董慧,于波
? 綜述 ?
動(dòng)脈粥樣硬化斑塊組成和治療的新進(jìn)展
董慧,于波
動(dòng)脈粥樣硬化的研究有兩種觀點(diǎn),一種認(rèn)為動(dòng)脈粥樣硬化是局部病變,另一種則認(rèn)為是全身系統(tǒng)疾病[1]。既往將動(dòng)脈粥樣硬化作為全身系統(tǒng)性疾病理解、診斷和治療,而不是局部靶向治療。局部靶向治療能有效降低心肌梗死發(fā)生和死亡風(fēng)險(xiǎn)。隨著多種觀察斑塊的侵入或非侵入性影像學(xué)方法的興起,對(duì)局部高風(fēng)險(xiǎn)斑塊開始重新關(guān)注和深入。不僅可在尸檢中了解動(dòng)脈粥樣硬化斑塊,新興的影像學(xué)方法也可呈現(xiàn)在體斑塊的生物學(xué)特征,同時(shí)為靶向治療提供依據(jù)。本文主要闡述近年來在動(dòng)脈粥樣硬化領(lǐng)域中的重大發(fā)現(xiàn),包括斑塊生物學(xué)、影像學(xué)和新興的治療方法。
1.1 病理學(xué)觀察結(jié)果 對(duì)有破裂高風(fēng)險(xiǎn)斑塊的傳統(tǒng)認(rèn)知主要來源于尸檢中對(duì)破裂斑塊和非破裂斑塊的病理學(xué)觀察。Narula等[2]近期對(duì)213例心臟病猝死患者的295個(gè)斑塊分析,比較105個(gè)穩(wěn)定斑塊、88個(gè)薄帽纖維粥樣斑塊(TCFA)和102個(gè)破裂斑塊的形態(tài)學(xué)特征:纖維帽厚度、管腔狹窄百分比、斑塊面積、壞死核心面積、巨噬細(xì)胞面積和鈣化。纖維帽厚度是斑塊類型最佳的分類標(biāo)記物,破裂斑塊的纖維帽厚度小于54μm,多數(shù)TCFA的纖維帽厚度為54~84μm,穩(wěn)定斑塊的纖維帽厚度大于84μm。除了纖維帽厚度,識(shí)別TCFA的最佳標(biāo)志物是巨噬細(xì)胞的滲透和壞死核心。
心肌梗死多發(fā)生于非梗阻斑塊,多數(shù)TCFA狹窄率為50%,70%破裂斑塊狹窄率為75%[3]。這項(xiàng)病理學(xué)觀察數(shù)據(jù)與利用血管再形成和藥物評(píng)估的臨床試驗(yàn)結(jié)果(COURAGE)中的亞組血管造影結(jié)果和冠狀動(dòng)脈粥樣硬化的研究(PROSPECT)血管內(nèi)超聲結(jié)果一致:在COURAGE中非再形成血管50%病變預(yù)示隨后急性冠脈綜合征(ACS)的發(fā)生[4]。在PROSPECT中盡管血管造影顯示輕微的管腔狹窄,非罪犯病變能引起與斑塊負(fù)荷和減少的最小管腔面積相關(guān)聯(lián)的缺血性事件[5]。Puri等[6]最近總結(jié)了一致的觀察結(jié)果,對(duì)定義高風(fēng)險(xiǎn)斑塊有重要意義。
1.2 斑塊進(jìn)展的分子和細(xì)胞學(xué)基礎(chǔ)傳統(tǒng)觀點(diǎn)認(rèn)為巨噬細(xì)胞和單核細(xì)胞通過吞噬膽固醇脂滴和碎片,形成泡沫細(xì)胞及壞死,參與炎癥和斑塊破裂[7]。斑塊中巨噬細(xì)胞和單核細(xì)胞的積聚是否來源于滲透,尚存爭(zhēng)議。近年有研究顯示,斑塊中這些細(xì)胞是通過局部增殖形成的[8]。
游離血紅素和氧化應(yīng)激在斑塊進(jìn)展中的作用。當(dāng)斑塊內(nèi)出血,游離血紅素釋放入斑塊,亞鐵血紅素是活性氧(ROS)有效的發(fā)生器。循環(huán)中的結(jié)合珠蛋白結(jié)合游離血紅素,經(jīng)CD163受體清除,降低氧化活性。在一項(xiàng)大動(dòng)脈斑塊的研究中,結(jié)合珠蛋白位點(diǎn)(Hp2-2)的遺傳多態(tài)性與亞鐵血紅素的缺陷性衰減有關(guān)[9]。
最后是脂質(zhì)中介物高密度脂蛋白在斑塊生物學(xué)中的作用。關(guān)于高密度脂蛋白在斑塊進(jìn)展中的作用的經(jīng)典假設(shè)是從泡沫細(xì)胞流出或逆向轉(zhuǎn)運(yùn)的膽固醇能降低病變或炎癥[10]。盡管以往臨床流行病學(xué)資料顯示高密度脂蛋白膽固醇與慢性冠脈疾病風(fēng)險(xiǎn)呈負(fù)相關(guān),然而最近的達(dá)塞曲匹試驗(yàn)[11]使高密度脂蛋白膽固醇的機(jī)械論學(xué)說在斑塊進(jìn)程中的作用越來越具有爭(zhēng)議[12]。一項(xiàng)孟德爾隨機(jī)試驗(yàn)顯示盡管相應(yīng)的高密度脂蛋白膽固醇呈現(xiàn)有意義的升高,但其內(nèi)皮脂肪酶基因(LIPGAsn396Ser)與心肌梗死風(fēng)險(xiǎn)之間卻沒有關(guān)系[13]??赡艿慕忉屖?,高密度脂蛋白膽固醇水平可能不是其功能的衡量標(biāo)準(zhǔn)。最新的證據(jù)突出高密度脂蛋白顆粒數(shù)量[14]和高密度脂蛋白膽固醇組在預(yù)測(cè)風(fēng)險(xiǎn)和斑塊進(jìn)展的重要性[15]。
高風(fēng)險(xiǎn)斑塊研究從病理學(xué)、分子生物學(xué)和細(xì)胞學(xué)轉(zhuǎn)向影像學(xué),使描繪在體高風(fēng)險(xiǎn)斑塊的形態(tài)成為可能。
2.1 血管內(nèi)超聲(IVUS)PROSPECT的一項(xiàng)射頻血管內(nèi)超聲(RF-IVUS)的分析提示在冠心病患者亞組斑塊形態(tài)學(xué)的差異。動(dòng)脈粥樣硬化慢性腎臟患者,壞死核心負(fù)荷更大和纖維組織更少[16]。糖尿病和代謝綜合征的患者斑塊表現(xiàn)出斑塊負(fù)荷更大、管腔面積更小、壞死核心和鈣化更大,其中壞死核心和鈣化與隨后的主要心血管事件相關(guān)[17]。
血管內(nèi)超聲還用于研究不同鈣化模式與斑塊進(jìn)展的關(guān)系。雖然廣泛的鈣化斑塊被認(rèn)為不易破裂,但“多斑點(diǎn)”鈣化斑塊與缺血性事件相關(guān)。Kataoka等[18]發(fā)現(xiàn),多斑點(diǎn)鈣化斑塊(鈣化長(zhǎng)度1~4 mm,角度<90°的病變)與男性、糖尿病、心梗病史、低水平高密度脂蛋白膽固醇、體積較大斑塊百分比相關(guān)。相反地,血管內(nèi)超聲定義鈣化結(jié)節(jié)為不規(guī)則的、突出于管腔表面的獨(dú)立鈣化,具有較低的缺血事件風(fēng)險(xiǎn)[19]。
盡管在PROSPECT和易損動(dòng)脈粥樣硬化的研究中血管內(nèi)超聲檢測(cè)的TCFA是隨后缺血性事件獨(dú)立的預(yù)測(cè)因子[20],但RF-IVUS檢測(cè)存在局限性[21]。RF-IVUS的軸向分辨率不能夠精確測(cè)量纖維帽厚度[22]。
2.2 光學(xué)相干斷層影像學(xué)技術(shù)(OCT)OCT是利用紅外光線的背反射測(cè)量斷層的深度,具有軸向5~20μm、橫向30μm的分辨率,分辨率高于IVUS[23]。對(duì)于高風(fēng)險(xiǎn)斑塊的辨別,OCT能夠評(píng)估脂質(zhì)內(nèi)容和巨噬細(xì)胞滲透,測(cè)量纖維帽厚度。近年來發(fā)表的文章為OCT圖像的獲取和測(cè)量制定了一致的標(biāo)準(zhǔn),為其臨床應(yīng)用提供了便利[24]。
在一項(xiàng)研究中,對(duì)98例ACS患者、230個(gè)非罪犯斑塊進(jìn)行分析,糖尿病患者較非糖尿病患者脂質(zhì)體積指數(shù)更大、鈣化和血栓更廣泛,纖維帽厚度與糖基化血紅素(HbA1c)呈負(fù)相關(guān)。TCFA和巨噬細(xì)胞滲透最常見于HbA1c≥8%的患者[25]。一項(xiàng)關(guān)于17例ACS患者的45個(gè)非罪犯斑塊和87例非ACS患者的203個(gè)非罪犯斑塊的分析顯示,ACS患者的斑塊
具有更大的脂質(zhì)體積指數(shù),纖維帽厚度更薄,TCFA、巨噬細(xì)胞滲透和血栓更多[26]。OCT在非阻塞性斑塊中能預(yù)測(cè)斑塊進(jìn)展:包括內(nèi)膜撕裂、微通道、脂質(zhì)池、TCFA、巨噬細(xì)胞浸潤(rùn)和內(nèi)部的血栓等指標(biāo)[27]。
Jia等[28]使用OCT對(duì)介入前126例ACS患者的罪犯病變?cè)u(píng)估發(fā)現(xiàn),43.7%斑塊破裂、31.0%斑塊侵蝕和7.9%鈣化結(jié)節(jié)。斑塊侵蝕與年齡較低、脂質(zhì)斑塊較少、纖維帽較厚相關(guān),而鈣化結(jié)節(jié)與IVUS的觀察結(jié)果一致,與較高年齡相關(guān)??傊M管OCT仍然缺少臨床應(yīng)用的指標(biāo),但大量數(shù)據(jù)證明OCT具有重要作用。
2.3 計(jì)算機(jī)斷層掃描(CT)盡管CT識(shí)別斑塊成分與RFIVUS[29]精確度相近,但CT的空間分辨率限制了纖維帽厚度的測(cè)量,從而阻礙其對(duì)TCFA的識(shí)別。
一項(xiàng)顯著的進(jìn)展是“餐巾環(huán)征”的確定,它定義為冠狀動(dòng)脈粥樣硬化斑塊在CT上顯示環(huán)狀的衰減。餐巾環(huán)征的確定對(duì)于動(dòng)脈粥樣硬化病變有很高的預(yù)測(cè)價(jià)值[30]。在隨后的冠狀動(dòng)脈模型和冠心病患者1174個(gè)斑塊的(2.3±0.8)年隨訪中,低衰減斑塊、明確的動(dòng)脈重塑和餐巾環(huán)征成為ACS的獨(dú)立預(yù)測(cè)因子[31]。
2.4 心臟核磁共振成像(CMR)與分子成像此前廣泛用于評(píng)價(jià)頸動(dòng)脈斑塊的心臟核磁共振成像,近年來轉(zhuǎn)向應(yīng)用于描繪冠狀動(dòng)脈斑塊。在一項(xiàng)冠狀動(dòng)脈的28個(gè)斑塊CMR的T1、T2與超短波反射的研究中,CMR診斷的特異性和敏感性較高,分別為:辨認(rèn)鈣化(100%、95%),脂質(zhì)豐富的壞死核心(90%、75%),其中28個(gè)斑塊中22個(gè)與組織學(xué)分類完全一致[32]。盡管是試驗(yàn)性的,但這些數(shù)據(jù)讓未來CMR應(yīng)用于在體冠狀動(dòng)脈斑塊影像學(xué)充滿希望。
與斑塊進(jìn)展相關(guān)的分子標(biāo)記物影像學(xué)檢查是識(shí)別高風(fēng)險(xiǎn)斑塊的方法之一[33]。這些方法為有關(guān)斑塊進(jìn)展的靶細(xì)胞或靶分子設(shè)計(jì)配對(duì)探針,通過影像學(xué)檢測(cè)??杀环肿訕?biāo)記物和影像檢測(cè)的包括:細(xì)胞活性、吞噬作用、脂蛋白、新陳代謝活性、氧化壓力、新血管形成、基質(zhì)金屬蛋白酶活性、斑塊內(nèi)出血和血栓、微鈣化、巨噬細(xì)胞等[34]。
正電子放射斷層造影術(shù)(PET)、CMR、單光子發(fā)射計(jì)算機(jī)斷層成像、光譜CT、近紅外熒光等在探索分子標(biāo)記物方面最有前景[35],其中,18F-氟脫氧葡萄糖(FDG)PET具有高敏感性,可行性較強(qiáng)[36],但也存在局限性,空間分辨率的局限和放射性同位素的依賴。
3.1 他汀類藥物和脂質(zhì)斑塊羥甲基戊二酰輔酶A還原酶抑制劑(他汀類藥物)在一級(jí)和二級(jí)預(yù)防中均明顯降低了主要不良心臟事件[37]。影像學(xué)研究闡釋了他汀藥物治療后斑塊組成的變化。
Hattori等[38]連續(xù)用OCT、灰階IVUS和集成后向散射血管內(nèi)超聲觀察42例行PCI的冠心病患者的非目標(biāo)斑塊,在平均9個(gè)月的隨訪中,4mg匹伐他汀治療的患者較對(duì)照組患者斑塊體積和脂質(zhì)體積減小,纖維帽厚度明顯增加。
強(qiáng)化降脂治療減小脂質(zhì)斑塊試驗(yàn)[39]使用IVUS和近紅外光譜學(xué)觀察87例行PCI的多支病變患者,分別經(jīng)過7周強(qiáng)化他汀治療(羅素伐他汀40 mg/日)和標(biāo)準(zhǔn)化治療,強(qiáng)化他汀較標(biāo)準(zhǔn)化治療最大脂質(zhì)核心負(fù)荷減少了4 mm,而斑塊形態(tài)在IVUS上未見明顯的整體變化。
3.2 血管炎癥的治療非侵入性影像學(xué)尤其是18F-FDG-PET/ CT利于評(píng)估他汀類藥物療效和提供血管炎癥的治療策略。
Tawakol等[40]研究顯示,動(dòng)脈粥樣硬化患者分別服用阿托伐他汀80 mg和10 mg,測(cè)量基線、4周后、12周后升胸主動(dòng)脈的18F-FDG的靶本底比值。經(jīng)過強(qiáng)化(80 mg)治療在4周時(shí)靶本底比值有效降低。Vucic等[41]報(bào)道了肝臟X受體α激動(dòng)劑(LXRα激動(dòng)劑)R211945在兔動(dòng)脈粥樣硬化斑塊的炎癥和新血管形成的作用。使用LXRα激動(dòng)劑治療后,隨著時(shí)間延長(zhǎng),平均斑塊和18F-FDG-PET/CT的最大標(biāo)準(zhǔn)攝取率減少,提示炎癥衰退。然而對(duì)照組使用阿托伐他汀治療的斑塊大小無明顯變化,18F-FDG-PET/CT標(biāo)準(zhǔn)攝取率增高。
心肌梗死預(yù)防性血管成形術(shù)隨機(jī)試驗(yàn)(PRAMI)[42]陽性結(jié)果的公布,使預(yù)防性PCI的作用受到質(zhì)疑。在PRAMI試驗(yàn)中,在ST段抬高型心肌梗死患者的罪犯病變行PCI的同時(shí),對(duì)全部狹窄大于管腔直徑50%的非罪犯病變行額外的血管再形成術(shù),預(yù)防性PCI使心臟源性死亡、非致死性心肌梗死或頑固性心絞痛顯著降低。
PRAMI試驗(yàn)的結(jié)果引起爭(zhēng)議。主要包括缺血終點(diǎn)事件在對(duì)照組是來源于未行血管再形成術(shù)的非罪犯斑塊。同樣,在PRAMI中斑塊是根據(jù)造影結(jié)果定義的,而不知道它們的成分性質(zhì)。然而,雖然PRAMI不可能改變臨床常規(guī),但讓我們思考在心血管預(yù)防方面局部治療的作用。
動(dòng)脈粥樣硬化斑塊的影像學(xué)研究仍處于初期階段,仍需要大量的深入研究、技術(shù)改良和標(biāo)準(zhǔn)化分析。大規(guī)模的前瞻性研究成果若要應(yīng)用于臨床,需要評(píng)估上述影像學(xué)形態(tài)在預(yù)測(cè)斑塊風(fēng)險(xiǎn)方面的精確作用,需要評(píng)估全身系統(tǒng)治療的效果和規(guī)范局部介入靶向治療。通過這些成果,動(dòng)脈粥樣硬化管理方面才能保持平衡:既重視全身系統(tǒng)的治療管理,又要適當(dāng)根據(jù)個(gè)體化理解和治療相關(guān)的局部病變。
[1] Naghavi M,Libby P,Falk E,et al. From vulnerable plaque to vulnerable patient: a call for new and risk assessment strategies: part I[J]. Circulation, 2003,108(14):1664-72.
[2] Ambrose JA,Tannenbaum MA,Alexopoulos D,et al. Angiographic progression of coronary artery disease and the development of myocardial infarction[J]. J Am Coll Cardiol,1988,12(1):56-62.
[3] Narula J,Nakano M,Virmani R,et al. Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques[J]. J Am Coll Cardiol,2013,61(10):1041-51.
[4] Mancini GB,Hartigan PM,Bates ER,et al. Angiographic disease progression and residual risk of cardiovascular events while on optimal medical therapy: observations from the COURAGE trial[J]. Circ Cardiovasc Interv,2011,4(6):545-52.
[5] Stone GW,Maehara A,Lansky AJ,et al. A prospective naturalhistory study of coronary atherosclerosis[J]. N Engl J Med,2011,364(3):226-35.
[6] Puri R,Nicholls SJ,Ellis SG,et al. High-risk coronary theroma: the interplay between ischemia, plaque burden,and disease progression[J]. J Am Coll Cardiol,2014,63(12):1134-40.
[7] Ghattas A,Griffiths HR,Devitt A,et al. Monocytes in coronary artery disease and atherosclerosis: where are we now[J]? J Am Coll Cardiol,
2013,62(17):1541-5.
[8] Randolph GJ. Proliferating macrophages prevail in atherosclerosis[J]. Nat Med,2013,19(9):1094-5.
[9] Purushothaman KR,Purushothaman M,Levy AP,et al. Increased expression of oxidation- specific epitopes and apoptosis are associated with haptoglobin genotype: possible implications for plaque progression in human atherosclerosis[J]. J Am Coll Cardiol,2012, 60(2):112-9.
[10] Rader DJ,Tall AR. The not-so-simple HDL story: is it time to revise the HDL cholesterol hypothesis[J]? Nat Med,2012,18(9):1344-6.
[11] Hewing B,Moore KJ,Fisher EA. HDL and cardiovascular risk: time to call the plumber[J]? Circ Res,2012,111(9):1117-20.
[12] Schwartz GG,Olsson AG,Abt M,et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome[J]. N Engl J Med,2012,367 (22):2089-99.
[13] Voight BF,Peloso GM,Orho-Melander M,et al. Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study[J]. Lancet,2012,380(9841):572-80.
[14] Mora S,Glynn RJ,Ridker PM. High-density lipoprotein cholesterol,size, particle number, and residual vascular risk after potent statin therapy[J]. Circulation,2013,128(11):1189-97.
[15] Riwanto M,Rohrer L,Roschitzki B,et al. Altered activation of endothelial anti-and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of highdensity lipoprotein-proteome remodeling[J]. Circulation,2013,127(8): 891-904.
[16] Baber U,Stone GW,Weisz G,et al. Coronary plaque composition,morphology, and outcomes in patients with and without chronic kidney disease presenting with acute coronary syndromes[J]. J Am Coll Cardiol Imaging,2012,5(3):S53-61.
[17] Marso SP,Mercado N,Maehara A,et al. Plaque composition and clinical outcomes in acute coronary syndrome patients with metabolic syndrome or diabetes[J]. J Am Coll Cardiol Imaging,2012,5(3):S42-52.
[18] Kataoka Y,Wolski K,Uno K,et al. Spotty calcification as a marker of accelerated progression of coronary atherosclerosis: insights from serial intravascular ultrasound[J]. J Am Coll Cardiol,2012,59(18):1592-7.
[19] Xu Y,Mintz GS,Tam A,et al. Prevalence, distribution, predictors,and outcomes of patients with calcified nodules in native coronary arteries: a 3-vessel intravascular ultrasound analysis from Providing Regional Observations to Study Predictors of Events in the Coronary Tree (PROSPECT)[J]. Circulation,2012,126(5):537-45.
[20] Calvert PA,Obaid DR,O’Sullivan M,et al. Association between IVUS findings and adverse outcomes in patients with coronary artery disease: the VIVA (VH-IVUS in Vulnerable Atherosclerosis) study[J]. JACC Cardiovasc Imaging,2011,4(8):894-901.
[21] Falk E,Wilensky RL. Prediction of coronary events by intravascular imaging[J]. J Am Coll Cardiol Imaging,2012,5(3):S38-41.
[22] Suh WM,Seto AH,Jang IK,et al. Intravascular detection of the vulnerable plaque[J]. Circ Cardiovasc Imaging,2011,4(2):169-78.
[23] Fleg JL,Stone GW,Fayad ZA,et al. Detection of high-risk atherosclerotic plaque: report of the NHLBI Working Group on current status and future directions[J]. JACC Cardiovasc Imaging,2012,5(9):941-55.
[24] Tearney GJ,Regar E,Akasaka T,et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation[J]. J Am Coll Cardiol,2012,59(12): 1058-72.
[25] Kato K,Yonetsu T,Kim SJ,et al. Comparison of nonculprit coronary plaque characteristics between patients with and without diabetes: a 3-vessel optical coherence tomography study[J]. J Am Coll Cardiol Intv,2012,5(11):1150-8.
[26] Kato K,Yonetsu T,Kim SJ,et al. Nonculprit plaques in patients with acute coronary syndromes have more vulnerable features compared with those with non-acute coronary syndromes: a 3-vessel optical coherence tomography study[J]. Circ Cardiovasc Imaging,2012,5(4): 433-40.
[27] Uemura S,Ishigami K,Soeda T,et al. Thin-cap fibroatheroma and microchannel findings in optical coherence tomography correlate with subsequent progression of coronary atheromatous plaques[J]. Eur Heart J,2012,33(1):78-85.
[28] Jia H,Abtahian F,Aguirre AD,et al. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography[J]. J Am Coll Cardiol, 2013,62(19):1748-58.
[29] Obaid DR,Calvert PA,Gopalan D,et al. Atherosclerotic plaque composition and classification identified by coronary computed tomography:assessment of computed tomography-generated plaque maps compared with virtual histology intravascular ultrasound and histology[J]. Circ Cardiovasc Imaging,2013,6(5):655-64.
[30] Maurovich-Horvat P,Schlett CL,Alkadhi H,et al. The napkin-ring sign indicates advanced atherosclerotic lesions in coronary CT angiography[J]. JACC Cardiovasc Imaging,2012,5(12):1243-52.
[31] Otsuka K,Fukuda S,Tanaka A,et al. Napkin-ring sign on coronary CT angiography for the prediction of acute coronary syndrome[J]. J Am Coll Cardiol Imaging,2013,6(4):448-57.
[32] Karolyi M,Seifarth H,Liew G,et al. Classification of coronary atherosclerotic plaques ex vivo with T1, T2, and ultrashort echo time CMR[J]. JACC Cardiovasc Imaging,2013,6(4):466-74.
[33] Osborn EA,Jaffer FA. The year in molecular imaging[J]. J Am Coll Cardiol Imaging,2012,5(3):317-28.
[34] Quillard T,Libby P. Molecular imaging of atherosclerosis for improving diagnostic and therapeutic development[J]. Circ Res,2012,111(2):231-44.
[35] Sanz J,Fayad ZA. Imaging of atherosclerotic cardiovascular disease[J]. Nature,2008,451:953-7.
[36] Dweck MR,Chow MW,Joshi NV,et al. Coronary arterial 18Fsodium fluoride uptake: a novel marker of plaque biology[J]. J Am Coll Cardiol, 2012,59(17):1539-48.
[37] Ridker PM,Danielson E,Fonseca FA,et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein[J]. N Engl J Med,2008,359(21):2195-207.
[38] Hattori K,Ozaki Y,Ismail TF,et al. Impact of statin therapy on plaque characteristics as assessed by serial OCT, grayscale and integrated backscatter-IVUS[J]. J Am Coll Cardiol Imaging,2012,5(2):169-77.
[39] Kini AS,Baber U,Kovacic JC,et al. Changes in plaque lipid content after short-term intensive versus standard statin therapy: the YELLOW trial (Reduction in YEllow Plaque by Aggressive Lipid LOWering Therapy)[J]. J Am Coll Cardiol,2013,62(1):21-9.
[40] Tawakol A,Fayad ZA,Mogg R,et al. Intensification of statin therapy results in a rapid reduction in atherosclerotic inflammation: results of a multicenter fluorodeoxyglucose -positron emission tomography/ computed tomography feasibility study[J]. J Am Coll Cardiol,2013,62 (10):909-17.
[41] Vucic E,Calcagno C,Dickson SD,et al. Regression of inflammation in atherosclerosis by the LXR agonist R211945: a noninvasive assessment and comparison with atorvastatin[J]. JACC Cardiovasc Imaging,2012,5(8):819-28.
[42] Wald DS,Morris JK,Wald NJ,et al. Randomized trial of preventive angioplasty in myocardial infarction[J]. N Engl J Med,2013,369:1115-23.
R543.5
A
1674-4055(2015)05-0713-03
2015-05-16)
(責(zé)任編輯:姚雪莉)
150000 哈爾濱,哈爾濱醫(yī)科大學(xué)附屬第二醫(yī)院心內(nèi)科
于波,E-mail:478503042@qq.com
10.3969/j.issn.1674-4055.2015.05.44