張崇星,石桂紅,劉 波
Wolbachia在重要蚊媒病防治研究中的進(jìn)展
張崇星,石桂紅,劉 波
Wolbachia是動(dòng)物界最常見(jiàn)的細(xì)菌感染,對(duì)無(wú)脊椎動(dòng)物繁殖、性別決定、物種形成和行為有著巨大的影響。近年來(lái),利用Wolbachia改變蚊蟲(chóng)種群、用抗Wolbachia療法治療絲蟲(chóng)感染取得開(kāi)創(chuàng)性成果。本文概述了Wolbachia在基礎(chǔ)和應(yīng)用生命科學(xué)領(lǐng)域內(nèi)最新進(jìn)展。
沃爾巴克氏體;細(xì)胞質(zhì)不親和;媒介控制
Wolbachia是立克次氏體家族專(zhuān)性細(xì)胞內(nèi)寄生變形桿菌,革蘭氏陰性,體外不可培養(yǎng),曾被認(rèn)為是少數(shù)昆蟲(chóng)中一個(gè)不起眼的細(xì)菌。20年來(lái)分子生物學(xué)技術(shù)的飛速發(fā)展,對(duì)Wolbachia認(rèn)識(shí)也越來(lái)越深入。節(jié)肢動(dòng)物大約40%物種、盤(pán)尾絲蟲(chóng)科(Onchocercidae)大約47%絲蟲(chóng)感染W(wǎng)olbachia??紤]到動(dòng)物界中數(shù)以百萬(wàn)種節(jié)肢動(dòng)物,因此,從生物多樣性的角度來(lái)看,Wolbachia感染是生命史上最大規(guī)模流行病之一。
Wolbachia主要在卵巢內(nèi)感染干細(xì)胞以及發(fā)育的卵母細(xì)胞然后并母系遺傳垂直傳播;除垂直遺傳和轉(zhuǎn)換宿主外,Wolbachia還利用寄生和共生機(jī)制增加新宿主雌性感染率,最近的研究表明攝入感染W(wǎng)olbachia的節(jié)肢動(dòng)物可導(dǎo)致感染[1]。Wolbachia對(duì)宿主的成功操作,促使了其在全球范圍為人類(lèi)造福的研究:如感染W(wǎng)olbachia的蚊蟲(chóng)表現(xiàn)出對(duì)登革熱、基孔肯雅病毒、黃熱病甚至瘧疾的抗性[2-3],學(xué)者們創(chuàng)造了利用Wolbachia來(lái)控制蚊蟲(chóng)和其他蟲(chóng)媒潛在廉價(jià)可持續(xù)系統(tǒng)。由于Wolbachia在絲蟲(chóng)(淋巴絲蟲(chóng)病和河盲癥病原體)中扮演的共生作用,可以消除Wolbachia,降低線蟲(chóng)適合度。本文重點(diǎn)綜述Wolbachia傳播生物學(xué)、疾病治療及Wolbachia-宿主相互作用等最新研究進(jìn)展。
1.1Wolbachia的傳播機(jī)制Wolbachia利用雌性化、孤雌生殖、殺雄作用和細(xì)胞質(zhì)不親和(Cytoplasmic incompatibility CI)等宿主生殖操作手段促進(jìn)傳播。目前對(duì)Wolbachia研究主要集中在細(xì)胞質(zhì)不親和性,是未感染卵與感染精子間發(fā)生的條件生殖失敗,表現(xiàn)為胚胎致死,但感染相同Wolbachia株正反交及雌雄間雜交仍然可育,與未感染雌性相比,單向不親和感染使雌性相對(duì)適合度顯著增加。在自然和實(shí)驗(yàn)室種群多次觀察到Wolbachia在采采蠅[4]和蝗蟲(chóng)(Chorthippusparallelus)[5]通過(guò)CI在種群內(nèi)廣泛傳播。
1.2Wolbachia誘導(dǎo)CI機(jī)制 受精后CI造成胚胎致死的原因:首先,有絲分裂的缺陷,包括未打破父系核膜、延遲Cdk1活化,不能把母系組蛋白正確地置于父系基因組、減緩精子DNA復(fù)制。細(xì)胞周期中這些延遲帶來(lái)染色體嚴(yán)重缺陷,特別是父系DNA,包括不完全濃縮和分離失敗。另外,CI胚胎含有與原核無(wú)關(guān)的額外中心體。
目前對(duì)CI缺陷的解釋是:(在有絲分裂和發(fā)育過(guò)程中同,Wolbachia修飾,造成精子嚴(yán)重缺陷;(感染相同株系的雌性可以“挽救”這種修飾,雌雄性感染起源不同的菌株雙向或相互不親和。最初提出解釋CI的模型有鎖鑰模型和時(shí)間差模型。鎖鑰模型認(rèn)為Wolbachia在父系基因組中放置某些“鎖”,感染相同Wolbachia株的雌性有合適的“鑰匙”,受精后就可移除鎖并挽救可能發(fā)生的有絲分裂缺陷。時(shí)間差模型認(rèn)為CI是由于父母系原核間有絲分裂時(shí)間差造成,原核內(nèi)雌性感染能夠通過(guò)補(bǔ)償性改變挽救差異,時(shí)間差模型能夠解釋父系原核和母系細(xì)胞質(zhì)間實(shí)際發(fā)生的不同步性。
上述2種模型都不能充分解釋CI形成機(jī)制。例如鎖鑰模型認(rèn)為每種菌株都有其自己的加密鎖和鑰匙,考慮到新不親和性產(chǎn)生速度[6],已知菌株不親和要求大量不同鎖和鑰匙。時(shí)間差模型也不能解釋菌株特異性,例如果蠅(Drosophilasantomea) wSan菌株能挽救擬果蠅(Drosophilasimulans)wRi菌株引起的CI,wRi可挽救黑腹果蠅wMel株系引起的CI,但wSan無(wú)法挽救wMel,不是時(shí)間差模型解釋的不協(xié)調(diào)。因此,Bossan等提出守門(mén)員模型[7],認(rèn)為Wolbachia菌株利用各種菌體蛋白,甚至噬菌體組分2個(gè)獨(dú)立“因子”,這2個(gè)因子象跳的足夠遠(yuǎn)、足夠高的守門(mén)員去擋住足球,但他們可被宿主改變(相當(dāng)于讓守門(mén)員坐在凳子上或放入溝槽),從而解釋依賴于宿主的基因型,此模式被越來(lái)越多證據(jù)所支持。每個(gè)模型,不論是沒(méi)把足夠的鎖放在宿主基因組、誘導(dǎo)時(shí)間差或缺少足夠修飾因子,都可認(rèn)為低密度Wolbachia不能誘導(dǎo)完全細(xì)胞質(zhì)不親和,Wolbachia密度與CI成正相關(guān)。
1.3 引起CI的原因 最初研究表明CI與宿主組蛋白分子伴侶Hira有關(guān)[8]。最近研究證明感染W(wǎng)olbachia可引起睪丸和卵巢活性氧(ROS)增高,從而導(dǎo)致精細(xì)胞DNA受損[9],活性氧誘導(dǎo)的DNA損傷能解釋包括父系染色質(zhì)缺陷、延遲Cdk1激活和有絲分裂失敗。
1.4 未來(lái)CI的研究 眾所周知細(xì)菌Cardiniumhertigii也能誘導(dǎo)CI,被Cardiniumhertigii和Wolbachia2種細(xì)菌同時(shí)感染宿主中,有胚胎致死的疊加效應(yīng)[10]。比較基因組分析表明在細(xì)菌Cardinium中CI是獨(dú)立起源的[11]。殺雄作用與CI相似,與父系染色質(zhì)損傷相關(guān)[12],把果蠅(Drosophilarecens)中誘導(dǎo)CI的Wolbachia轉(zhuǎn)移至果蠅(Drosophilasubquinaria)引起雄性致死,與飛蛾間轉(zhuǎn)移觀察結(jié)果相同。果蠅(Drosophilainnubila)中雄性致死株wInn在黑腹果蠅和果蠅(Drosophilasimulans)不能誘導(dǎo)CI和殺雄作用,這是由于宿主精囊Wolbachia濃度低造成的。果蠅(Drosophilabifasciata)體內(nèi)菌株也能誘發(fā)CI,具有不完全的雄性致死作用。
2.1 利用Wolbachia進(jìn)行蟲(chóng)媒控制Wolbachia的研究是基礎(chǔ)科學(xué)轉(zhuǎn)化為生物醫(yī)學(xué)科學(xué)當(dāng)中一個(gè)優(yōu)秀例子。曾經(jīng)Wolbachia是生殖修飾中一個(gè)不起眼的研究,在蚊媒控制病原體傳播的研究中CI成為研究重點(diǎn)。盡管有些宿主對(duì)病原易感性增加,但感染W(wǎng)olbachia的蚊蟲(chóng)對(duì)登革熱、基孔肯雅熱、黃熱病、西尼羅河病毒、瘧疾和細(xì)菌抵抗力增加[13]。Wolbachia既能減少病原體復(fù)制又在昆蟲(chóng)媒介中通過(guò)CI傳播的雙重優(yōu)勢(shì),對(duì)控制病原朝人類(lèi)傳播有重要意義。
學(xué)者們利用2種策略減少媒介數(shù)量和傳播能力。首先,大量釋放感染W(wǎng)olbachia蚊蟲(chóng),通過(guò)CI替換本地未感染W(wǎng)olbachia蚊蟲(chóng)。過(guò)去的幾年,國(guó)際消除登革熱計(jì)劃(International Eliminate Dengue Project EDP)通過(guò)種群替換策略(Population Replacement Strategy PRS)取得令人矚目的成就。另一種策略,即不親和昆蟲(chóng)技術(shù)(Incompatible Insect Technique IIT),僅釋放CI誘導(dǎo)雄性到未感染媒介種群就可造成雌性不育,并大大減少媒介數(shù)量[14],此策略已成功應(yīng)用于控制農(nóng)場(chǎng)害蟲(chóng)。為減少致倦庫(kù)蚊數(shù)量以控制絲蟲(chóng)和蟲(chóng)媒病,目前正在印度洋島嶼進(jìn)行野外試驗(yàn)。利用感染W(wǎng)olbachia縮短宿主壽命的能力還存在困難。
2.2 消除登革熱計(jì)劃 消除登革熱計(jì)劃最初成立于澳洲,目的是利用Wolbachia來(lái)遏制蚊媒疾病登革熱的傳播。早期使用的是WolbachiawMelPop株,自2011年,使用WolbachiawMel株可穩(wěn)定感染登革熱蚊媒埃及伊蚊[15]。將Wolbachia在白紋伊蚊細(xì)胞系培養(yǎng)若干年,然后顯微注射到蚊蟲(chóng),wMel株在母系仍保留高比例遺傳率。通過(guò)CI實(shí)驗(yàn)種群擴(kuò)散,且對(duì)登革熱病毒有抗性,在澳大利亞少數(shù)地區(qū)可控釋放未含登革熱蚊媒有效地替換了本地種群[16]。這種方法在世界范圍內(nèi)迅速推廣,但種群替代是否能降低人群登革熱發(fā)病率還要多年的評(píng)估數(shù)據(jù)。在東南亞和南美,每年約有3.9億人感染登革熱,其中有9 600萬(wàn)為嚴(yán)重感染,登革熱消除計(jì)劃已經(jīng)在中國(guó)、印尼、越南和巴西建有研究中心。
登革熱消除計(jì)劃的成功,激發(fā)了Wolbachia在其他病媒廣泛應(yīng)用,尤其是傳播瘧疾的主要媒介按蚊。自然界按蚊種群都不感染W(wǎng)olbachia,學(xué)者們將果蠅(D.melanogaster)和白紋伊蚊分離的Wolbachia成功感染岡比亞按蚊體細(xì)胞,最近把Wolbachia顯微注射到卵細(xì)胞獲得穩(wěn)定感染并可以誘導(dǎo)CI,并可以抵抗瘧原蟲(chóng)感染[17]。
對(duì)其他蚊蟲(chóng)感染W(wǎng)olbachia狀況也進(jìn)行了相關(guān)研究。嘗試應(yīng)用Wolbachia防治傳播黃熱病和淋巴絲蟲(chóng)病的媒介[18]。利用Wolbachia控制對(duì)殺蟲(chóng)劑擬除蟲(chóng)菊酯具有抗性的臭蟲(chóng)[19]和傳播錐蟲(chóng)和昏睡病的采采蠅[20]的手段。
2.3 以Wolbachia為基礎(chǔ)的媒介控制Wolbachia憑借其跨代持續(xù)性,啟動(dòng)宿主免疫系統(tǒng)清除病毒顆粒的能力。事實(shí)上,Wolbachia熱休克和表面蛋白刺激先天免疫基因,如細(xì)胞因子、防御素、蛋白酶和肽聚糖識(shí)別蛋白質(zhì)的表達(dá)[21-23]。WolbachiawMelPop-CLA株在蚊蟲(chóng)誘導(dǎo)免疫基因上調(diào)[24],在埃及伊蚊和果蠅有病毒保護(hù)能力。先天免疫系統(tǒng)的組分ROS和Toll途徑在埃及伊蚊Wolbachia誘導(dǎo)保護(hù)發(fā)揮著巨大作用[25]。Wolbachia增加黑腹果蠅免疫力[26]。Wolbachia相關(guān)的宿主miRNA表達(dá)有助于蚊蟲(chóng)內(nèi)登革病毒密度調(diào)節(jié)[27]。
2.4Wolbachia從流行到共生轉(zhuǎn)變Wolbachia除寄生型外,與無(wú)脊椎動(dòng)物存在共生關(guān)系。盤(pán)尾絲蟲(chóng)科(Onchocercidae)47%感染W(wǎng)olbachia,幾乎所有致病絲蟲(chóng)都感染W(wǎng)olbachia。宿主和細(xì)菌相互依賴對(duì)方,Wolbachia為絲蟲(chóng)提供核黃素、血紅素和黃素腺嘌呤二核苷酸(FAD)在內(nèi)的必需營(yíng)養(yǎng)物質(zhì),還有防御、抗菌以及線粒體類(lèi)似功能(如提供能量和代謝物),當(dāng)宿主處于快速生長(zhǎng)和分裂時(shí),可觀察到Wolbachia密度大幅增加[28]。
Wolbachia和絲蟲(chóng)的共生受到嚴(yán)格控制。如馬來(lái)絲蟲(chóng)中Wolbachia在受精卵內(nèi)的下皮索發(fā)育,在性成熟前能特異地侵入生殖腺[29,30],絲蟲(chóng)通過(guò)自我吞噬作用嚴(yán)格控制這種互動(dòng)[31],Wolbachia和絲蟲(chóng)間水平基因轉(zhuǎn)移增強(qiáng)相互依賴性。
Wolbachia與節(jié)肢動(dòng)物關(guān)系更加多樣化。伊蚊(Aedes polynesiensis),減少幼蟲(chóng)死亡率、延長(zhǎng)成蟲(chóng)壽命;埃及伊蚊,降低胚胎存活力;致倦庫(kù)蚊和稻褐飛虱,增加胚胎存活數(shù),但縮短成蟲(chóng)壽命;煙草粉蛾(Ephestiakuehniella),減少精子存活數(shù);水稻水象鼻蟲(chóng)(rice water weevils)和黃蜂(Asorbaratabida),Wolbachia對(duì)卵子發(fā)生是必需的;黑腹果蠅(Drosophilamauritiana),加速卵巢干細(xì)胞有絲分裂,產(chǎn)卵數(shù)增加四倍。這些多樣化可能代表Wolbachia和無(wú)脊椎動(dòng)物宿主之間從寄生到共生連續(xù)體的不同階段。
2.5 清除Wolbachia,治愈絲蟲(chóng)病 世界上每年有1.4億人感染絲蟲(chóng)引起的淋巴絲蟲(chóng)和盤(pán)尾絲蟲(chóng)病,威脅著大約14億人的健康。絲蟲(chóng)對(duì)藥物的抗性越來(lái)越受到關(guān)注,目前的治療方案正在失效。清除Wolbachia可以阻止絲蟲(chóng)生長(zhǎng)、促進(jìn)凋亡并最終導(dǎo)致絲蟲(chóng)死亡[32]。
淋巴絲蟲(chóng)病主要致病因素馬來(lái)絲蟲(chóng)及其共生體Wolbachia基因組發(fā)表后,極大推動(dòng)了Wolbachia-絲蟲(chóng)相互作用的研究。比較基因組分析表明,馬來(lái)絲蟲(chóng)依靠細(xì)菌產(chǎn)生的核黃素、血紅素和FAD。Wolbachia從絲蟲(chóng)獲得輔酶A、生物素、煙酰胺腺嘌呤二核苷酸(NAD)、泛醌(輔酶Q)、硫辛酸、葉酸和磷酸吡哆醛。
Wolbachia中血紅素合成、DNA連接酶、FtsZ,ClpP肽酶、脂蛋白合成以及丙酮酸磷酸二激酶(PPDK)有望成為藥物開(kāi)發(fā)的目標(biāo)[33-37]。用多西環(huán)素在少量個(gè)體中清除線蟲(chóng)感染取得成功[38]。用Wolbachia蛋白免疫小鼠顯示出對(duì)線蟲(chóng)感染很強(qiáng)的抗性[39]。
近年來(lái),由于在基礎(chǔ)和應(yīng)用方法取得的進(jìn)步使Wolbachia研究已相當(dāng)成熟:最初把共生菌Wolbachia只是當(dāng)作節(jié)肢動(dòng)物中一個(gè)不起眼的有趣邊注,進(jìn)行簡(jiǎn)單鑒定和分類(lèi),現(xiàn)在已經(jīng)引起全球?qū)olbachia研究的關(guān)注。目前已有19株Wolbachia的基因組測(cè)序已經(jīng)完成或正在進(jìn)行中,同時(shí)對(duì)噬菌體WO在Wolbachia中的生物學(xué)中的作用也有越來(lái)越深入的了解,噬菌體裂解可能提供抗Wolbachia治療絲蟲(chóng)病的方法。
發(fā)展中國(guó)家每年超過(guò)7.3億人感染登革熱、基孔肯雅、瘧疾、淋巴絲蟲(chóng)病,造成沉重的社會(huì)負(fù)擔(dān)。Wolbachia具有調(diào)節(jié)這類(lèi)疾病的作用。如利用共生菌Wolbachia對(duì)埃及伊蚊中登革熱的成功控制有望推廣到對(duì)按蚊和采采蠅等其他物種的控制,以及通過(guò)Wolbachia來(lái)作為控制淋巴絲蟲(chóng)病和河盲癥的重要手段。利用共生菌Wolbachia控制這類(lèi)疾病顯示出巨大的潛力,新技術(shù)的進(jìn)步有望利用豐富的共生菌Wolbachia讓這類(lèi)疾病成為歷史。
[1]Le Clec’h W, Chevalier FD,Genty L, et al. Cannibalism and predation as paths for horizontal passage ofWolbachiabetween terrestrial isopods[J]. PLoS ONE, 2013, 8(4): e60232. DOI: 10.1371/journal.pone.0060232
[2]Iturbe-Ormaetxe I, Walker T, O’Neill SL.Wolbachiaand the biological control of mosquito-borne disease[J]. EMBO Rep, 2011, 12(6): 508-518. DOI: 10.1038/embor.2011.84
[3]Van den Hurk AF, Hall-Mendelin S, Pyke AT, et al. Impact ofWolbachiaon infection withChikungunyaand yellow fever viruses in the mosquito vectorAedesaegypti[J]. PLoS Negl Trop Dis, 2012, 6(11): e1892. DOI: 10.1371/journal.pntd.0001892
[4]Alam U, Medlock J, Brelsfoard C, et al.Wolbachiasymbiont infections induce strong cytoplasmic incompatibility in the tsetse flyGlossinamorsitans[J]. PLoS Pathog, 2011, 7(12): e1002415. DOI: 10.1371/journal.ppat.1002415
[5]Sarasa J, Bernal A, Fernandez-Calvin B, et al.Wolbachiainduced cytogenetical effects as evidenced inChorthippusparallelus(Orthoptera)[J]. Cytogenet Genome Res, 2013, 139(1): 36-43. DOI: 10.1159/000341572
[6]Duron O, Bernard J, Atyame CM, et al. Rapid evolution ofWolbachiaincompatibility types[J]. Proc R Soc B: Biol Sci, 2012, 279: 4473-4480. DOI: 10.1098/rspb.2012.1368
[7]Bossan B, Koehncke A, Hammerstein P. A new model and method for understandingWolbachia-induced cytoplasmic incompatibility[J]. PLoS ONE, 2011, 6(5): e19757. DOI: 10.1371/journal.pone.0019757
[8]Zheng Y, Ren PP, Wang JL, et al.Wolbachia-induced cytoplasmic incompatibility is associated with decreased Hira expression in maleDrosophila[J]. PLoS ONE, 2011, 6(4): e19512. DOI: 10.1371/journal.pone.0019512
[9]Brennan LJ, Haukedal JA, Earle JC, et al. Disruption of redox homeostasis leads to oxidative DNA damage in spermatocytes ofWolbachia-infectedDrosophilasimulans[J]. Insect Mol. Biol, 2012, 21(5): 510-520. DOI: 10.1111/j.1365-2583.2012.01155.x
[10]Zhu LY, Zhang KJ, Zhang YK, et al.Wolbachiastrengthens cardinium-induced cytoplasmic incompatibility in the spider miteTetranychuspierceiMcGregor[J]. Curr Microbiol, 2012, 65(5): 516-523. DOI 10.1007/s00284-012-0190-8
[11]Penz T, Schmitz-Esser S, Kelly SE, et al. Comparative genomics suggests an independent origin of cytoplasmic incompatibility inCardiniumhertigii[J]. PLoS Genet, 2012, 8(10): e1003012. DOI: 10.1371/journal.pgen.1003012
[12]Riparbelli MG, Giordano R, Ueyama M, et al.Wolbachia-mediated male killing is associated with defective chromatin remodeling[J]. PLoS ONE, 2012, 7(1): e30045. DOI: 10.1371/journal.pone.0030045
[13]Wong ZS, Hedges LM, Brownlie J, et al.Wolbachia-mediated antibacterial protection and immune gene regulation inDrosophila[J]. PLoS ONE, 2011, 6(9): e25430. DOI: 10.1371/journal.pone.0025430
[14]O’Connor L, Plichart C, Sang AC, et al. Open release of male mosquitoes infected with aWolbachiabiopesticide: field performance and infection containment[J]. PLoS Negl Trop Dis, 2012, 6(11): e1797. DOI: 10.1371/journal.pntd.0001797
[15]Walker T, Johnson PH, Moreira LA, et al. The wMelWolbachiastrain blocks dengue and invades cagedAedesaegyptipopulations[J]. Nature, 2011, 476(7361): 450-453. DOI: 10.1038/nature10355
[16]Hoffmann AA, Montgomery BL, Popovici J, et al. Successful establishment ofWolbachiainAedespopulations to suppress dengue transmission[J]. Nature, 2011, 476(7361): 454-457. DOI: 10.1038/nature10356
[17]Bian G, Joshi D, Dong Y, et al.WolbachiainvadesAnophelesstephensipopulations and induces refractoriness toPlasmodiuminfection[J]. Science, 2013, 340(6133): 748-751. DOI: 10.1126/science.1236192
[18]Osei-Poku J, Han C, Mbogo CM, et al. Identification ofWolbachiastrains in mosquito disease vectors[J]. PLoS ONE, 2012, 7(11): e49922. DOI: 10.1371/journal.pone.0049922
[19 Meriweather M, Matthews S, Rio R, et al. A 454 survey reveals the community composition and core microbiome of the common bed bug (Cimexlectularius) across an urban landscape[J]. PLoS ONE, 2013, 8(4): e61465. DOI: 10.1371/journal.pone.0061465
[20]Doudoumis V, Alam U, Aksoy E, et al. Tsetse-Wolbachiasymbiosis: comes of age and has great potential for pest and disease control[J]. J Invertebr Pathol, 2012, 112(0): S94-S103. DOI: 10.1016/j.jip.2012.05.010
[21]Kambris Z, Blagborough AM, Pinto SB, et al.Wolbachiastimulates immune gene expression and inhibits plasmodium development inAnophelesgambiae[J]. PLoS Pathog, 2010, 6(10): e1001143. DOI: 10.1371/journal.ppat.1001143
[22]Kamalakannan V, Kirthika S, Haripriya K, et al.Wolbachiaheat shock protein 60 induces pro-inflammatory cytokines and apoptosis in monocytesinvitro[J]. Microbes Infect, 2012, 14(7): 610-618. DOI: 10.1016/j.micinf.2012.01.008
[23]Pinto SB, Mariconti M, Bazzocchi C, et al.Wolbachiasurface protein induces innate immune responses in mosquito cells[J]. BMC Microbiol, 2012, 12(Suppl 1), S11. DOI: 10.1186/1471-2180-12-S1-S11
[24 Rance`s E, Ye YH, Woolfit M, et al. The relative importance of innate immune priming inWolbachia-mediated dengue interference[J]. PLoS Pathog, 2012, 8(2): e1002548. DOI: 10.1371/journal.ppat.1002548
[25]Pan X, Zhou GL, Wu JH, et al.Wolbachiainduces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquitoAedesaegypti[J]. Proc Natl Acad Sci U S A, 2012, 109(1): E23-E31. DOI: 10.1073/pnas.1116932108
[26]Osborne SE, Iturbe-Ormaetxe I, Brownlie JC, et al. Antiviral protection and the importance ofWolbachiadensity and tissue tropism inDrosophilasimulans[J]. Appl Environ Microbiol, 2012, 78(19): 6922-6929. DOI: 10.1128/AEM.01727-12
[27]Zhang G, Hussain M, O’Neill SL, et al.Wolbachiauses a host microRNA to regulate transcripts of a methyltransferase, contributing to dengue virus inhibition inAedesaegypti[J]. Proc Natl Acad Sci U S A, 2013, 110(25): 10276-10281. DOI: 10.1073/pnas.1303603110
[28]Fischer K, Beatty W, Jiang DJ, et al. Tissue and stage-specific distribution ofWolbachiainBrugiamalayi[J]. PLoS Negl Trop Dis, 2011, 5(5): e1174. DOI: 10.1371/journal.pntd.0001174
[29]Landmann F, Foster M, Slatko B, et al. AsymmetricWolbachiasegregation during earlyBrugiamalayiembryogenesis determines its distribution in adult host tissues[J]. PLoS Negl Trop Dis, 2010, 4(7): e758. DOI: 10.1371/journal.pntd.0000758
[30]Landmann F, Bain O, Martin C, et al. Both asymmetric mitotic segregation and cell-to-cell invasion are required for stable germline transmission ofWolbachiain filarial nematodes[J]. Biol Open, 2012, 1: 536-547. DOI:10.1242/bio.2012737
[31]Voronin D, Cook DAN, Steven A, et al. Autophagy regulatesWolbachiapopulations across diverse symbiotic associations[J]. Proc Natl Acad Sci U S A, 2012, 109(25): E1638-E1646. DOI: 10.1073/pnas.1203519109
[32]Landmann F, Voronin D, Sullivan W, et al. Anti-filarial activity of antibiotic therapy is due to extensive apoptosis afterWolbachiadepletion from filarial nematodes[J]. PLoS Pathog, 2011, 7(11): e1002351. DOI: 10.1371/journal.ppat.1002351
[33]Shrivastava N, Nag JK, Misra-Bhattacharya S. Molecular characterization of NAD+- dependent DNA ligase fromWolbachiaendosymbiontof lymphatic filarial parasiteBrugiamalayi[J]. PLoS ONE, 2012, 7(7): e41113. DOI: 10.1371/journal.pone.0041113
[34]Palayam M, Lakshminarayanan K, Radhakrishnan M, et al. Preliminary analysis to target pyruvate phosphate dikinase fromWolbachiaendosymbiont ofBrugiamalayifor designing anti-filarial agents[J]. Interdiscip Sci, 2012, 4(1): 74-82. DOI: 10.1007/s12539-011-0109-2
[35]Li Z, Garner AL, Gloeckner C, et al. Targeting theWolbachiacell division protein FtsZ as a new approach for antifilarial therapy[J]. PLoS Negl Trop Dis, 2011, 5(11): e1411. DOI: 10.1371/journal.pntd.0001411
[36]Schiefer A, Vollmer J, Lammer C, et al. The ClpP peptidase ofWolbachiaendobacteria is a novel target for drug development against filarial infections[J]. J Antimicrob Chemother, 2013, 68(8): 1790-800. DOI: 10.1093/jac/dkt105
[37]Sharma R, Hoti SL, Vasuki V, et al. Filamentation temperature-sensitive protein Z (FtsZ) ofWolbachia, endosymbiont ofWuchereriabancrofti: a potential target for anti-filarial chemotherapy[J]. Acta Trop, 2013, 125(3): 330-338. DOI: 10.1016/j.actatropica.2012.12.004
[38]Gayen P, Nayak A, Saini P, et al. A double-blind controlled field trial of doxycycline and albendazole in combination for the treatment ofBancroftianfilariasisin India[J]. Acta Trop, 2013, 125(2): 150-156. DOI:10.1016/j.actatropica.2012.10.011
[39]Nag JK, Shrivastava N, Gupta J, et al. Recombinant translation initiation factor-1 ofWolbachiais an immunogenic excretory secretory protein that elicits Th2 mediated immune protection againstBrugiamalayi[J]. Comp Immunol Microbiol Infect Dis, 2013, 36(1): 25-38. DOI: 10.1016/j.cimid.2012.09.004
Liu Bo, Email: kfb8677@sina.com
Advances on the vecor-borne diseases control withWolbachia
ZHANG Chong-xing,SHI Gui-hong,LIU Bo
(VectorBiologyKeyLaboratoryofMedicineandHealthShandongProvince,ShandongInstituteofParasiticDiseases,ShandongAcademyofMedicalSciences,Jining272033,China)
Wolbachiapipientisis the most common endosymbionts infection in the animal world, which infects many insect, ararchnids, and nematodes, and has a huge influence on invertebrate reproduction, sex determination, speciation, and behavior worldwide. These researches have made important gains, such as: alter mosquito populations by using ofWolbachia, and using anti-Wolbachiatherapies against filarial infections. Here we review the immense implications that this global infection has for the basic and applied life sciences.
Wolbachia; cytoplasmic incompatibility(CI); vector control
10.3969/j.issn.1002-2694.2015.09.016
山東省自然科學(xué)基金 (No. ZR2014YL038),教育部留學(xué)回國(guó)人員科研啟動(dòng)基金資助項(xiàng)目,科技部中泰科技合作聯(lián)委會(huì)第21次會(huì)議項(xiàng)目(No. 21-RD-05)
劉波,Email: kfb8677@sina.com
山東省寄生蟲(chóng)病防治研究所,山東省醫(yī)藥衛(wèi)生媒介生物學(xué)重點(diǎn)實(shí)驗(yàn)室,濟(jì)寧 272033
Sponsored by the Shandong Natural Science Foundation (Grant No. ZR2014YL038), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry and Joint Research and Development Project Under the Twenty First Session of the Sino-Thai Scientific and Technical Cooperation (Grant No. 21-RD-05)
R376
A
1002-2694(2015)09-0859-05
2014-09-09;
2015-05-13