楊 澤 李 陽 萬小亞 穆 懿 馬 虎 柏玉舉
1.遵義醫(yī)學(xué)院附屬醫(yī)院腫瘤醫(yī)院胸部腫瘤科,貴州遵義 563000;2.遵義醫(yī)學(xué)院思想政治科,貴州遵義 563000
放射治療在很多腫瘤的治療中起著重要的作用[1],常規(guī)的放射治療是使用X 線或γ 射線照射腫瘤部位, 通過直接或間接的殺傷效應(yīng)使細胞死亡或凋亡。但在腫瘤組織中,由于放療抵抗現(xiàn)象的存在,使放療的效果不盡如人意。 研制并使用有效、安全的放療增敏劑,將大大提高腫瘤的治療效果。 現(xiàn)將臨床已經(jīng)使用的以及尚在研制當中的放療增敏劑綜述如下:
最早在1963 年Adams[2]首先提出了化合物電子親和力增敏作用相關(guān)的理論。第一代及第二代含氮雜環(huán)類化合物主要有:甲硝唑、米索硝唑、RK-28、依他硝唑,但因其較差的增敏效果、較強的神經(jīng)毒性以及較重的胃腸道反應(yīng)而未能應(yīng)用于臨床[3-9]。第三代含氮雜環(huán)類增敏劑依納硝唑(AK-2123),為硝基三氮唑。Zeng 等[10]以放療劑量照射同時使用依納硝唑,使宮頸癌細胞系停留在G2期, 明顯提高了對癌細胞的殺傷效應(yīng)。 Yamazaki 等[11]臨床試驗認為,沒有與其相關(guān)聯(lián)的3 級或高于3 級的毒性反應(yīng)。AK-2123 已被用于宮頸癌的放射治療中。
甘氨雙唑鈉是我國自行研制的硝基咪唑類化合物,已被批準生產(chǎn)。 適用于頭頸部腫瘤、食管癌、肺癌等實體腫瘤進行放射治療的患者。 Ren 等[12]所做的一項Meta 分析,納入非小細胞肺癌患者,認為總的療效得到了提高,沒有增加毒性,但在1 年和2 年生存率上,沒有顯著差別。
硝基咪唑-烷基磺酰胺,有兩個硝基咪唑,能聚集在腫瘤組織中,被證明具有較強的親電子力及增敏效果[13]。 SN30000 也具有兩個硝基咪唑,Chitneni 等[14]證實該化合物能夠改善缺氧環(huán)境,具有放療增敏的效果。
環(huán)氧化酶-2 的過表達在腫瘤的發(fā)生、侵襲、轉(zhuǎn)移中扮演著重要的角色。 在用人體外A549 肺癌細胞小鼠轉(zhuǎn)移瘤實驗中顯示環(huán)氧化酶-2 抑制劑能夠增加非小細胞肺癌骨轉(zhuǎn)移放射治療敏感性[15]。 Elizabeth 等[16]開展的臨床研究,對其毒副作用進行評估,認為其毒性可以耐受。
表皮生長因子受體酪氨酸激酶抑制劑(epidermal growth factor receptor tyrosine kinase inhibitors,EGFRTKIs)可以阻斷EGFR 效應(yīng)器的自體磷酸化,抑制其激活,引起細胞周期阻滯、誘導(dǎo)細胞凋亡、抑制放射損傷的再修復(fù)。 Shin 等[17]認為西妥昔單抗可以增加放療效果,抑制腫瘤的轉(zhuǎn)移。
Phelps 等[18]所做的關(guān)于厄洛替尼聯(lián)合非小細胞肺癌放射治療的臨床試驗,在控制毒副作用的劑量使用組中,臨床受益的放療增敏效果也不顯著。
Papadimitrakopoulou 等[19]使用凡德他尼聯(lián)合放射治療頭頸鱗狀細胞癌,認為凡德他尼聯(lián)合放化療治療頭頸部鱗狀細胞癌是可行的,安全性方面如吞咽困難、口腔炎以及黏膜炎癥的發(fā)生率分別為30%、33%及27%。但該試驗最終只納入了25 例患者。
Li 等[20]開展的研究表明,二甲雙胍能夠在EGRFTKI 這條通路上起作用, 減少該通路的抵制作用。Storozhuk 等[21]認為二甲雙胍可能通過ATM-AMPK 依賴的途徑,增強放療的效果。PI3K/AKT 信號傳導(dǎo)是受體酪氨酸激酶的一個很重要的下游途徑,它的激活導(dǎo)致了細胞損傷修復(fù)以及放射拮抗性的提高。雷帕霉素靶蛋白(mTOR)抑制劑RAD001 為此類化合物中研究較多的放療增敏劑,細胞實驗研究顯示了放療增敏的效果, 其增敏機制可能是使腫瘤細胞周期停滯在G2期,增強放療敏感性[22]。
納米結(jié)構(gòu)的物質(zhì)能夠優(yōu)先聚集在腫瘤組織中而在正常組織的分布卻很少[23]。 根據(jù)其主要成分的不同可以分為:無機納米粒子和有機納米粒子。
無機納米粒子主要活性成分為金屬元素,這類金屬元素在元素周期表中排列靠后,有著較多數(shù)目的電子層(Z),而組織對放療劑量的吸收與Z2 呈正相關(guān)[23]。首先被研究的無機納米粒子為氧化鉿納米粒子。不同大小的氧化鉿納米材料,有著不同的特性[24]。NBTXR3是氧化鉿納米材料中的一種,Marill 等[25]發(fā)現(xiàn)在上皮、間質(zhì)以及神經(jīng)膠質(zhì)母細胞瘤細胞系中,NBTXR3 納米物質(zhì)的集聚隨放療的劑量的增加而增多,NBTXR3 納米物質(zhì)不僅可以可以提高細胞對放療的敏感度,還可以用來評估放療的局部劑量。
另外一種納米材料-金納米粒(gold NPs)和氧化鉿納米粒有著類似的增敏特性。 Babaei 等[26]檢索了外文數(shù)據(jù)庫從2000 年1 月到2013 年5 月的文獻,綜合文獻報道后,認為在體外細胞試驗中,金納米粒體現(xiàn)了一定的放療增敏效果。
有機物質(zhì)的納米粒子-微脂體多柔比星(liposomal doxorubicin) 在較多的體外細胞實驗和預(yù)臨床試驗中均展示了放療增敏的效果。 Chastagner 等[27]所做的一項預(yù)臨床試驗, 將人的惡性神經(jīng)膠質(zhì)瘤U87 細胞正位異種移植到小鼠大腦中,在對試驗小鼠放療的同時給予聚乙二醇化的和非聚乙二醇化的微脂體多柔比星,結(jié)果觀察到兩種形式的微脂體多柔比星均顯示了放療增敏的效果,而且能夠通過血腦屏障在腫瘤組織相對聚集。Petznek 等[28]開展的小鼠的移植肉瘤模型試驗中,微脂體多柔比星顯示了增敏的效果。除此之外,在肝細胞癌的小鼠移植瘤模型試驗[29]、早期淋巴瘤的臨床試驗[30]等研究中也顯示了放療增敏的效果。
另外的兩種有機納米粒子:微脂體順鉑(liposomal cisplatin)和Genexol-PM。 Rosenthal 等[31]的研究納入20 例頭頸部鱗狀細胞癌的患者,結(jié)果發(fā)現(xiàn)其具有放療增敏的特性,且安全性較好。Werner 等[32]研究認為,Genexol-PM 能夠增加放療的敏感性,并且與紫衫醇作比較,其增敏效果增強。
腫瘤的放射治療是治療腫瘤的常規(guī)手段之一,腫瘤放療抵抗涉及到腫瘤乏氧細胞、腫瘤細胞分裂增殖周期、腫瘤信號傳導(dǎo)通路、腫瘤細胞生長的微環(huán)境、腫瘤免疫逃避等機制。部分含氮雜環(huán)類化合物已經(jīng)在臨床得到了應(yīng)用,環(huán)氧化酶-2 抑制劑的在細胞實驗及動物試驗中展示了放療增敏的效果;EGFR 信號傳導(dǎo)通路特異性抑制劑,放療增敏的效果不明顯,甚至有著較差的臨床生存期[18,33]。納米物質(zhì)由于在腫瘤組織高聚集,在正常組織聚集較少的而具特異性的放療增敏效果。
除此之外,通過氧療和使用紅細胞生成素提高氧供,增加乏氧細胞敏感性。 化療藥物能夠使腫瘤細胞停滯在G2/M 期,增強放療敏感性[34-36],使用第二線粒體來源的Caspase 激活劑[37]以及使用中醫(yī)中藥等手段增加放療敏感性的試驗也在開展。對miRNA 的深入研究發(fā)現(xiàn),抑制腫瘤組織中miRNA-9 及l(fā)et-7b microRNA的表達可以提高腫瘤放射治療的敏感性[38]。從基因、蛋白表達的分子水平研究放療抵抗的原因,提出問題并解決,將提高放療增敏劑相關(guān)研究的針對性和有效性。
[1] Shavit R,Ilouze M,F(xiàn)einberg T,et al. Mitochondrial induction as a potential radio-sensitizer in lung cancer cells-a short report [J]. Cellular Oncology (Dordrecht),2015:38(3):247-252.
[2] Adams GE.Chemical radiosensitization of hypoxic cells [J].British Medical Bulletin,1973,29(1):48-53.
[3] Chan P,Milosevic M,F(xiàn)yles A,et al. A phase Ⅲrandomized study of misonidazole plus radiation vs radiation alone for cervix cancer[J].Radiotherapy and Oncology,2004,70(3):295-299.
[4] Bydder PV,Burry AF,Gowland S,et al. A controlled trial of misonidazole in the curative treatment of infiltrating bladder cancer [J]. Australasian Radiology,1989,33(1):8-14.
[5] Sasai K,Shibamoto Y,Manabe T,et al. Pharmacokinetics of intratumoral RK-28,a new hypoxic radiosensitizer [J].Int J Radiat Oncol Biol Phys,1992,24(5):959-963.
[6] Shibamoto Y,Sasai K,Sakaguchi M,et al. Evaluation of a new 2-nitroimidazole nucleoside analogue,RK-28 as a radiosensitizer for clinical use [J]. International Journal of Radiation Biology,1991,59(1):105-115.
[7] Beard C,Buswell L,Rose MA,et al. Phase Ⅱtrial of external beam radiation with etanidazole (SR 2508) for the treatment of locally advanced prostate cancer [J]. Int J Radiat Oncol Biol Phys,1994,29(3):611-616.
[8] Shulman LN,Buswell L,Goodman H,et al. Phase Ⅰpharmacokinetic study of the hypoxic cell sensitizer etanidazole with carboplatin and cyclophosphamide in the treatment of advanced ovarian cancer [J]. Int J Radiat Oncol Biol Phys,1994,29(3):545-548.
[9] Oita M,Uto Y,Tominaga M,et al. Radiosensitivity uncertainty evaluation for the in vitro biophysical modeling of EMT6 cells[J].AnticancerResearch,2014,34(8):4621-4626.
[10] Zeng YC,Yu L,Xiao YP,et al. Radiation enhancing effects with the combination of sanazole and irinotecan in hypoxic HeLa human cervical cancer cell line [J]. Journal of BUON,2013,18(3):713-716.
[11] Yamazaki H,Nakamura S,Kobayashi K,et al. Feasibility trial for daily oral administration of the hypoxic sensitizer AK-2123 (Sanazole) in radiotherapy [J]. Anticancer Research,2013,33(2):643-646.
[12] 任維維,李征,燈海,等.甘氨雙唑鈉對非小細胞肺癌放射治療增敏作用的Mata 分析[J].中國肺癌雜志,2012,15(6):340-347.
[13] Bonnet M,Hong CR,Gu Y,et al. Novel nitroimidazole alkylsulfonamides as hypoxic cell radiosensitisers[J].Bioorganic& Medicinal Chemistry,2014,22(7):2123-2132.
[14] Chitneni SK,Bida GT,Yuan H,et al.18F-EF5 PET imaging as an early response biomarker for the hypoxia-activated prodrug SN30000 combined with radiation treatment in a non-small cell lung cancer xenograft model [J].Journal of nuclear medicine:official publication [J]. Society of Nuclear Medicine,2013,54(8):1339-1346.
[15] Klenke FM,Abdollahi A,Bischof M,et al. Celecoxib enhances radiation response of secondary bone tumors of a human non-small cell lung cancer via antiangiogenesis in vivo [J]. Strahlenther Onkol,2011,187(1):45-51.
[16] Gore E,Bae K,Langer C,et al. Phase Ⅰ/Ⅱtrial of a COX-2 inhibitor with limited field radiation for intermediate prognosis patients who have locally advanced nonsmall-cell lung cancer:radiation therapy oncology group 0213 [J]. Clinical Lung Cancer,2011,12(2):125-130.
[17] Shin HK,Kim MS,Lee JK,et al. Combination effect of cetuximab with radiation in colorectal cancer cells [J].Tumori,2010,96(5):713-720.
[18] Phelps MA,Stinchcombe TE,Blachly JS,et al. Erlotinib in African Americans with advanced non-small cell lung cancer:a prospective randomized study with genetic and pharmacokinetic analyses [J]. Clinical Pharmacology and Therapeutics,2014,96(2):182-191.
[19] Papadimitrakopoulou VA,F(xiàn)rank SJ,Cohen EW,et al.Phase I study of vandetanib with radiation therapy with or without cisplatin in locally advanced head and neck squamous cell carcinoma [J]. Head & Neck,2014,29.doi:10.1002/hed.
[20] Li L,Han R,Xiao H,et al. Metformin sensitizes EGFRTKI-resistant human lung cancer cells in vitro and in vivo through inhibition of IL-6 signaling and EMT reversal[J].Clinical Cancer Research,2014,20(10):2714-2726.
[21] Storozhuk Y,Hopmans SN,Sanli T,et al. Metformin inhibits growth and enhances radiation response of non-small cell lung cancer (NSCLC) through ATM and AMPK[J].British Journal of Cancer,2013,108(10):2021-2032.
[22] Yu CC,Hung SK,Liao HF,et al. RAD001 enhances the radiosensitivity of SCC4 oral cancer cells by inducing cell cycle arrest at the G2/M checkpoint [J]. Anticancer research,2014,34(6):2927-2935.
[23] Wang AZ,Tepper JE. Nanotechnology in radiation oncology [J].Journal of Clinical Oncology,2014,32(26):2879-2885.
[24] Montes E,Ceron P,Rivera Montalvo T,et al. Thermoluminescent characterization of HfO2:Tb3+ synthesized by hydrothermal route [J]. Applied Radiation and Isotope,2014,83 Pt C:196-199.
[25] Marill J,Anesary NM,Zhang P,et al. Hafnium oxide nanoparticles:toward an in vitro predictive biological effect? [J]. Radiation Oncology,2014,83 Pt C:196-199.
[26] Babaei M,Ganjalikhani M. The potential effectiveness of nanoparticles as radio sensitizers for radiotherapy [J].BioImpacts:BI,2014,4(1):15-20.
[27] Chastagner P,Sudour H,Mriouah J,et al. Preclinical studies of pegylated-and non-pegylated liposomal forms of Doxorubicin as radiosensitizer on orthotopic highgrade glioma xenografts [J]. Pharmaceutical Research,2015,32(1):158-166.
[28] Petznek H,Kleiter M,Tichy A,et al. Murine xenograft model demonstrates significant radio-sensitising effect of liposomal doxorubicin in a combination therapy for Feline Injection Site Sarcoma [J]. Research in Veterinary Science,2014,97(2):386-390.
[29] Peng CL,Shih YH,Liang KS,et al. Development of in situ forming thermosensitive hydrogel for radiotherapy combined with chemotherapy in a mouse model of hepatocellular carcinoma [J]. Molecular Pharmaceutics,2013,10(5):1854-1864.
[30] Fabbri A,Cencini E,Alterini R,et al. Rituximab plus liposomal pegylated doxorubicin in the treatment of primary cutaneous B-cell lymphomas [J]. European Journal of Haematology,2014,93(2):129-136.
[31] Rosenthal DI,Yom SS,Liu L,et al. A phase I study of SPI-077 (Stealth liposomal cisplatin) concurrent with radiation therapy for locally advanced head and neck cancer [J].Investigational New Drugs,2002,20(3):343-349.
[32] Werner ME,Cummings ND,Sethi M,et al. Preclinical evaluation of Genexol-PM,a nanoparticle formulation of paclitaxel,as a novel radiosensitizer for the treatment of non-small cell lung cancer [J]. International Journal of Radiation Oncology,Biology,Physics,2013,86(3):463-468.
[33] Stinchcombe TE,Morris DE,Lee CB,et al. Induction chemotherapy with carboplatin,irinotecan, and paclitaxel followed by high dose three-dimension conformal thoracic radiotherapy (74 Gy) with concurrent carboplatin,paclitaxel,and gefitinib in unresectable stage ⅢA and stage ⅢB non-small cell lung cancer [J]. Journal of Thoracic Oncology,2008,3(3):250-257.
[34] Linkous AG,Yazlovitskaya EM. Novel radiosensitizing anticancer therapeutics [J]. Anticancer Research,2012,32(7):2487-2499.
[35] Hennequin C. Association of taxanes and radiotherapy:preclinical and clinical studies [J]. Cancer Radiotherapie,2004,8 Suppl 1:S95-S105.
[36] Zhang J,Gay HA,Russo S,et al. Phase Ⅱstudy of lowdose paclitaxel with timed thoracic radiotherapy followed by adjuvant gemcitabine and carboplatin in unresectable stage Ⅲnon-small cell lung cancer [J]. Lung Cancer(Amsterdam,Netherlands),2014,83(1):67-72.
[37] Li B,Blanc JM,Sun Y,et al. Assessment of M867,a selective caspase-3 inhibitor,in an orthotopic mouse model for non-small cell lung carcinoma [J]. American Journal of Cancer Research,2014,4(2):161-171.
[38] Wu S,Wang X,Chen JX,et al. Predictive factors for the sensitivity of radiotherapy and prognosis of esophageal squamous cell carcinoma [J]. International Journal of Radiation Biology,2014,90(5):407-413.