:科學(xué)出版社,2001.
[9]葉勁松,吳克,俞志敏. 1株無(wú)機(jī)磷細(xì)菌篩選及溶磷能力的測(cè)定[J]. 江蘇農(nóng)業(yè)科學(xué),2013,41(6):333-335.
[10]Kloepper J W,Schroth M N. Plant growth-promoting rhizobacteria on radishes[C]//Proceedings of the 4th International Conference on Plant Pathogenic Bacteria Vol Ⅱ. Tours:Gilbert-Clary,1978:879-882.
[11]Zayed G,Abdel-Motaal H. Bio-active composts from rice straw enriched with rock phosphate and their effect on the phosphorous nutrition and microbial community in rhizosphere of cowpea[J]. Biores Technol,2005,96:929-935.
[12]Peix A,Rivas-Boyero A A,Mateos P F,et al. Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions[J]. Soil Biology & Biochemistry,2001,33:103-110.
[13]Delvasto P,Valverde A,Ballester A,et al. Characterization of brushite as a re-crystallization product formed during bacterial solubilization of hydroxyapatite in batch cultures[J]. Soil Biology & Biochemistry,2006,38(9):2645-2654.
[14]Fankem H,Nwaga D,Deubel A,et al. Occurrence and functioning of phosphate solubilizing microorganisms from oil palm tree(Elaeis guineensis) rhizosphere in Cameroon[J]. African J Biotech,2006,5:2450-2460.
[15]Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes:a review[J]. Plant and Soil,2001,237:173-195.
[16]Sharma A K. Bio-fertilizers for sustainable agriculture[J]. Agrobios Indian Pub,2002:407.
[17]Sharma S N,Prasad R. Yield and P uptake by rice and wheat grown in a sequence as influenced by phosphate fertilization with diammonium phosphate and Mussoorie rock phosphate with or without crop residues and phosphate solubilizing bacteria[J]. Journal of Agricultural Science,2003,141(3/4):359-369.
[18]Ratti N,Kumar S,Verma H N,et al. Improvement in bioavailability of tricalcium phosphate to Cymbopogon martinii var. motia by rhizobacteria,AMF and Azospirillum inoculation[J]. Microbiol Res,2001,156:145-149.
[19]Hazarika D K,Taluk D N,Phookan A K,et al. Influence of vesicular arbascular mycorrhizal fungi and phosphate solubilizng bacteria on nursery establishment and growth of tea seedlings in Assam[R]. Jorhat-Assam,India:Assam Agricultural University,2000.
[20]Mustafa Y,Bilenc S,CakmakaiR,et al. Effect of plant growth-promoting bacteria and soil compaction on barley seeding growth,nutrient uptake,soil properties and rhizosphere microflora[J]. Biol Fertile Soil,2006,42(4):350-357.
[21]Belimov A A,Kojemiakov A P. Chuvarliyeva CV interaction between barley and mixed cultures of nitrogen fixing and phosphate-solubilizing bacteria[J]. Plant and Soil,1995,173:29-37.李范,李娜,陳建中,等. 基于磷脂脂肪酸提取方法的微生物群落結(jié)構(gòu)研究[J]. 江蘇農(nóng)業(yè)科學(xué),2014,42(9):323-325.endprint
[7]鮑士旦. 土壤農(nóng)化分析[M]. 3版.北京:中國(guó)農(nóng)業(yè)出版社,2000:74-76.
[8]東秀珠,蔡妙英. 常見(jiàn)細(xì)菌系統(tǒng)鑒定手冊(cè)[M]. 北京:科學(xué)出版社,2001.
[9]葉勁松,吳克,俞志敏. 1株無(wú)機(jī)磷細(xì)菌篩選及溶磷能力的測(cè)定[J]. 江蘇農(nóng)業(yè)科學(xué),2013,41(6):333-335.
[10]Kloepper J W,Schroth M N. Plant growth-promoting rhizobacteria on radishes[C]//Proceedings of the 4th International Conference on Plant Pathogenic Bacteria Vol Ⅱ. Tours:Gilbert-Clary,1978:879-882.
[11]Zayed G,Abdel-Motaal H. Bio-active composts from rice straw enriched with rock phosphate and their effect on the phosphorous nutrition and microbial community in rhizosphere of cowpea[J]. Biores Technol,2005,96:929-935.
[12]Peix A,Rivas-Boyero A A,Mateos P F,et al. Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions[J]. Soil Biology & Biochemistry,2001,33:103-110.
[13]Delvasto P,Valverde A,Ballester A,et al. Characterization of brushite as a re-crystallization product formed during bacterial solubilization of hydroxyapatite in batch cultures[J]. Soil Biology & Biochemistry,2006,38(9):2645-2654.
[14]Fankem H,Nwaga D,Deubel A,et al. Occurrence and functioning of phosphate solubilizing microorganisms from oil palm tree(Elaeis guineensis) rhizosphere in Cameroon[J]. African J Biotech,2006,5:2450-2460.
[15]Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes:a review[J]. Plant and Soil,2001,237:173-195.
[16]Sharma A K. Bio-fertilizers for sustainable agriculture[J]. Agrobios Indian Pub,2002:407.
[17]Sharma S N,Prasad R. Yield and P uptake by rice and wheat grown in a sequence as influenced by phosphate fertilization with diammonium phosphate and Mussoorie rock phosphate with or without crop residues and phosphate solubilizing bacteria[J]. Journal of Agricultural Science,2003,141(3/4):359-369.
[18]Ratti N,Kumar S,Verma H N,et al. Improvement in bioavailability of tricalcium phosphate to Cymbopogon martinii var. motia by rhizobacteria,AMF and Azospirillum inoculation[J]. Microbiol Res,2001,156:145-149.
[19]Hazarika D K,Taluk D N,Phookan A K,et al. Influence of vesicular arbascular mycorrhizal fungi and phosphate solubilizng bacteria on nursery establishment and growth of tea seedlings in Assam[R]. Jorhat-Assam,India:Assam Agricultural University,2000.
[20]Mustafa Y,Bilenc S,CakmakaiR,et al. Effect of plant growth-promoting bacteria and soil compaction on barley seeding growth,nutrient uptake,soil properties and rhizosphere microflora[J]. Biol Fertile Soil,2006,42(4):350-357.
[21]Belimov A A,Kojemiakov A P. Chuvarliyeva CV interaction between barley and mixed cultures of nitrogen fixing and phosphate-solubilizing bacteria[J]. Plant and Soil,1995,173:29-37.李范,李娜,陳建中,等. 基于磷脂脂肪酸提取方法的微生物群落結(jié)構(gòu)研究[J]. 江蘇農(nóng)業(yè)科學(xué),2014,42(9):323-325.endprint
[7]鮑士旦. 土壤農(nóng)化分析[M]. 3版.北京:中國(guó)農(nóng)業(yè)出版社,2000:74-76.
[8]東秀珠,蔡妙英. 常見(jiàn)細(xì)菌系統(tǒng)鑒定手冊(cè)[M]. 北京:科學(xué)出版社,2001.
[9]葉勁松,吳克,俞志敏. 1株無(wú)機(jī)磷細(xì)菌篩選及溶磷能力的測(cè)定[J]. 江蘇農(nóng)業(yè)科學(xué),2013,41(6):333-335.
[10]Kloepper J W,Schroth M N. Plant growth-promoting rhizobacteria on radishes[C]//Proceedings of the 4th International Conference on Plant Pathogenic Bacteria Vol Ⅱ. Tours:Gilbert-Clary,1978:879-882.
[11]Zayed G,Abdel-Motaal H. Bio-active composts from rice straw enriched with rock phosphate and their effect on the phosphorous nutrition and microbial community in rhizosphere of cowpea[J]. Biores Technol,2005,96:929-935.
[12]Peix A,Rivas-Boyero A A,Mateos P F,et al. Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions[J]. Soil Biology & Biochemistry,2001,33:103-110.
[13]Delvasto P,Valverde A,Ballester A,et al. Characterization of brushite as a re-crystallization product formed during bacterial solubilization of hydroxyapatite in batch cultures[J]. Soil Biology & Biochemistry,2006,38(9):2645-2654.
[14]Fankem H,Nwaga D,Deubel A,et al. Occurrence and functioning of phosphate solubilizing microorganisms from oil palm tree(Elaeis guineensis) rhizosphere in Cameroon[J]. African J Biotech,2006,5:2450-2460.
[15]Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes:a review[J]. Plant and Soil,2001,237:173-195.
[16]Sharma A K. Bio-fertilizers for sustainable agriculture[J]. Agrobios Indian Pub,2002:407.
[17]Sharma S N,Prasad R. Yield and P uptake by rice and wheat grown in a sequence as influenced by phosphate fertilization with diammonium phosphate and Mussoorie rock phosphate with or without crop residues and phosphate solubilizing bacteria[J]. Journal of Agricultural Science,2003,141(3/4):359-369.
[18]Ratti N,Kumar S,Verma H N,et al. Improvement in bioavailability of tricalcium phosphate to Cymbopogon martinii var. motia by rhizobacteria,AMF and Azospirillum inoculation[J]. Microbiol Res,2001,156:145-149.
[19]Hazarika D K,Taluk D N,Phookan A K,et al. Influence of vesicular arbascular mycorrhizal fungi and phosphate solubilizng bacteria on nursery establishment and growth of tea seedlings in Assam[R]. Jorhat-Assam,India:Assam Agricultural University,2000.
[20]Mustafa Y,Bilenc S,CakmakaiR,et al. Effect of plant growth-promoting bacteria and soil compaction on barley seeding growth,nutrient uptake,soil properties and rhizosphere microflora[J]. Biol Fertile Soil,2006,42(4):350-357.
[21]Belimov A A,Kojemiakov A P. Chuvarliyeva CV interaction between barley and mixed cultures of nitrogen fixing and phosphate-solubilizing bacteria[J]. Plant and Soil,1995,173:29-37.李范,李娜,陳建中,等. 基于磷脂脂肪酸提取方法的微生物群落結(jié)構(gòu)研究[J]. 江蘇農(nóng)業(yè)科學(xué),2014,42(9):323-325.endprint