趙萱, 傅超美,甘彥雄,何瑤
基于網(wǎng)絡(luò)藥理學(xué)的姜黃素抗炎作用機(jī)制研究
趙萱, 傅超美,甘彥雄,何瑤
目的:闡明姜黃素的抗炎機(jī)制。方法:通過(guò)基因本體論(GO)以及復(fù)合分子檢測(cè)法(MCODE),建立的姜黃素蛋白質(zhì)相互作用網(wǎng)絡(luò)具有482個(gè)節(jié)點(diǎn)與1688個(gè)作用點(diǎn)。結(jié)果:其中兩個(gè)模塊與炎癥密切相關(guān),姜黃素的抗炎機(jī)制可能與SMAD、ERG和調(diào)節(jié)TLR系統(tǒng)有關(guān),特別是TLR9作用最為顯著。結(jié)論:TLR9可能為姜黃素起抗炎作用的蛋白質(zhì)作用靶點(diǎn)。
姜黃素;功能模塊;蛋白質(zhì)相互作用;抗炎機(jī)制;生物信息學(xué)
姜黃(Curcuma longa Linn.)與莪術(shù)(Curcuma phaeocaulis Val.)作為傳統(tǒng)常用中藥,已有上千年的臨床應(yīng)用歷史,許多古籍中有詳細(xì)記載其具有活血化瘀、通絡(luò)止痛的功效。姜黃素是姜黃、莪術(shù)等姜黃屬植物的主要活性成分之一?,F(xiàn)代研究表明,姜黃素具有抗炎[1]、抗癌[2]、抗氧化[3]以及神經(jīng)保護(hù)等作用。其中炎癥與心血管疾病關(guān)系密切[4],表現(xiàn)為腫脹與疼痛。同時(shí),姜黃素的抗炎機(jī)制研究有助于明確中藥在治療炎癥有效性的機(jī)理。因此,本文將借助網(wǎng)絡(luò)模塊及基因本體論(GO)的分析方法,系統(tǒng)的闡釋姜黃素的抗炎機(jī)制。
蛋白質(zhì)在生物機(jī)體內(nèi)執(zhí)行著各式各樣的功能,且相互間合作密切。信號(hào)蛋白通常形成活性蛋白質(zhì)對(duì),實(shí)現(xiàn)多元功能、構(gòu)成細(xì)胞間的信號(hào)通路以及細(xì)胞形態(tài)發(fā)育[5]。蛋白質(zhì)相互作用(PPIs)是許多生物過(guò)程的關(guān)鍵,而基因本體論(GO)是目前被認(rèn)為對(duì)于蛋白質(zhì)相互作用的詮釋的最有力的指標(biāo)[6]。
在本研究中,我們將利用網(wǎng)絡(luò)藥理學(xué)的研究方法來(lái)分析姜黃素的抗炎機(jī)制。使用PPIs來(lái)構(gòu)建生物網(wǎng)絡(luò),并分析其無(wú)標(biāo)度、小范圍的網(wǎng)絡(luò)模塊特性。通過(guò)模塊化網(wǎng)絡(luò)分析,闡釋姜黃素的抗炎機(jī)制。
1.1 網(wǎng)絡(luò)構(gòu)建
靶點(diǎn)信息來(lái)源于ChEMBL (https://www.ebi.ac.uk/ chembl/#)和STITCH4.0 (http://stitch.embl.de/)數(shù)據(jù)庫(kù)。ChEMBL是一個(gè)有關(guān)藥物及具藥物類小分子屬性的生物活性分子的化學(xué)數(shù)據(jù)庫(kù)[7],其數(shù)據(jù)主要從原始文獻(xiàn)中提取,然后進(jìn)一步的優(yōu)化數(shù)據(jù),使得網(wǎng)站數(shù)據(jù)的品質(zhì)得到最優(yōu)保障。STITCH[8]是一個(gè)研究化學(xué)物質(zhì)與蛋白質(zhì)相互作用的數(shù)據(jù)庫(kù),它集成了眾多實(shí)驗(yàn)資源,挖掘文獻(xiàn)信息及預(yù)測(cè)相互作用來(lái)構(gòu)建數(shù)據(jù)庫(kù)。
蛋白質(zhì)相互作用信息從實(shí)時(shí)更新的網(wǎng)絡(luò)數(shù)據(jù)庫(kù)String 9.1(http://string-db.org)獲取,該網(wǎng)站用于檢索對(duì)于靶點(diǎn)的預(yù)期作用[9]。在String 9.1中的所有可獲取的關(guān)聯(lián)數(shù)據(jù)將有信度評(píng)分。靶點(diǎn)的置信度大于0.7時(shí)將被篩選應(yīng)用于PPI網(wǎng)絡(luò)的建立。
1.2 網(wǎng)絡(luò)分析
拓?fù)湫畔⒃讷@取可視化合成組織與結(jié)構(gòu)的復(fù)雜網(wǎng)絡(luò)時(shí)被廣泛應(yīng)用[10]。因此,我們將用Cytoscape軟件中的network analyzer[11]分析聚類系數(shù)、連接組件、度分布、平均最短路徑等參數(shù)?;谕?fù)鋮?shù),并與隨機(jī)網(wǎng)絡(luò)相比,分析網(wǎng)絡(luò)無(wú)標(biāo)度、小范圍和模塊化等特性。
復(fù)合分子檢測(cè)法(MCODE)將被用來(lái)進(jìn)一步對(duì)PPI進(jìn)行模塊的劃分,(網(wǎng)絡(luò)中蛋白質(zhì))節(jié)點(diǎn)連接度的臨界值大于3。此算法優(yōu)于其他具有微調(diào)功能但卻不能兼顧網(wǎng)絡(luò)其他部分的圖聚類制導(dǎo)模式方法,并且允許檢查蛋白質(zhì)集群的相互關(guān)聯(lián)性[12]?;谧R(shí)別模塊,運(yùn)用Cytoscape軟件中的BingoBingo插件[13]進(jìn)行GO富集分析,當(dāng)超幾何檢驗(yàn)閾值P小于0.05時(shí),基因本體論的注釋功能與全面分析功能將被很好的展示。
2.1 網(wǎng)絡(luò)的構(gòu)建
從STITCH 4.0提取了10個(gè)靶點(diǎn),從ChEMBL提取了68個(gè)靶點(diǎn)。去掉重復(fù)靶點(diǎn),共得到67個(gè)姜黃素靶點(diǎn)。姜黃素對(duì)ALPI與TLR9的有效劑量分別為100μM、8.36μM。因?yàn)榻S素會(huì)抑制或激活其他蛋白,剩余靶點(diǎn)的IC50無(wú)法獲取[13]。表1中列出了靶點(diǎn)的信息。PPI的靶點(diǎn)信息導(dǎo)入Cytoscape[14]。然后進(jìn)行union計(jì)算和去重復(fù),選擇相關(guān)性最大的子圖作為姜黃素的蛋白質(zhì)網(wǎng)絡(luò),網(wǎng)絡(luò)包含482個(gè)節(jié)點(diǎn)與1688個(gè)邊,見圖1。節(jié)點(diǎn)代表蛋白質(zhì),邊則表示蛋白質(zhì)間的相互作用關(guān)系?;疑?jié)點(diǎn)表示種子節(jié)點(diǎn),藍(lán)色則為與種子節(jié)點(diǎn)相互作用的節(jié)點(diǎn)。由于目前研究的局限性,一些人體蛋白質(zhì)相互作用仍不清楚。所以網(wǎng)絡(luò)構(gòu)建的研究并不全面,因此選擇最大連通子圖進(jìn)行研究。
表1 姜黃素的靶點(diǎn)信息表
圖1 姜黃素的蛋白相互作用網(wǎng)絡(luò)
2.2 網(wǎng)絡(luò)分析
2.2.1 拓?fù)浞治?/p>
計(jì)算得到的拓?fù)鋮?shù)信息見表2。
表2 關(guān)于姜黃素蛋白質(zhì)相互作用網(wǎng)絡(luò)與隨機(jī)網(wǎng)絡(luò)的參數(shù)
通過(guò)對(duì)網(wǎng)絡(luò)中各種蛋白質(zhì)間的關(guān)聯(lián)數(shù)統(tǒng)計(jì),用計(jì)算機(jī)求得度分布[15]。姜黃素的PIN度分布遵循冪律分布,直線方程為y=218.67x-1.359,如圖2A。表明姜黃素的PIN為無(wú)標(biāo)度網(wǎng)絡(luò)。
平均最短路徑指的是所有成對(duì)節(jié)點(diǎn)之間最短路徑的平均密度[16]。如圖2B,網(wǎng)絡(luò)路徑長(zhǎng)度主要是集中在3-5步。任意兩個(gè)蛋白質(zhì)之間的最短路徑長(zhǎng)度為4.394。大多數(shù)蛋白質(zhì)的聯(lián)系非常密切,表明姜黃素的PIN具有小世界性質(zhì)。
聚類系數(shù)是指節(jié)點(diǎn)的平均密度的區(qū)域[17]。聚類系數(shù)越高,網(wǎng)絡(luò)的模塊化程度越高。對(duì)比姜黃素PIN節(jié)點(diǎn)數(shù)目與邊數(shù)目相同的隨機(jī)網(wǎng)絡(luò),姜黃素的PIN聚類系數(shù)更高,表明姜黃素具有模塊化的性質(zhì)。綜上所述,姜黃素PIN網(wǎng)絡(luò)具有無(wú)標(biāo)度、小范圍和模塊化的體系結(jié)構(gòu)。
圖2 姜黃素蛋白質(zhì)相互作用網(wǎng)絡(luò)與隨機(jī)網(wǎng)絡(luò)的參數(shù)
2.2.2 集群和基因本體論的富集分析
如圖3所示,通過(guò)MCODE算法,獲得19個(gè)模塊。灰色節(jié)點(diǎn)表示源節(jié)點(diǎn),其他為連接節(jié)點(diǎn)。
圖3 GO 生物過(guò)程的模塊顯示部分
使用Bingo功能富集分析的結(jié)果如表3所示。結(jié)果表明,姜黃素在生物過(guò)程發(fā)揮了藥效學(xué)作用,如轉(zhuǎn)錄調(diào)節(jié)、細(xì)胞周期、凝血酶的反向調(diào)節(jié)、過(guò)氧化氫代謝、抗炎作用等過(guò)程。其中模塊10與模塊13與抗炎作用有關(guān)。
表3 GO生物過(guò)程的模塊顯示部分
注:P 值為獲得觀測(cè)到的效應(yīng)的概率,一個(gè)極小的P值表示觀測(cè)到的效應(yīng)極有可能純屬偶然,因此對(duì)無(wú)效的假設(shè)提供了證據(jù)。
模塊10含有的蛋白質(zhì)如IL-8、NF-κB、STAT3、SMAD3、ERG等。IL-8是引發(fā)局部炎癥的關(guān)鍵參數(shù)[18]。核因子kappa B(NF-κB) 是炎癥反應(yīng)中的一個(gè)關(guān)鍵信號(hào)分子。STAT3被激活后可應(yīng)對(duì)包括IL - 6、IL -10等各種細(xì)胞因子和生長(zhǎng)因子。已有報(bào)道稱,姜黃素通過(guò)減少IL-8水平[19]、作為NF-κB抑制劑[20]、抑制STAT3[21]從而起到抗炎作用。因此,在一定程度上證明網(wǎng)絡(luò)模塊的分析方法結(jié)果的可靠性。SMAD3的表達(dá)與激活蛋白激酶(MAPK)有關(guān)[22]。姜黃素可以通過(guò)抑制MAPK而表現(xiàn)出抗炎的活性[23]。所以姜黃素的抗炎活性可能與SMAD3的表達(dá)有關(guān)。ERG是紅細(xì)胞完成特定轉(zhuǎn)換(ETS)中的轉(zhuǎn)錄因子之一,可用于調(diào)節(jié)炎癥[23]。C-jun可通過(guò)雙磷酸化被氨基末端激酶(JNK)通道激活,將會(huì)導(dǎo)致炎癥,ERG也被證明與C-jun具有相互作用[24]。同時(shí),姜黃素可通過(guò)抑制JNK的活性發(fā)揮抗炎作用[25]。因此,姜黃素的抗炎作用可能與ERG有關(guān)。模塊10的分析表明,姜黃素的抗炎作用可能與SMAD3與ERG相關(guān)。
模塊13與toll樣受體家族密切相關(guān),包括TLR3,TLR7,TLR9,TLR3[26]可誘導(dǎo)激活I(lǐng)RF3,最終誘導(dǎo)的I型干擾素(IFNS)的產(chǎn)生。IFNS可以激活信號(hào)傳感器與轉(zhuǎn)錄復(fù)合物(STATs),啟動(dòng)了Janus kinase-STAT(JAK-STAT)信號(hào)通路)。有資料顯示JAK-STAT通路參與了抗炎反應(yīng)[27]。TLR7和TLR9識(shí)別也使激活的細(xì)胞開始促炎反應(yīng),導(dǎo)致I型干擾素等細(xì)胞因子的產(chǎn)生[28]。此外,TLR9為種子節(jié)點(diǎn),姜黃素對(duì)其有效劑量(IC50)為8.36 μM。因此,通過(guò)調(diào)節(jié)TRL蛋白群,姜黃素可能發(fā)揮抗炎作用,對(duì)于姜黃素治療炎癥TLR9可能是一個(gè)潛在的靶點(diǎn)。
中藥的療效來(lái)源于歷史悠久的臨床實(shí)踐,為保障中華民族的健康作出了重大貢獻(xiàn)。隨著現(xiàn)代研究的不斷深入,越來(lái)越多的作用機(jī)制會(huì)被闡明。尤其對(duì)于像ChEMBL和STITCH這樣的數(shù)據(jù)庫(kù)而言,可為我們提供大量的可供快速篩選的蛋白質(zhì)信息。
本研究基于網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)的無(wú)標(biāo)度、小世界性質(zhì)、模塊化性質(zhì),研究了姜黃素蛋白質(zhì)相互作用。進(jìn)而提出了一種模塊化網(wǎng)絡(luò)分析方法來(lái)研究姜黃素的抗炎機(jī)制。最終得到結(jié)論,姜黃素的抗炎機(jī)制可能與SMAD蛋白家族、ERG蛋白家族以及TLR調(diào)節(jié)有關(guān)。TLR9可能是姜黃素發(fā)揮抗炎作用的潛在靶點(diǎn)。此外,本研究還是運(yùn)用模塊化蛋白網(wǎng)絡(luò)分析的例證。顯然,對(duì)于預(yù)測(cè)目標(biāo)化合物,這是一個(gè)行之有效的研究方法。
[1] Jurenka JS. Anti-infammatory properties of curcumin, a major constituent of curcuma longa: A review of preclinical and clinical research [J]. Alternative medicine review : a journal of clinical therapeutic, 2009,14(2):141.
[2] Wilken R, Veena MS, Wang MB, et al. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma [J]. Molecular cancer, 2011,10.
[3] Sun YM, Zhang HY, Chen DZ, et al. Theoretical elucidation on the antioxidant mechanism of curcumin: A dft study [J]. Organic letters, 2002,4(17):2909.
[4] Libby P. Inflammation and cardiovascular disease mechanisms [J]. The American journal of clinical nutrition, 2006,83(2):456s.
[5] Wang Z, Nakayama T. Inflammation, a link between obesity and cardiovascular disease [J]. Mediators of inflammation, 2010,535.
[6] Yeh JT, Binari R, Gocha T, et al. Papti: A peptide aptamer interference toolkit for perturbation of protein-protein interaction networks [J]. Scientifc reports, 2013,3:1156.
[7] Wang T, Ming Z, Xiaochun W, et al. Rab7: Role of its protein interaction cascades in endo-lysosomal traffic [J]. Cellular signalling, 2011,23(3):516.
[8] Maetschke SR, Simonsen M, Davis MJ, et al. Gene ontologydriven inference of protein-protein interactions using inducers [J]. Bioinformatics, 2012,28(1):69.
[9] Ashburner M, Ball CA, Blake JA, et al. Gene ontology: Tool for the unifcation of biology. The gene ontology consortium [J]. Nature genetics, 2000,25(1):25.
[10] Zhang QC, Petrey D, Deng L, et al. Structure-based prediction of protein-protein interactions on a genome-widescale [J]. Nature, 2012,490(7421):556.
[11] Ren Z, Wang X, Wang S, et al. Mechanism of action of salvianolic acid b by module-based network analysis [J]. Biomedical materials and engineering, 2014,24(1):1333.
[12] Gaulton A, Bellis LJ, Bento AP, et al. Chembl: A large-scale bioactivity database for drug discovery [J]. Nucleic acids research, 2012,40(Database issue):D1100.
[13] Kuhn M, Szklarczyk D, Pletscher-Frankild S, et al. Stitch 4: Integration of protein-chemical interactions with user data [J]. Nucleic acids research, 2014,42(Database issue):D401.
[14] Franceschini A, Szklarczyk D, Frankild S, et al. String v9.1: Protein-protein interaction networks, with increased coverage and integration [J]. Nucleic acids research, 2013,41(Database issue):D808.
[15] Albert R. Scale-free networks in cell biology [J]. Journal of cell science, 2005,118(Pt 21):4947.
[16] Almaas E. Biological impacts and context of network theory [J]. The Journal of experimental biology, 2007,210(Pt 9):1548.
[17] Barabasi AL, Oltvai ZN. Network biology: Understanding the cell's functional organization [J]. Nature reviews Genetics, 2004,5(2):101.
[18] Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks [J]. BMC bioinformatics, 2003,4.
[19] Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks [J]. Genome research, 2003,13(11):2498.
[20] Jin W, Wang J, Zhu T, et al. Anti-inflammatory effects of curcumin in experimental spinal cord injury in rats [J]. Inflammation research : official journal of the European Histamine Research Society [et al], 2014,63(5):381.
[21] Kloesch B, Becker T, Dietersdorfer E, et al. Antiinflammatory and apoptotic effects of the polyphenol curcumin on human fibroblast-like synoviocytes [J]. International immunopharmacology, 2013,15(2):400.
[22] Assenov Y, Ramirez F, Schelhorn SE, et al. Computing topological parameters of biological networks [J]. Bioinformatics, 2008,24(2):282.
[23] Manke T, Demetrius L, Vingron M. Lethality and entropy of protein interaction networks [J]. Genome informatics International Conference on Genome Informatics, 2005,16(1):159.
[24] Przulj N. Biological network comparison using graphlet degree distribution [J]. Bioinformatics, 2007,23(2):e177.
[25] Estrada E. Virtual identifcation of essential proteins within the protein interaction network of yeast [J]. Proteomics, 2006,6(1):35.
[26] Vlahopoulos S, Boldogh I, Casola A, et al. Nuclear factor-kappab-dependent induction of interleukin-8 gene expression by tumor necrosis factor alpha: Evidence for an antioxidant sensitive activating pathway distinct from nuclear translocation [J]. Blood, 1999,94(6):1878.
[27] Klawitter M, Quero L, Klasen J, et al. Curcuma dmso extracts and curcumin exhibit an anti-infammatory and anticatabolic effect on human intervertebral disc cells, possibly by infuencing tlr2 expression and jnk activity [J]. Journal of infammation, 2012,9(1):29.
[28] Shehzad A, Ha T, Subhan F, et al. New mechanisms and the anti-inflammatory role of curcumin in obesity and obesityrelated metabolic diseases [J]. European journal of nutrition, 2011,50(3):151.
[29] Ross KR, Corey DA, Dunn JM, et al. Smad3 expression is regulated by mitogen-activated protein kinase kinase-1 in epithelial and smooth muscle cells [J]. Cellular signalling, 2007,19(5):923.
[30] Patwardhan RS, Checker R, Sharma D, et al. Dimethoxycurcumin, a metabolically stable analogue of curcumin, exhibits anti-inflammatory activities in murine and human lymphocytes [J]. Biochemical pharmacology, 2011,82(6):642.
[31] Murakami K, Mavrothalassitis G, Bhat NK, et al. Human erg-2 protein is a phosphorylated DNA-binding protein--a distinct member of the ets family [J]. Oncogene, 1993,8(6):1559.
[32] Verger A, Buisine E, Carrere S, et al. Identifcation of amino acid residues in the ets transcription factor erg that mediate erg-jun/fos-DNA ternary complex formation [J]. The Journal of biological chemistry, 2001,276(20):17181.
[33] Alexopoulou L, Holt AC, Medzhitov R, et al. Recognition of double-stranded rna and activation of nf-kappab by toll-like receptor 3 [J]. Nature, 2001,413(6857):732.
[34] Platanias LC. Mechanisms of type-i- and type-ii-interferonmediated signalling [J]. Nature reviews Immunology, 2005,5(5):375.
[35] Busch-Dienstfertig M, Gonzalez-Rodriguez S. Il-4, jak-stat signaling, and pain [J]. Jak-stat, 2013,2(4):e27638.
[36] Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity [J]. Cell, 2006,124(4):783-801.
(責(zé)任編輯:何瑤)
Research on the anti-infammatory mechanisms of Curcumin based on network pharmacology
ZHAO Xuan, FU Chaomei, GAN Yan-xiong, HE Yao//(School of Pharmacy, Chengdu University of Traditional Chinese Medicine; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education; National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, Sichuan)
Objective:To elucidate the anti-infammatory mechanism of curcumin based on the analysis of protein interaction network (PIN).Method:Through the Gene ontology (GO) enrichment based on Molecular complex detection (MCODE), a PIN of curcumin with 482 nodes and 1688 interactions was created and analyzed.Result:Two modules were found to be intimately associated with infammation. In addition, the anti-infammatory effect of curcumin may be related to SMAD, ERG and mediate TLR family.Result:TLR9 might be a potential target of curcumin to treat infammation.
curcumin; module-based; PPI; anti-infammatory; bioinformatics
R28
A
1674-926X(2015)04-019-05
成都中醫(yī)藥大學(xué)藥學(xué)院中藥材標(biāo)準(zhǔn)化教育部重點(diǎn)實(shí)驗(yàn)室 中藥資源系統(tǒng)研究與開發(fā)利用省部共建國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地,四川 成都 611137
趙萱(1986-),女,四川德陽(yáng),碩士研究生,講師,研究方向:中藥新制劑和新劑型的研究Email:626098860@qq.com
傅超美(1961-),男,四川簡(jiǎn)陽(yáng),教授,博導(dǎo),研究方向:中藥新制劑和新劑型的研究Email:chaomeifu@126.com
2014-12-06