劉乃嘉(綜述),聞 杰(審校)
(復(fù)旦大學(xué)附屬華山醫(yī)院內(nèi)分泌科,上海 200040)
?
β細(xì)胞功能相關(guān)2型糖尿病易患基因的研究進(jìn)展
劉乃嘉△(綜述),聞杰※(審校)
(復(fù)旦大學(xué)附屬華山醫(yī)院內(nèi)分泌科,上海 200040)
摘要:2型糖尿病是環(huán)境和遺傳因素共同作用引起的代謝紊亂,是以胰島素分泌不足和作用障礙引起高血糖為特征的臨床綜合征。此前,大多數(shù)關(guān)聯(lián)分析和候選基因研究只發(fā)現(xiàn)了少量的2型糖尿病相關(guān)疾病易患基因位點(diǎn),而全基因組關(guān)聯(lián)研究的出現(xiàn)改變了這種格局,發(fā)現(xiàn)了大量與2型糖尿病相關(guān)性較強(qiáng)的基因位點(diǎn),其中大多與β細(xì)胞功能下降相關(guān)。2型糖尿病易患基因的發(fā)現(xiàn),有助于人們更好地了解其發(fā)病機(jī)制,并制訂相應(yīng)的診斷、預(yù)防和治療措施。該文就2型糖尿病易患基因與β細(xì)胞功能的相關(guān)性予以綜述。
關(guān)鍵詞:糖尿病,2型;易患基因;β細(xì)胞
糖尿病是一種全球范圍內(nèi)流行的復(fù)雜代謝性疾病,由血糖水平過(guò)高而引起器官組織結(jié)構(gòu)功能異常。當(dāng)胰島素的產(chǎn)生和分泌不能滿(mǎn)足機(jī)體的代謝需要時(shí),就導(dǎo)致了糖尿病。2型糖尿病是糖尿病最主要的類(lèi)型,且發(fā)病率呈逐年上升的趨勢(shì)[1]。其遺傳方式為多基因遺傳、多因子參與,既可由一個(gè)主基因與其他微效基因加上環(huán)境因素共同作用所致,也可以由許多微效基因共同參與形成疊加效應(yīng)再加上環(huán)境因素所致[2]。因此,2型糖尿病是遺傳和環(huán)境因素之間相互作用所導(dǎo)致的復(fù)雜遺傳性疾病?,F(xiàn)就β細(xì)胞功能相關(guān)2型糖尿病易患基因的研究進(jìn)展予以綜述。
12型糖尿病易患基因的研究方式
在全基因組關(guān)聯(lián)研究(genome-wide association study,GWAS)出現(xiàn)以前,2型糖尿病的遺傳學(xué)研究主要是連鎖分析和候選基因研究策略,這些策略只能發(fā)現(xiàn)少量與2型糖尿病相關(guān)的基因。隨著高通量單核苷酸多態(tài)性(single nucleotide polymorphisms, SNPs)基因分型技術(shù)的發(fā)展和人類(lèi)基因組單體型數(shù)據(jù)庫(kù)的應(yīng)用,人們實(shí)現(xiàn)了從人類(lèi)基因組數(shù)百萬(wàn)個(gè)SNPs中篩查成千上萬(wàn)的連鎖不平衡的SNPs,使GWAS成為2型糖尿病等復(fù)雜疾病遺傳學(xué)研究的重要策略。目前為止,發(fā)現(xiàn)的糖尿病易患基因接近60個(gè)[3],其中大部分易患基因與β細(xì)胞的功能相關(guān)[4]。2型糖尿病的發(fā)病風(fēng)險(xiǎn)是由多種機(jī)制導(dǎo)致的,胰島β細(xì)胞功能缺陷和胰島素抵抗是2型糖尿病最基本的病理生理學(xué)特征,也是2型糖尿病發(fā)生和發(fā)展的兩個(gè)重要環(huán)節(jié)。研究顯示,無(wú)論是肥胖還是非肥胖的2型糖尿病患者,與其體質(zhì)指數(shù)相當(dāng)?shù)姆翘悄虿∪巳合啾?其胰島β細(xì)胞數(shù)目明顯減少,胰島細(xì)胞凋亡發(fā)生率也明顯高于正常人群[5],提示β細(xì)胞的功能障礙在2型糖尿病發(fā)生、發(fā)展中有重要作用。GWAS鑒定出來(lái)的與糖尿病相關(guān)的易患基因大多表達(dá)在胰島β細(xì)胞中,并且與β細(xì)胞的生長(zhǎng)和功能相關(guān)[6-8]。
2β細(xì)胞功能相關(guān)的2型糖尿病易患基因
有較長(zhǎng)的2型糖尿病病史的患者通常會(huì)有β細(xì)胞功能降低和數(shù)量減少。人們一直致力于揭示2型糖尿病中β細(xì)胞功能降低和數(shù)量減少的確切機(jī)制。氧化應(yīng)激、內(nèi)質(zhì)網(wǎng)應(yīng)激、低氧應(yīng)激和細(xì)胞因子的誘導(dǎo)均可導(dǎo)致β細(xì)胞的功能障礙,β細(xì)胞會(huì)出現(xiàn)增殖受限、凋亡增加、自我吞噬,胰島β細(xì)胞甚至還可以去分化或轉(zhuǎn)分化為其他類(lèi)型的胰島細(xì)胞[9]。
2.1forkhead box protein O1(FoxO1)基因FoxO1基因編碼胰島素/胰島素樣生長(zhǎng)因子-磷脂酰肌醇3-激酶-絲/蘇氨酸蛋白激酶B信號(hào)下游的重要靶轉(zhuǎn)錄因子,在β細(xì)胞中表達(dá)豐富;FoxO1是一個(gè)參與細(xì)胞增殖、凋亡、衰老、分化、自噬和代謝的多功能蛋白,可以通過(guò)轉(zhuǎn)錄調(diào)控細(xì)胞周期抑制劑周期素依賴(lài)激酶抑制因子1B(p27kip1)和周期素依賴(lài)激酶抑制因子1(p21)抑制細(xì)胞增殖;FoxO1還可以促進(jìn)凋亡、早衰以及通過(guò)誘導(dǎo)抗氧化酶對(duì)抗氧化應(yīng)激;FoxO1還可以調(diào)控肌細(xì)胞、脂肪細(xì)胞以及胰腺細(xì)胞的分化[10]。目前的證據(jù)表明,胞質(zhì)中的FoxO1通過(guò)與autophagy-related protein 7(ATG7)的相互作用調(diào)節(jié)細(xì)胞的自噬作用[11]。并且,F(xiàn)oxO1在肝臟的葡萄糖和脂質(zhì)代謝以及下丘腦的能量代謝中起重要作用[12-13]。FoxO1的多種作用可能是由于其參與了細(xì)胞內(nèi)的多個(gè)信號(hào)通路。胰島十二指腸同源盒因子1(pancreatic duodenal homeobox-1,PDX-1)參與了FoxO1調(diào)控胰島β細(xì)胞增殖的過(guò)程,PDX-1是誘發(fā)胰島β細(xì)胞分化和胰島素基因表達(dá)的關(guān)鍵轉(zhuǎn)錄因子,可以促進(jìn)胰島β細(xì)胞增殖并抑制其凋亡[14]。FoxO1的結(jié)合可抑制PDX-1的轉(zhuǎn)錄,而forkhead box protein A2(FoxA2)是β細(xì)胞中PDX-1的上調(diào)因子。因此,F(xiàn)oxO1和FoxA2競(jìng)爭(zhēng)性結(jié)合于PDX-1啟動(dòng)子的同一個(gè)DNA結(jié)合位點(diǎn),從而抑制PDX-1的轉(zhuǎn)錄活性,進(jìn)一步抑制β細(xì)胞增殖[15]。而神經(jīng)元素3是對(duì)內(nèi)分泌細(xì)胞的排列特異性有重要作用的轉(zhuǎn)錄因子[16]。hairy enhancer of split 1(Hes1)是神經(jīng)元素3的轉(zhuǎn)錄抑制蛋白,Notch信號(hào)可通過(guò)Hes1的參與來(lái)調(diào)節(jié)胰腺內(nèi)分泌和外分泌的分化和發(fā)展,而FoxO1可與Notch信號(hào)相互作用,共同調(diào)節(jié)Hes1基因表達(dá)[9,17]。最近還有研究表明,F(xiàn)oxO1可以通過(guò)抑制神經(jīng)元素3的轉(zhuǎn)錄,阻止β細(xì)胞去分化而保持β細(xì)胞的特性[9]。
在肝細(xì)胞、肌細(xì)胞以及脂肪細(xì)胞中FoxO1蛋白既可在核內(nèi)也可在胞質(zhì)中,而在β細(xì)胞中由于持續(xù)內(nèi)源性胰島素的產(chǎn)生,可以激活絲/蘇氨酸蛋白激酶B(protein kinase B,PKB/Akt)使FoxO1蛋白可長(zhǎng)期滯留在胞質(zhì)中[18]。氧化應(yīng)激時(shí),F(xiàn)oxO1被乙?;⑥D(zhuǎn)位到核內(nèi),乙酰化可以阻止FoxO1泛素化,因此可以提高其在核內(nèi)停留時(shí)間[19]。在無(wú)血清或無(wú)葡萄糖培養(yǎng)基中培養(yǎng)β細(xì)胞,并不影響FoxO1的磷酸化和轉(zhuǎn)位;而在氧化應(yīng)激或高濃度葡萄糖中,可導(dǎo)致FoxO1被乙?;D(zhuǎn)位至核內(nèi),而FoxO1的核轉(zhuǎn)位是伴隨著神經(jīng)分化因子和肌腱膜纖維肉瘤癌基因同源物A基因表達(dá)而逐漸增加的,提示這2個(gè)基因是FoxO1的直接靶基因,神經(jīng)分化因子和肌腱膜纖維肉瘤癌基因同源物A基因編碼的蛋白是對(duì)β細(xì)胞的生理功能十分重要的轉(zhuǎn)錄蛋白,可顯著提高胰島素編碼基因2的表達(dá),使之在短時(shí)間內(nèi)增加胰島素的分泌,迅速達(dá)到降低血糖的目的[18,20]。FoxO1同時(shí)有對(duì)抗氧化應(yīng)激的作用,氧化應(yīng)激可以激活c-Jun氨基末端激酶(c-Jun N-terminal kinases, JNKs);與AKT的磷酸化不同,JNKs可在絲氨酸和蘇氨酸位點(diǎn)磷酸化FoxO1,更提高其在核內(nèi)停留時(shí)間[21]。FoxO1基因可通過(guò)上調(diào)抗氧化酶基因的表達(dá)對(duì)抗氧化應(yīng)激來(lái)保護(hù)β細(xì)胞[9]。研究表明,β細(xì)胞FoxO1特異性剔除的db/db小鼠與對(duì)照組小鼠相比,表現(xiàn)出更嚴(yán)重的糖耐量異常,也許就是因?yàn)槿狈oxO1在β細(xì)胞中的保護(hù)作用[17]。然而,目前大多數(shù)FoxO1與2型糖尿病的相關(guān)性的證據(jù)是從動(dòng)物實(shí)驗(yàn)中獲得的,因此對(duì)于在人類(lèi)中是否具有相同的作用機(jī)制還有待于進(jìn)一步的研究。
2.2transcription factor 7-like 2(TCF7L2)基因TCF7L2是通過(guò)關(guān)聯(lián)分析發(fā)現(xiàn)的一個(gè)2型糖尿病易患基因。2006年,Grant等[8]首次在冰島人群中發(fā)現(xiàn)了TCF7L2基因的多態(tài)性與2型糖尿病顯著相關(guān),并且發(fā)現(xiàn)了與糖尿病顯著相關(guān)的2個(gè)SNPs位點(diǎn)rs7903146(C/T)和rs12255372(G/T)。隨后,2型糖尿病和TCF7L2 SNPs相關(guān)性在不同的種族人群GWAS中得到證實(shí),且多數(shù)研究顯示,TCF7L2風(fēng)險(xiǎn)變異體與胰島素分泌下降有關(guān),并在多個(gè)種族人群中證實(shí)了風(fēng)險(xiǎn)等位基因位于TCF7L2基因的3號(hào)內(nèi)含子[22-23]。目前為止,該基因是被廣泛證實(shí)的與2型糖尿病相關(guān)性最強(qiáng)的基因。TCF7L2基因編碼一種轉(zhuǎn)錄因子,是Wnt信號(hào)通路的成員,在β細(xì)胞中表達(dá)活躍[24]。早期,Lyssenko等[25]研究發(fā)現(xiàn),2型糖尿病患者TCF7L2的表達(dá)可增加5倍,離體的人胰島細(xì)胞中TCF7L2過(guò)表達(dá)可減少葡萄糖刺激的胰島素分泌,提示TCF7L2可能通過(guò)減少β細(xì)胞的胰島素分泌、改變腸促胰島素的作用從而影響胰島素對(duì)食物的反應(yīng)而引起2型糖尿病[26]。而Saxena等[27]研究發(fā)現(xiàn),胰島細(xì)胞中TCF7L2 信使RNA水平與胰島素基因信使RNA呈正相關(guān),與葡萄糖刺激的胰島素分泌呈正相關(guān),也提示了TCF7L2通過(guò)影響β細(xì)胞胰島素的分泌導(dǎo)致2型糖尿病的發(fā)生。對(duì)于TCF7L2 基因變異影響β細(xì)胞胰島素分泌的機(jī)制,da Silva Xavier等[28]認(rèn)為,TCF7L2可調(diào)控與β細(xì)胞激素合成與分泌功能有關(guān)的若干基因的表達(dá),其中包括調(diào)節(jié)漿膜上胰島素顆粒融合和出胞運(yùn)動(dòng)的基因,在缺少了有活性的TCF7L2的組織中,分泌顆粒運(yùn)動(dòng)加快但囊泡融合受限,進(jìn)而導(dǎo)致胰島素釋放不足。Takamoto等[29]利用相關(guān)技術(shù)使胚胎期的小鼠β細(xì)胞中TCF7L2基因顯性失活,發(fā)現(xiàn)出生時(shí)小鼠胰島β細(xì)胞的數(shù)量降低,胰島素水平降低,提示β細(xì)胞中TCF7L2也可能通過(guò)調(diào)節(jié)β細(xì)胞的數(shù)量來(lái)調(diào)節(jié)糖代謝。然而還有截然相反的研究發(fā)現(xiàn),在β細(xì)胞中剔除TCF7L2基因并不會(huì)引起β細(xì)胞功能下降,而對(duì)肝糖原的產(chǎn)生有重要作用[30]。而確切的作用機(jī)制還有待進(jìn)一步研究。
2.3solute carrier family 30 (zinc transporter), member 8(SLC30A8)基因SLC30A8基因編碼一種與胰島素顆粒分泌和儲(chǔ)存有關(guān)的蛋白質(zhì)-鋅轉(zhuǎn)運(yùn)體8(zinc transporter 8,ZnT8),只在胰腺尤其是胰島中高表達(dá)[31]。ZnT8位于胰島素分泌顆粒膜中,能促進(jìn)鋅離子從細(xì)胞質(zhì)到胞內(nèi)胰島素囊泡中的聚集,然后胰島素與2個(gè)鋅離子結(jié)合形成較穩(wěn)定的六聚體儲(chǔ)存起來(lái),當(dāng)胰島β細(xì)胞受到刺激時(shí)才將其分泌出去[32]。因此,鋅是胰島素儲(chǔ)存和分泌到細(xì)胞內(nèi)囊泡的必需金屬離子,ZnT8可以調(diào)節(jié)鋅的動(dòng)態(tài)平衡,是胰島素分泌的關(guān)鍵蛋白,在胰島素的加工和分泌過(guò)程中起重要作用[33]。SLC30A8 的SNPs主要通過(guò)胰島素分泌的缺陷而引起2型糖尿?。煌瑫r(shí),SLC30A8與2型糖尿病的相關(guān)性在多個(gè)種族人群中的研究中得到了一致結(jié)果[34-36]。SLC30A8的風(fēng)險(xiǎn)變異體可損害胰島中ZnT8的表達(dá)、胰島素分泌或者葡萄糖穩(wěn)態(tài),SLC30A8風(fēng)險(xiǎn)等位基因的攜帶者胰島素原/胰島素水平顯著增加,提示可能與前胰島素原的加工有關(guān),風(fēng)險(xiǎn)等位基因攜帶者的胰島素分泌減少,也許是因?yàn)棣录?xì)胞對(duì)前胰島素原的處理加工障礙,增加的前胰島原素不能轉(zhuǎn)化為胰島素而被有效利用[37]。而SLC30A8影響前胰島素的加工處理機(jī)制尚不明確。另有報(bào)道,SLC30A8可以調(diào)節(jié)肝臟胰島素清除,當(dāng)該基因的這種功能障礙時(shí)便可能導(dǎo)致2型糖尿病的發(fā)生[38]。此外,還有許多其他2型糖尿病的風(fēng)險(xiǎn)基因與β細(xì)胞的功能相關(guān),如hematopoietically expressed homeobox(HHEX),cyclin-dependent kinase inhibitor 2A/B(CDKN2A/B)和insulin-like growth factor 2 mRNA-binding protein 2(IFG2BP2)等基因變異可導(dǎo)致葡萄糖刺激的胰島素釋放障礙,也與β細(xì)胞的功能損傷有關(guān)[39]。而這些基因影響β細(xì)胞功能的具體機(jī)制尚未完全闡明。
3小結(jié)
糖尿病及其并發(fā)癥嚴(yán)重威脅著人們的健康,越來(lái)越多的研究證據(jù)表明,β細(xì)胞功能損傷是導(dǎo)致糖尿病的重要因素。GWAS鑒定出了大量2型糖尿病的易感基因,其大多在β細(xì)胞中表達(dá)活躍或參與調(diào)控β細(xì)胞的增殖、凋亡、基因表達(dá)以及胰島素分泌,提示了β細(xì)胞在2型糖尿病發(fā)生、發(fā)展過(guò)程中的重要地位。研究2型糖尿病易患基因不僅可以預(yù)測(cè)其發(fā)病風(fēng)險(xiǎn)、提供更好的靶向藥物治療,更重要的是,未來(lái)人們可以通過(guò)運(yùn)用基因療法來(lái)降低2型糖尿病的發(fā)病風(fēng)險(xiǎn)。
參考文獻(xiàn)
[1]Wang J,Zhang J,Li L,etal.Association of rs12255372 in the TCF7L2 gene with type 2 diabetes mellitus:a meta-analysis[J].Braz J Med Biol Res,2013,46(4):382-393.
[2]周青.2型糖尿病的相關(guān)基因多態(tài)性的研究進(jìn)展[J].銅陵職業(yè)技術(shù)學(xué)院學(xué)報(bào),2008,7(1):49-52.
[3]Qi Q,Hu FB.Genetics of type 2 diabetes in European populations[J].J Diabetes,2012,4(3):203-212.
[4]Perry JR,Frayling TM.New gene variants alter type 2 diabetes risk predominantly through reduced beta-cell function[J].Curr Opin Clin Nutr Metab Care,2008,11(4):371-377.
[5]Butler AE,Janson J,Bonner-Weir S,etal.Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes[J].Diabetes,2003,52(1):102-110.
[6]Chadt A,Yeo GS,Al-Hasani H.Nutrition-/diet-induced changes in gene expression in pancreatic β-cells[J].Diabetes Obes Metab,2012,14(Suppl 3):57-67.
[7]Miyake K,Horikawa Y,Hara K,etal.Association of TCF7L2 polymorphisms with susceptibility to type 2 diabetes in 4,087 Japanese subjects[J].J Hum Genet,2008,53(2):174-180.
[8]Grant SF,Thorleifsson G,Reynisdottir I,etal.Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 dia-betes[J].Nat Genet,2006,38(3):320-323.
[9]Kitamura T.The role of FOXO1 in β-cell failure and type 2 diabetes mellitus[J].Nat Rev Endocrinol,2013,9(10):615-623.
[10]Kikuchi O,Kobayashi M,Amano K,etal.FoxO1 gain of function in the pancreas causes glucose intolerance,polycystic pancreas,and islet hypervascularization[J].PLoS One,2012,7(2):e32249.
[11]Zhao Y,Yang J,Liao W,etal.Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity[J].Nat Cell Biol,2010,12(7):665-675.
[12]Kim KW,Donato J Jr,Berglund ED,etal.FOXO1 in the ventromedial hypothalamus regulates energy balance[J].J Clin Invest,2012,122(7):2578-2589.
[13]Ren H,Orozco IJ,Su Y,etal.FoxO1 target Gpr17 activates AgRP neurons to regulate food intake[J].Cell,2012,149(6):1314-
1326.
[14]Fujimoto K,Polonsky KS.Pdx1 and other factors that regulate pancreatic beta-cell survival [J].Diabetes Obes Metab,2009,11(Suppl 4):30-37.
[15]Kitamura T,Nakae J,Kitamura Y,etal.The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic beta cell growth[J].J Clin Invest, 2002,110(12):1839-1847.
[16]Gradwohl G,Dierich A,LeMeur M,etal.Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas[J].Proc Natl Acad Sci U S A,2000,97(4):1607-1611.
[17]Kobayashi M,Kikuchi O,Sasaki T,etal.FoxO1 as a double-edged sword in the pancreas:analysis of pancreas- and beta-cell-specific FoxO1 knockout mice[J].Am J Physiol Endocrinol Metab,2012,302(5):603-613.
[18]Kitamura YI,Kitamura T,Kruse JP,etal.FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction[J].Cell Metab,2005,2(3):153-163.
[19]黃荷,夏寧.FoxO1對(duì)糖尿病胰腺β細(xì)胞的作用[J].內(nèi)科,2009,4(3):404-407.
[20]Kaneto H,Matsuoka TA,Kawashima S,etal.Role of MafA in pancreatic beta-cells[J].Adv Drug Deliv Rev,2009,61(7/8):489-
496.
[21]Furukawa-Hibi Y,Kobayashi Y,Chen C,etal.FOXO transcription factors in cell-cycle regulation and the response to oxidative stress[J].Antioxid Redox Signal,2005,7(5/6):752-760.
[22]Sladek R,Rocheleau G,Rung J,etal.A genome-wide association study identifies novel risk loci for type 2 diabetes[J].Nature,2007,445(7130):881-885.
[23]Chang YC,Chang TJ,Jiang YD,etal.Association study of the genetic polymorphisms of the transcription factor 7-like 2 (TCF7L2) gene and type 2 diabetes in the Chinese population[J].Diabetes,2007,56(10):2631-2637.
[24]Cauchi S,Meyre D,Dina C,etal.Transcription factor TCF7L2 genetic study in the French population:expression in human beta-cells and adipose tissue and strong association with type 2 diabetes[J].Diabetes,2006,55(10):2903-2908.
[25]Lyssenko V,Lupi R,Marchetti P,etal.Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes[J].J Clin Invest,2007,117(8):2155-2163.
[26]Gjesing AP,Kjems LL,Vestmar MA,etal.Carriers of the TCF7L2 rs7903146 TT genotype have elevated levels of plasma glucose,serum proinsulin and plasma gastric inhibitory polypeptide (GIP) during a meal test[J].Diabetologia,2011,54(1):103-110.
[27]Saxena R,Gianniny L,Burtt NP,etal.Common single nucleotide polymorphisms in TCF7L2 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals[J].Diabetes,2006,55(10):2890-2895.
[28]da Silva Xavier G,Loder MK,McDonald A,etal.TCF7L2 regulates late events in insulin secretion from pancreatic islet beta-cells[J].Diabetes,2009,58(4):894-905.
[29]Takamoto I,Kubota N,Nakaya K,etal.TCF7L2 in mouse pancreatic beta cells plays a crucial role in glucose homeostasis by regulating beta cell mass[J].Diabetologia,2014,57(3):542-553.
[30]Boj SF,van Es JH,Huch M,etal.Diabetes risk gene and Wnt effector Tcf712/TCF4 controls hepatic response to perinatal and adult metabolic demand[J].Cell,2012,151(7):1595-1607.
[31]Lefebvre B,Vandewalle B,Balavoine AS,etal.Regulation and functional effects of ZNT8 in human pancreatic islets[J].J Endocrinol,2012,214(2):225-232.
[32]Chimienti F,Devergnas S,Pattou F,etal.In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion[J].J Cell Sci,2006,119(Pt 20):4199-4206.
[33]Chimienti F.Zinc,pancreatic islet cell function and diabetes:new insights into an old story[J].Nutr Res Rev,2013,26(1):1-11.
[34]Xu J,Wang J,Chen B.SLC30A8 (ZnT8) variations and type 2 diabetes in the Chinese Han population[J].Genet Mol Res,2012,11(2):1592-1598.
[35]Manning AK,Hivert MF,Scott RA,etal.A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance[J].Nat Genet,2012,44(6):659-669.
[36]Strawbridge RJ,Dupuis J,Prokopenko I,etal.Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes[J].Diabetes,2011,60(10):2624-2634.
[37]Kahn SE,Suvag S,Wright LA,etal.Interactions between genetic background,insulin resistance and β-cell function[J].Diabetes Obes Metab,2012,14(Suppl 3):46-56.
[38]Tamaki M,Fujitani Y,Hara A,etal.The diabetes-susceptible gene SLC30A8/ZnT8 regulates hepatic insulin clearance[J].J Clin Invest,2013,123(10):4513-4524.
[39]Grarup N,Rose CS,Andersson EA,etal.Studies of association of variants near the HHEX,CDKN2A/B,and IGF2BP2 genes with type 2 diabetes and impaired insulin release in 10,705 Danish subjects:validation and extension of genome-wide association stu-dies[J].Diabetes,2007, 56(12):3105-3111.
Research Progress in β-cell Function Associated Susceptible Genes of Type 2 DiabetesLIUNai-jia,WENJie.(DepartmentofEndocrinology,HuashanHospitalAffiliatedtoFudanUniversity,Shanghai200040,China)
Abstract:Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder arising from a complicated influence of genetic and environmental factors.It is characterized by hyperglycemia,insulin resistance,and impaired insulin secretion.Despite numerous candidate gene and linkage studies,the field of T2DM genetics has succeeded in identifying only few genuine disease-susceptibility loci.The advent of genome-wide association study has transformed the situation,leading to an expansion in the number of established,robustly replicating T2DM loci,most of which are associated with pancreatic β cell dysfunction.Identification and characterization of genes involved in determining T2DM will contribute to a better understanding of the pathogenesis of T2DM,and ultimately might lead to the development of better diagnosis,prevention and treatment.Here is to make a review of the association between T2DM susceptibility genes and β cell function.
Key words:Diabetes mellitus, type 2; Susceptibility gene; β-cell
收稿日期:2014-08-14修回日期:2014-10-30編輯:鄭雪
基金項(xiàng)目:國(guó)家自然科學(xué)基金(81270903)
doi:10.3969/j.issn.1006-2084.2015.11.002
中圖分類(lèi)號(hào):R58
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1006-2084(2015)11-1924-04