周立明,孟廣偉,王 暉,李 鋒?,郭學(xué)東
(1.吉林大學(xué) 機(jī)械科學(xué)與工程學(xué)院,吉林 長春 130025;2.吉林大學(xué) 交通學(xué)院,吉林 長春 130025)
復(fù)合材料由于具有比強(qiáng)度高、比模量大、耐疲勞及抗破損等特點(diǎn),在航空航天、交通工程和電氣工程等領(lǐng)域得到廣泛應(yīng)用.但是,復(fù)合材料在復(fù)雜應(yīng)力狀態(tài)下,內(nèi)部極易產(chǎn)生裂紋并擴(kuò)展,最終導(dǎo)致材料的斷裂而引發(fā)事故.因此,對(duì)復(fù)合材料板中的裂紋缺陷問題進(jìn)行分析具有重要的意義.
計(jì)算斷裂參數(shù)是進(jìn)行斷裂分析的第一步,許多數(shù)值計(jì)算方法比如有限元法(Finite Element Meth-od,F(xiàn)EM)、擴(kuò)展有限元法、有限差分法、邊界元法和無網(wǎng)格法等[1-2]都被嘗試用來計(jì)算斷裂參數(shù),其中有限元法已經(jīng)成為求解斷裂參數(shù)的有效方法.由于采用位移有限元法理論得到的位移解偏小,文獻(xiàn)[3]提出了將形函數(shù)導(dǎo)數(shù)的域內(nèi)積分轉(zhuǎn)化為形函數(shù)的邊界線上的積分、網(wǎng)格劃分要求低和位移解更加準(zhǔn)確的光滑有限元法(Smoothed Finite Element Method,SFEM).虛擬裂紋閉合法(Virtual Crack Closure Technique,VCCT)[4]具有裂尖單元不需特殊處理和對(duì)網(wǎng)格尺寸要求低的優(yōu)點(diǎn).SFEM 是Liu等[5]將光滑應(yīng)變措施引入有限元法,改進(jìn)有限元法剛度結(jié)構(gòu)的一種方法,具有形函數(shù)簡單、對(duì)網(wǎng)格質(zhì)量要求低、計(jì)算精度高等優(yōu)點(diǎn),現(xiàn)已廣泛應(yīng)用于各個(gè)領(lǐng)域[6-8].VCCT 由Rybicki和Kanninen[9]于1977年提出的.Xie等[10-13]對(duì)VCCT 做了大量研究工作.VCCT 比外推法、等效積分區(qū)域積分法以及全局或局部虛擬裂紋擴(kuò)展法求解斷裂參數(shù)具有明顯優(yōu)勢,它僅利用節(jié)點(diǎn)力與節(jié)點(diǎn)位移來計(jì)算應(yīng)變能釋放率,且只需要一步數(shù)值分析,最大程度地簡化了問題,具有高精度、高效率、裂尖單元不需特殊處理和對(duì)網(wǎng)格尺寸要求低等優(yōu)點(diǎn).
本文基于SFEM 并結(jié)合VCCT,提出了SFEMVCCT 法,對(duì)含傾斜裂紋復(fù)合材料圓板的斷裂參數(shù)進(jìn)行了數(shù)值分析,并與FEM-VCCT 計(jì)算結(jié)果進(jìn)行了對(duì)比.
均勻正交各向異性彈性力學(xué)平面問題的光滑Galerkin弱形式[5]可表示為:
式中:Ω為求解域;δ為變分符號(hào);T 為矩陣的轉(zhuǎn)置;為應(yīng)變矩陣;為彈性矩陣(與柔度矩陣互逆);為廣義位移;為體力;為力邊界Γ上的面力.
將求解域Ω離散為Ne個(gè)四邊形單元,節(jié)點(diǎn)個(gè)數(shù)為為空集,再將劃分為Ns=4個(gè)光滑區(qū)域,如圖1所示,●為節(jié)點(diǎn),□為光滑節(jié)點(diǎn),○為高斯點(diǎn),(N1N2N3N4)為該點(diǎn)處的位移形函數(shù)值.
廣義位移場為:
圖1 光滑域的劃分Fig.1 Division of an element into smoothing cells
光滑應(yīng)變?yōu)椋?/p>
式中:Φ為光滑函數(shù),取
式中:Ac為第c光滑區(qū)域的面積,
將式(4)代入式(3),由分部積分得:
式中:Γc為光滑域Ωc的邊界;ni和nj分別為積分段外法向向量的分量.
將式(2)代入式(5),可得:
式中:nc為光滑單元個(gè)數(shù).
FEM 通過對(duì)單元形函數(shù)矩陣求導(dǎo)得到單元應(yīng)變矩陣,通常采用高斯數(shù)值積分計(jì)算單元域積分.由式(7)可見,Cell-based光滑有限元計(jì)算光滑應(yīng)變矩陣時(shí)無需確定形函數(shù)在光滑域內(nèi)解析函數(shù)式及其導(dǎo)數(shù),只需利用光滑域邊界各高斯點(diǎn)處的形函數(shù),將形函數(shù)導(dǎo)數(shù)的域內(nèi)積分轉(zhuǎn)化為形函數(shù)的邊界線上的積分,提高了數(shù)值計(jì)算的精度和收斂性.
將式(6)和式(2)代入式(1),可得離散方程為:
式中:為整體光滑剛度矩陣,可由光滑單元?jiǎng)偠染仃嚱M裝得到.
F為力向量.
由上式可見,Cell-based光滑有限元法的形函數(shù)選取簡單,計(jì)算應(yīng)變矩陣時(shí)只需用形函數(shù)本身,對(duì)網(wǎng)格質(zhì)量要求低,編程簡單,容易實(shí)現(xiàn).
如圖2所示,長度為a的主裂紋前端虛擬擴(kuò)展了長度為Δa的微小子裂紋,在此過程中裂紋虛擬擴(kuò)展Δa時(shí)釋放的能量等于裂紋從a+Δa閉合到初始實(shí)際裂紋a所需做的功.Irwin 的裂紋閉合積分為:
圖2 VCCT 示意圖Fig.2 The virtual crack closure technique
如圖3所示,基于光滑有限元網(wǎng)格,虛擬裂紋線上節(jié)點(diǎn)力在節(jié)點(diǎn)位移上做的功等于應(yīng)力所做的功,即
圖3 虛擬裂紋擴(kuò)展法計(jì)算應(yīng)變能釋放率Fig.3 Virtural crack extension technique for strain energy release rate
經(jīng)整理得:
由于虛擬擴(kuò)展裂紋尖端后面的張開位移和初始實(shí)際裂紋尖端后面的張開位移近似相等,式(11)可改寫為:
應(yīng)力分布為:
位移分布為:
將式(15)整理得:
式(18)的近似表達(dá)為:
類似地,Ⅱ型裂紋的計(jì)算公式為:
對(duì)于二維平面內(nèi)傾斜裂紋的虛擬裂紋閉合法可采用斷裂單元[14].當(dāng)裂紋方向與各向異性材料某一對(duì)稱軸重合時(shí),能量釋放率與應(yīng)力強(qiáng)度因子的關(guān)系為:
式中:Sij為柔度系數(shù).
為驗(yàn)證SFEM-VCCT 的正確性與有效性,采用文獻(xiàn)[15]的算例,含中心斜裂紋復(fù)合材料圓板受集中載荷作用,幾何構(gòu)型和加載方式如圖4所示,裂紋長度為2a,α為裂紋傾斜角,板厚B=1.0,材料參數(shù)E11=0.1,E22=1.0,G12=0.5,v12=0.03.
圖4 含中心斜裂紋復(fù)合材料圓板受集中載荷作用Fig.4 Geometry and boundary conditions for an orthotropic disk with inclined central crack subjected to point loads
圖5僅給出了2a=2,α=0o時(shí),取四邊形單元數(shù)分別為4 138和1 500時(shí)單元分布情況,裂紋尖端單元正常離散.表1給出了當(dāng)α=0o,2a=2,2a=4,2a=6和2a=8時(shí),采用光滑有限元-虛擬裂紋閉合法(SFEM-VCCT)和有限元-虛擬裂紋閉合法(FEMVCCT)的單元個(gè)數(shù)及KI值.SFEM-VCCT相對(duì)FEM-VCCT 也不需要對(duì)裂尖單元特殊處理,與FEM-VCCT 所得結(jié)果基本一致,當(dāng)單元數(shù)為4 138和1 500 時(shí),KI值分別為22.106 和21.997,與FEM-VCCT 計(jì)算結(jié)果的相對(duì)誤差僅為2% 和2.5%,可見,該方法完全繼承了VCCT 的優(yōu)點(diǎn),不需要對(duì)裂尖單元特殊處理,對(duì)網(wǎng)格尺寸要求低,精度高.
圖6和圖7分別給出當(dāng)2a=2,α=0°,α=15°,α=30°和α=45°,對(duì)應(yīng)的單元個(gè)數(shù)分別為3 814,4 167,4 045 和4 184 時(shí),采 用SFEM-VCCT 和FEM-VCCT 得到的GⅠ和GⅡ值,所得結(jié)果基本一致,可見,SFEM-VCCT 法是正確有效的.
圖5 含中心斜裂紋復(fù)合材料圓板離散方式(α=0°)Fig.5 Discretization of the orthoropic disk with an inclined central crack
表1 應(yīng)力強(qiáng)度因子、單元數(shù)與裂紋長度的關(guān)系(α=0°)Tab.1 Stress intensity factors and elements corresponding to different inclined cracks in an orthotropic disk subjected to point loads(α=0°)
圖6 GI與斜裂紋角度α的關(guān)系Fig.6 GIvalues corresponding to different central crack anglesαin the orthotropic disk
圖7 GⅡ與斜裂紋角度α的關(guān)系Fig.7 GⅡvalues corresponding to different central crack anglesαin the orthotropic disk
本文提出光滑有限元-虛擬裂紋閉合法,對(duì)含不同長度和角度的傾斜裂紋復(fù)合材料圓板的斷裂參數(shù)進(jìn)行了模擬,并與有限元-虛擬裂紋閉合法計(jì)算結(jié)果進(jìn)行了對(duì)比,得到如下結(jié)論:
1)SFEM-VCCT 計(jì)算時(shí)形函數(shù)簡單,對(duì)網(wǎng)格質(zhì)量要求低,形函數(shù)導(dǎo)數(shù)的域內(nèi)積分轉(zhuǎn)化為形函數(shù)的邊界線上的積分,編程簡單,容易實(shí)現(xiàn).
2)SFEM-VCCT 不需要對(duì)裂尖單元特殊處理,單元數(shù)為4 138和1 500時(shí),KⅠ值分別為22.106和21.997,與FEM-VCCT 計(jì)算結(jié)果的相對(duì)誤差僅為2%和2.5%,完全繼承了VCCT 的優(yōu)點(diǎn).
[1]MOTAMEDI D,MOHAMMADI S.Dynamic analysis of fixed cracks in composites by the extended finite element method[J].Engng Fract Mech,2010,77(17):3373-3393.
[2]龍述堯,張國虎.基于MLPG 法的動(dòng)態(tài)斷裂力學(xué)問題[J].湖南大學(xué)學(xué)報(bào):自然科學(xué)版,2012,39(11):41-45.
LONG Shu-yao,ZHANG Guo-h(huán)u.An analysis of the dynamic fracture problem by the meshless local Petrov-Galerkin method[J].Journal of Hunan University:Natural Sciences,2012,39(11):41-45.(In Chinese)
[3]LIU G R,NGUYEN T T,DAI K Y,etal.Theoretical aspects of the smoothed finite element method(SFEM)[J].Int J Numer Meth Eng,2007,71:902-930.
[4]RAJU I S.Calculation of strain-energy release rates with highorder and singular finite-elements[J].Engineering Fracture Mechanics,1987,28:251-274.
[5]LIU G R,DAI K Y,NGUYEN T T.A smoothed finite element method for mechanics problems[J].Computation Mechanics,2007,39(6):859-877.
[6]CHEN J S,WU C T,YOON S.A stabilized conforming nodal integration for Galerkin meshfree method[J].Int J Numer Meth Eng,2001,50:435-466.
[7]姚凌云,于德介,藏獻(xiàn)國.二維聲學(xué)數(shù)值計(jì)算的光滑有限元法[J].機(jī)械工程學(xué)報(bào),2010,46(18):115-120.
YAO Ling-yun,YU De-jie,ZANG Xian-guo.Smoothed finite element method for two-dimensional acoustic numerical computation[J].Journal of Mechanical Engineering,2010,46(18):115-120.(In Chinese)
[8]周立明,孟廣偉,周振平,等.含孔復(fù)合材料層合板Cell-Based光滑有限元法[J].東北大學(xué)學(xué)報(bào):自然科學(xué)版,2013,34(Sup2):90-93.
ZHOU Li-ming,MENG Guang-wei,ZHOU Zhen-ping,etal.Cell-Based smoothed finite element method for laminated composited plates with circular opening[J].Journal of Northeastern University:Natural Science,2013,34(Sup2):90-93.(In Chinese)
[9]RYBICKI E F,KANNINEN M F.A finite element calculation of stress intensity factors by a modified crack closure integral[J].Engineering Fracture Mechanics,1977,9:931-938.
[10]XIE D,BIGGERSJR S B.Progressive crack growth using interface element based on the virtual crack closure technique[J].Finite Elements in Analysis and Design,2006,42(11):977-984.
[11]XIE D,SHERRILL B,BIGGERS J.Strain energy release rate calculation for a moving delamination front of arbitrary shape based on the virtual crack closure technique.part I:formulation and validation[J].Engng Fracture Mech,2006,73(6):771-785.
[12]XIE D,SHERRILL B,BIGGERS J.Strain energy release rate calculation for a moving delamination front of arbitrary shape based on the virtual crack closure technique.partⅡ:sensitivity study on modeling details[J].Engng Fracture Mech,2006,73(6):786-801.
[13]GHORASHI S S,MOHAMMADI S,SABBAGH-YAZDI S.Orthotropic enriched element free Galerkin method for fracture analysis of composites[J].Engineering Fracture Mechanics,2011,78(9):1906-1927.
[14]孟令兵,陳普會(huì).層壓復(fù)合材料分層擴(kuò)展分析的虛擬裂紋閉合技術(shù)及其應(yīng)用[J].復(fù)合材料學(xué)報(bào),2010,27(1):190-195.
MENG Ling-bing,CHEN Pu-h(huán)ui.Virtual crack closure technique for delamination growth analysis of laminated composites and its application[J].Acta Materiae Compositae Sinica,2010,27(1):190-195.(In Chinese)
[15]ASADPOURE A,MOHAMMADI S.Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method[J].Int J Numer Meth Eng,2007,69:2150-2172.