国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

2013—2014年山東乳山地震序列發(fā)震構(gòu)造初探

2015-02-18 07:45曲均浩蔣海昆李金張志慧鄭建常張芹
地球物理學(xué)報(bào) 2015年6期
關(guān)鍵詞:乳山精確定位發(fā)震

曲均浩, 蔣海昆, 李金, 張志慧, 鄭建常, 張芹

1 中國地震局地質(zhì)研究所, 北京 100029 2 山東省地震局, 濟(jì)南 250014 3 中國地震臺網(wǎng)中心, 北京 100045 4 新疆維吾爾自治區(qū)地震局, 烏魯木齊 830011

?

2013—2014年山東乳山地震序列發(fā)震構(gòu)造初探

曲均浩1,2, 蔣海昆3*, 李金4, 張志慧2, 鄭建常2, 張芹2

1 中國地震局地質(zhì)研究所, 北京 100029 2 山東省地震局, 濟(jì)南 250014 3 中國地震臺網(wǎng)中心, 北京 100045 4 新疆維吾爾自治區(qū)地震局, 烏魯木齊 830011

采用結(jié)合波形互相關(guān)技術(shù)的雙差定位方法,對2013—2014年山東乳山地震序列重新定位,通過CAP及P波初動方法確定乳山序列較大地震的震源機(jī)制,在此基礎(chǔ)上初步探討乳山地震序列發(fā)震構(gòu)造.結(jié)果顯示,乳山序列呈現(xiàn)NW向展布,地震密集分布在8 km×3 km范圍,震源深度分布在4~10 km,4~7 km區(qū)間相對集中.較大地震震源機(jī)制的節(jié)面Ⅰ方向與序列地震優(yōu)勢分布方向基本一致.綜合考慮精確定位結(jié)果及較大地震震源機(jī)制,并結(jié)合震區(qū)附近地震資料,初步推測乳山地震序列發(fā)震斷層為NW方向、近直立的走滑型隱伏斷裂.

乳山序列; 發(fā)震構(gòu)造; 雙差定位; CAP方法

1 引言

2013年10月1日12點(diǎn)07分在山東膠東半島乳山市(36.83°N;121.70°E)發(fā)生ML3.8地震,之后小地震密集發(fā)生、連續(xù)不斷(圖1).據(jù)山東數(shù)字地震臺網(wǎng)測定,自2013年10月1日至2014年4月7日,共記錄地震4213次(含乳山臺單臺定位地震3631次),其中ML1.0~1.9地震416次,ML2.0~2.9地震63次,ML3.0~3.9地震7次,ML4.0以上地震2次,分別是2014年1月7日22時(shí)24分的4.2級(ML4.7)地震和4月4日00時(shí)12分4.0級(ML4.5)地震.

乳山歷史上曾發(fā)生公元1046年岠嵎山、1939年下初等多次5級以上地震.本次序列震中附近1997年曾發(fā)生過ML4.1地震,但余震極少.有現(xiàn)代儀器記載以來,該區(qū)域及附近從未出現(xiàn)過頻次如此之高、持續(xù)時(shí)間如此之長的地震序列活動.乳山4.2、4.0級地震無地表破裂,震中附近區(qū)域有三條貫通地表的斷層:震中西側(cè)約17 km附近近SN向的乳山斷裂,震中東北側(cè)約20 km附近近SN向的米山斷裂,震中南側(cè)約32 km附近海域中NE向的千里巖斷裂北段(圖2).但臺網(wǎng)定位結(jié)果顯示,乳山序列具有近NW向地震展布方向,與該區(qū)域及附近已知的三條斷裂均不太吻合.

因而,研究乳山地震序列震源破裂性質(zhì)及可能的發(fā)震構(gòu)造以及與已知斷層之間的關(guān)系,對理解乳山地震發(fā)生機(jī)理具有一定的參考意義.鑒于此,本文擬采用結(jié)合波形互相關(guān)技術(shù)的雙差定位方法對2013—2014年山東乳山地震序列進(jìn)行重新定位,通過CAP(Cut and Paste)方法反演4.2、4.0級地震震源機(jī)制,使用P波初動方法計(jì)算ML3.0以上地震震源機(jī)制;在此基礎(chǔ)上,結(jié)合區(qū)域構(gòu)造環(huán)境,重點(diǎn)探討地震序列的發(fā)震構(gòu)造和震源性質(zhì).

圖1 乳山地震序列M-t圖Fig.1 M-t plot of the Rushan earthquake sequence

圖2 乳山序列發(fā)生位置(★)和臺站分布F1 米山斷裂,F(xiàn)2 乳山斷裂,F(xiàn)3海陽斷裂,F(xiàn)4 朱吳斷裂,F(xiàn)5 千里巖斷裂北段, Δ參與精確定位的臺站,▲參與精確定位及震源機(jī)制反演的臺站.Fig.2 Epicenters of the Rushan earthquake sequence and seismic stations F1 Mishan fault, F2 Rushan fault, F3 Haiyang fault, F4 Zhuwu fault, F5 Qianliyan fault, Δ denotes the stations for precise relocation, ▲ denotes the stations for precise relocation and focal mechanism inversion

2 資料與求解過程

2.1 雙差定位

地震精定位在地震序列研究中具有重要的意義,高精度的定位結(jié)果能更準(zhǔn)確地刻畫斷層在地殼深部的展布形態(tài),有助于震源破裂面的確定.區(qū)域臺網(wǎng)一般使用絕對定位方法確定地震三要素(Geiger,1912),該方法通過各個(gè)臺站的到時(shí)計(jì)算震源位置,由于計(jì)算走時(shí)的速度模型本身存在誤差,每個(gè)臺站的到時(shí)數(shù)據(jù)精度都會直接影響地震定位的結(jié)果(Waldhauser and Ellsworth, 2000).相對定位方法能有效減小速度結(jié)構(gòu)誤差的影響,比較成熟的有主事件定位法和雙差定位法等.在主事件定位方法中(Spence,1980;周仕勇等,1999),每個(gè)事件都相對于主事件重新定位,對主事件地震的震源位置和發(fā)震時(shí)刻要求精度較高,并且該方法限制了可重新定位地震從的最大空間范圍.Waldhauser和Ellsworth(2000)提出的雙差定位方法對較大空間范圍內(nèi)發(fā)生的地震同時(shí)進(jìn)行重新定位,不需設(shè)定主地震事件,所有地震事件是相對于地震事件叢集的質(zhì)心,或者是地震事件的初始位置,在一定程度上避免了對主事件定位方法的條件限制,而且波形互相關(guān)技術(shù)可以使震相相對到時(shí)更加精確,利用組對地震確定地震的相對位置,在很大程度上消除了介質(zhì)橫向不均勻造成的路徑效應(yīng),從而獲得較高精度的相對空間位置分布.

山東省“十一五”測震臺網(wǎng)數(shù)字化改造以來,數(shù)字測震臺站達(dá)到127個(gè),乳山地震序列發(fā)生位置位于乳山市白沙灘附近海域(圖2),其東側(cè)、南側(cè)沒有測震臺站,周圍臺站平均間距約50 km.選取震中距小于300 km、能夠盡最大范圍包圍震中位置的臺站參與定位,共計(jì)27個(gè)臺站(圖2).選取震相記錄清晰且至少有4個(gè)臺記錄的可定位地震,根據(jù)Pg,Sg,Pn,Sn的時(shí)距曲線,剔除有明顯錯誤或者誤差較大的震相數(shù)據(jù),設(shè)置鄰居所需最小震相對數(shù)目為8,事件對使用最小震相對數(shù)目為8,僅考慮序列中“強(qiáng)連接”的地震事件,經(jīng)篩選符合條件的地震為306次.對臺站觀測到的上述地震進(jìn)行時(shí)間域波形互相關(guān),由于S波震相識別干擾因素較多,相關(guān)性不夠理想,本文僅考慮使用P波數(shù)據(jù),濾波范圍1~10 Hz,相關(guān)系數(shù)閾值設(shè)為0.7.經(jīng)預(yù)處理形成“強(qiáng)連接”事件對為1916對,P波震相對9268,S波震相對9252,P波互相關(guān)數(shù)據(jù)64749對.由于S波到時(shí)拾取精度相對P波略低,定位過程中將P波權(quán)重賦予1.0,S波權(quán)重賦予0.5.雙差定位雖然對速度模型的依賴性相對較小,但由于算法中采用了水平分層速度模型,震源所在層的速度值會對定位結(jié)果產(chǎn)生影響,該值雖不影響事件間的方位分布,但會影響事件簇分布圖像的尺度,因而仍需盡可能地選用接近真實(shí)的地殼速度模型,參考利用層析成像技術(shù)得到的膠東半島及渤海灣盆地地殼速度模型(張嶺等,2005;李霞等,2012)及crust2.0,確定本文速度模型如表1所列.考慮到乳山地震序列最大地震震級及臺網(wǎng)初步的定位范圍,設(shè)定事件對之間的最大搜索距離為5 km,以臺網(wǎng)定位目錄的位置作為地震定位初始值,采用共軛梯度法求解方程,通過反復(fù)迭代,舍去殘差大于閾值的震相數(shù)據(jù),直至得到穩(wěn)定的解.

表1 地殼速度模型

2.2 CAP震源機(jī)制反演

地震震源機(jī)制直觀反映了地震破裂的幾何及運(yùn)動學(xué)特征,對研究地震活動與地質(zhì)構(gòu)造之間的關(guān)系及地震孕震機(jī)理的解釋具有重要作用.地震震源機(jī)制的求解中,P波初動法是最常用的方法,P波初動法要求在球面投影中存在大量離散、均勻的臺站.然而對于乳山地震,東側(cè)、南側(cè)面臨海域,臺站分布對該次地震包圍效果相對較差.相比P波初動方法,CAP反演方法(Zhu and Helmberger,1996)可靠性、準(zhǔn)確性更高一些.CAP方法反演的可靠性實(shí)驗(yàn)表明,在地質(zhì)構(gòu)造較復(fù)雜地區(qū)使用簡單速度模型仍可獲得不錯的反演結(jié)果(鄭勇等,2009;洪德全,2013).另外,CAP方法通過不同深度震源機(jī)制解的擬合誤差,找尋最佳深度,因而在震源機(jī)制反演的同時(shí),可同時(shí)得到最佳的深度反演結(jié)果(韋生吉等,2009;韓立波,2012;李圣強(qiáng)等,2013;曲均浩等,2014).

本文采用了CAP方法中 P波初動和波形擬合聯(lián)合反演的算法,以精確定位的位置和發(fā)震時(shí)刻作為CAP方法計(jì)算的參考數(shù)據(jù).根據(jù)波形記錄質(zhì)量和P波初動方向的清晰度,刪除零漂過大、缺數(shù)等有明顯錯誤的臺站記錄,篩選出寬頻帶的HAY、WED、RCH、LOK、CHD、YTA、BHC、LZH、QID、ANQ、RZH等11個(gè)相對包圍震中較好的臺站(圖2),震中距主要集中在30~250 km.基于表1中速度模型,將原始的速度記錄扣除儀器響應(yīng)、積分到位移,再將位移記錄從UD-NS-EW分量旋轉(zhuǎn)成Z-R-T分量,分成Pnl(P波及其后續(xù)震相)和Snl(S波或面波)兩部分,分別進(jìn)行0.04~0.2 Hz和0.02~0.1 Hz的4階Butterworth帶通濾波器壓制噪聲處理.根據(jù)Pnl和Snl部分的波形特點(diǎn),設(shè)置兩者相對權(quán)重為2∶1,充分利用兩者的振幅比對震源深度及機(jī)制解做更好的約束.理論計(jì)算圖采用頻率-波數(shù)法(F-K方法)(Zhu and Helmberger,1996),根據(jù)傳播矩陣計(jì)算地震的位移場分布,得到各種頻率下的體波、面波波形.經(jīng)上述處理,得到每個(gè)臺Pnl部分的垂向分量、徑向分量和Snl部分的三個(gè)方向分量.

3 結(jié)果與討論

3.1 乳山序列精確定位結(jié)果

乳山地震序列306個(gè)地震經(jīng)雙差法重新定位后,得到277個(gè)地震的基本參數(shù).圖3給出山東臺網(wǎng)定位結(jié)果(圖3a)與本文精確定位結(jié)果(圖3b、3c)的對比,重新定位后地震分布更為集中.其中2014年1月7日4.2級地震精確定位后震中位置為36.81°N,121.70°E,震源深度5.5 km,山東臺網(wǎng)定位結(jié)果為36.82°N,121.67°E,震源深度7 km,精確定位前后震中位置相差約3.5 km;4月4日4.0級地震精確定位后震中位置為36.84°N,121.69°E,震源深度5.4 km,山東臺網(wǎng)定位結(jié)果為36.83°N,121.67°E,震源深度5 km,精確定位前后震中位置相差約2.5 km.由圖3b、3c可見,序列地震呈近NW方向的線性分布,整個(gè)序列在長軸AB方向延展約35 km,垂直AB方向地震分布寬約5 km.在地震密集分布的AE段(圖3c),地震密集分布在8 km×3 km范圍內(nèi).3.2 乳山序列震源機(jī)制

對4.2、4.0級地震采用P波初動方向和波形擬合聯(lián)合反演的算法反演震源機(jī)制,圖4是乳山4.2級地震震源機(jī)制隨不同震源深度的變化,縱軸為該理論模擬波形與實(shí)際觀測波形的最小二乘擬合殘差.每個(gè)深度反演得到的震源機(jī)制的兩個(gè)節(jié)面參數(shù)基本相同,反演結(jié)果穩(wěn)定.根據(jù)擬合殘差,震源矩心深度在6 km時(shí),震源機(jī)制解反演方差達(dá)到極小值,該深度與4.2級地震精確定位深度5.5 km較為接近.由于RCH臺SH分量、ANQ臺PV分量波形相關(guān)系數(shù)較低,嘗試不斷調(diào)整濾波頻率,擬合效果仍然較差,實(shí)際反演過程刪除此兩個(gè)分量.

以1月7日4.2級地震為例,圖5給出6 km深度處理論合成波形與實(shí)測波形的擬合情況,8個(gè)臺站記錄的40個(gè)震相中,相關(guān)系數(shù)大于0.7的震相有38個(gè),約占95%;相關(guān)系數(shù)大于0.8的有34個(gè),約占85%,總體上理論地震圖與觀測地震圖擬合較好,反演結(jié)果可信, 反演方差為4.17×10-5.該深度對應(yīng)的雙力偶解為最佳震源機(jī)制解,其結(jié)果為:矩震級Mw4.3,節(jié)面Ⅰ走向290°、傾角90°、滑動角23°,節(jié)面Ⅱ走向200°、傾角67°、滑動角180°.

對9次ML3.0以上地震采用P波初動方法計(jì)算其震源機(jī)制(表2,圖3b),結(jié)果顯示9個(gè)地震節(jié)面位置基本一致,傾角較大,近水平滑動.與CAP方法反演的4.2、4.0級地震震源機(jī)制解結(jié)果大致相同.

圖3 乳山序列精定位與臺網(wǎng)結(jié)果對比圖(a)臺網(wǎng)定位結(jié)果;(b)精確定位結(jié)果;(c)精確定位地震密集分布區(qū)(圖3b的AE段). 實(shí)心圓為序列地震震中位置,五角星為4.2、4.0級地震位置,藍(lán)色震源球?yàn)?.2、4.0級地震震源機(jī)制,紅色震源球?yàn)镸L3.0~3.9地震的震源機(jī)制,F(xiàn)2為乳山斷裂.Fig.3 Comparison plot between precise relocation results and network results(a) The network result; (b) The relocation result; (c) The dense area of relocation. The filled circles denote epicenters of earthquake sequence, The stars denote the epicenters of 4.2、4.0, The blue beach balls denote the focal mechanism of 4.2、4.0, The red beach balls denote the focal mechanism of earthquake with the magnitude range ML3.0~3.9.

圖4 1月7日4.2級地震CAP反演擬合殘差與震源機(jī)制隨深度的變化Fig.4 Error plots as a function of focal depth

3.3 乳山序列發(fā)震構(gòu)造討論

根據(jù)震級與破裂長度統(tǒng)計(jì)關(guān)系式(Wellsand Coppersmith, 1994;蔣海昆等,2007),乳山4.2、4.0級地震破裂長度不足1 km,大大小于序列地震密集分布區(qū)域的尺度,因而,整個(gè)乳山序列的地震活動,可能是同一條規(guī)模不大的構(gòu)造的整體性活動所致.著重對地震密集分布區(qū)域(圖3b、3c)進(jìn)行分析,剖面分析顯示,A-B剖面地震密集區(qū)域長度約為8 km,C-D剖面地震密集區(qū)域?qū)挾燃s為3 km(圖6).

圖3c中紅色、藍(lán)色、黑色分別代表地震發(fā)生的時(shí)間段,可以看出地震分布區(qū)域隨時(shí)間變化不明顯,在整個(gè)斷層面上均有分布,但震級相對較大的地震主要集中在東南段.整個(gè)地震序列震源深度集中在4~10 km,優(yōu)勢深度分布為4~7 km(圖6),表明地震的主體破裂發(fā)生在上地殼淺表部位.

對比序列地震空間分布圖像與序列較大地震震源機(jī)制(圖3c,表2),可見較大地震震源機(jī)制NW向節(jié)面與地震序列分布長軸方向較為吻合.圖6給出序列地震分布A-B及C-D剖面,C-D剖面地震密集區(qū)域震源深度分布近直立,與4.2、4.0級地震震源機(jī)制解節(jié)面Ⅰ傾角約90°及ML3.0~3.9范圍內(nèi)地震震源機(jī)制解傾角較大結(jié)果基本一致.據(jù)此綜合分析認(rèn)為,乳山地震序列發(fā)震斷層走向NW,傾向NE,近直立,水平滑動為主,結(jié)合區(qū)域應(yīng)力場分析可能為左旋走滑型斷層.

圖5 1月7日4.2級地震CAP方法反演的震源機(jī)制解、理論地震圖和觀測地震圖對比紅線是理論地震圖,黑線是觀測地震圖;波形下第1行數(shù)字為理論地震圖相對觀測地震圖的移動時(shí)間/s,第2行數(shù)字為二者的相關(guān)系數(shù)/%.Fig.5 Focal mechanism and comparison between the synthetic and the observed seismograms The red curves are theoretical seismograms, and the black curves are observation seismograms; the numbers below the waveform curves are the time shifts (first line) and cross-correlation coefficient in percent (second line).

注:計(jì)算方法一欄P波初動(a/b),a代表P波初動矛盾個(gè)數(shù),b為初動清晰的臺站總數(shù).

圖6 沿A-B、C-D剖面的震源深度分布及地震數(shù)目Fig.6 Profile of focal depth alone A-B, C-D cross-section

乳山序列位于膠南造山帶北段的威海斷隆區(qū),NE-NNE方向斷裂是帶內(nèi)最為發(fā)育的一組斷裂,斷層條數(shù)多、密度大,與沂沭斷裂帶共同構(gòu)成倒人字型格局(宋明春和王來明,2000).距離乳山序列最近的有三條斷層(圖2),震中西側(cè)的乳山斷裂為走向10°,傾角75°~85°,為第四紀(jì)中更新世的正斷層;震中東側(cè)的米山斷裂為近南北向,傾角53°~60°,為第四紀(jì)中更新世的左旋逆斷層;震中南側(cè)的千里巖斷裂北段為北東向,傾角60°~80°,為第四紀(jì)早、中更新世的正斷層.米山斷裂和千里巖斷裂與乳山序列距離相對較遠(yuǎn),其斷層幾何特征與乳山序列地震分布及其較大地震震源機(jī)制亦不吻合,不可能是乳山序列的發(fā)震斷層.乳山斷裂橫穿整個(gè)地震序列(圖3b),但其產(chǎn)狀、性質(zhì)與CAP計(jì)算結(jié)果及精確定位后序列展布方向亦無法吻合,乳山斷裂也不可能是乳山序列的發(fā)震斷裂,但此次序列與乳山斷裂相交匯的區(qū)域地震分布較為零亂(圖3b),有可能是乳山斷裂與隱伏斷裂交匯區(qū)域相互作用的結(jié)果.

根據(jù)野外實(shí)地勘察及遙感、巖石資料,乳山地區(qū)的金礦集中區(qū)受區(qū)內(nèi)一級鑲嵌構(gòu)造控制,主要有近NS和NW方向構(gòu)造帶交織組成(賀振等,2006).NS發(fā)育了青虎山—唐家溝斷裂、巫山斷裂、三甲斷裂、將軍石—曲河莊、葛口斷裂、老虎窩—合子斷裂等;NW劃分為四個(gè)構(gòu)造條帶,金牛山—金青頂構(gòu)造帶、馮家—馬臺石構(gòu)造帶、午極—三甲構(gòu)造帶、海陽所—乳山構(gòu)造帶,這些NW方向的地質(zhì)單元界線多為隱伏斷裂或者隱性界線,比如巫山—中寨隱伏斷裂走向?yàn)?00°~340°,與本文計(jì)算的精確定位結(jié)果的優(yōu)勢分布方向、乳山地震序列震源機(jī)制解節(jié)面Ⅰ走向基本一致.從乳山金礦帶構(gòu)造分區(qū)研究結(jié)果來看,區(qū)域內(nèi)NNE和NNW向斷裂是主體成礦斷裂(李旭芬等,2013),且這些斷層的演化過程均是在同一應(yīng)力場、不同應(yīng)力狀態(tài)下產(chǎn)生的一個(gè)完整構(gòu)造集合(謝春林,2004).因而,上述推測NW向隱伏斷裂為乳山地震的發(fā)震構(gòu)造有其構(gòu)造上的合理性.

4 結(jié)論

1)經(jīng)雙差定位法對乳山序列306個(gè)地震精確定位后,獲得277個(gè)地震基本參數(shù).整個(gè)地震序列呈現(xiàn)NW方向優(yōu)勢展布,尤其是4.2、4.0級地震震中附近NW方向線性程度較高,地震密集分布區(qū)域長約8 km、寬約3 km的范圍.整個(gè)地震序列深度集中在4~10 km,其中優(yōu)勢深度為4~7 km,地震的主體破裂發(fā)生在上地殼.

2)利用CAP方法反演乳山4.2、4.0級地震震源機(jī)制解,在震源矩心深度6 km附近對應(yīng)的雙力偶解為最佳震源機(jī)制解.ML3.0~3.9范圍地震震源機(jī)制解與4.2、4.0級地震結(jié)果基本一致.與序列地震展布圖像相比較,序列較大地震震源機(jī)制解的節(jié)面Ⅰ與乳山序列地震分布長軸方向較為吻合.

3)綜合序列精確定位結(jié)果及較大地震震源機(jī)制解,初步推測乳山地震序列發(fā)震斷層為走向NW、傾向NE、近直立(傾角較大)的走滑型(滑動角較小)隱伏斷裂.

4)如前所述自1970年有較為完備的儀器記錄以來,乳山及附近區(qū)域從未發(fā)生過頻次如此之高的地震序列,是什么原因?qū)е略谝酝鶑奈匆娀顒拥腘W向隱伏斷裂上發(fā)生此次乳山序列并持續(xù)活動,仍是一個(gè)需繼續(xù)深入探討的問題.

致謝 姜金鐘博士、宋金博士、李霞、李冬梅等在程序運(yùn)行、方法計(jì)算方面對本文提供幫助,王冬雷、許洪泰,杜桂林、楊玉永等在乳山地質(zhì)構(gòu)造、斷層解譯等方面給予幫助,韓立波博士、王長在及兩位匿名審稿人對本文提出寶貴的修改意見,在此一并表示謝意!

Geiger L. 1912. Probability method for the determination of earthquake epicenters from arrival time only.Bull.St.Louis.Univ., 8(1): 60-71.

Han L B, Jiang C S, Bao F. 2012. Source parameter determination of 2010 TaikangMs4.6 earthquake sequences.ChineseJ.Geophys. (in Chinese), 2012, 55(9): 2973-2981, doi: 10.6038/j.issn.00015733.2012.09.016.

He Z, Yu Z P, Zhang X R. 2006. Structural division characteristics and ore-prospecting.JournalofNorthwestUniversity(NaturalScienceEdition) (in Chinese), 36(6): 992-995. Hong D Q, Wang X Z, Ni H Y, et al. 2013. Focal mechanism and focal depth of July 20, 2012 JiangSu GaoyouMs4.9 earthquake.ProgressinGeophysics(in Chinese), 28(4): 1757-1765, doi: 10.6038/pg20130416.

Jiang H K, Zheng J C, Wu Q, et al. 2007. Statistical features of aftershock distribution size for moderate and large earthquakes in Chinese mainland.ActaSeismologicaSinica(in Chinese), 29(2): 151-164.

Li S Q, Chen Q F, Zhao L, et al. 2013. Anomalous focal mechanism of the May 2011Mw5.7 deep earthquake in Northeastern China: regional waveform inversion and possible mechanism.ChineseJ.Geophys. (in Chinese), 2013, 56(9): 2959-2970, doi: 10.6038/cjg20130910.

Li X, Liu X Q, Li Y J, et al. 2012. Relocation of earthquakes in Shandong and its neighboring areas in China and relationship between their tectonics.EarthquakeResearchinChina(in Chinese), 28(4): 381-392.Li X F, Liu J C, Zhang X R, et al. 2013. Structural features and metallogenic prognosis of Muping-Rushan Goldore belt.GoldScienceandTechnology(in Chinese), 21(3): 10-15.

Qu J H, Liu R F, Li J, et al. 2014. Inversion of the focal mechanisms of the 2014M4.2 andM4.0 earthquakes in Rushan, Shandong using the CAP method.ChinaEarthquakeEngineeringJournal(in Chinese), 36(4): 1076-1080.

Song M C, Wang W L. 2000. The latest understandings of fundamental geology of Jiaonan orogenic belt.RegionalGeologyofChina(in Chinese), 2000, 19(1): 1-6.

Spence W. 1980. Relative epicenter determination using P-wave arrival-time differences.Bull.Seism.Soc.Am., 70(1): 171-183. Waldhauser F, Ellsworth W L. 2000. A double-difference earthquake location algorithm: method and application to the northern Hayward fault, California.Bull.Seism.Soc.Am., 90(6): 1353-1368.

Wei S J, Ni S D, Chong J J, et al. 2009. The 16 august 2003 Chifeng earthquake: Is it a lower crust earthquake?.ChineseJournalofGeophysics(in Chinese), 52(1): 111-119.

Wells D L, Coppersmith K J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement.Bull.Seism.Soc.Am., 84(4): 974-1002.

Xie C L. 2004. Discussion of ore-formation and prospecting direction of gold deposits in Shandong Rushan (in Chinese). Xi′an: Chang′an University.

Zhang L, Liu J S, Zheng T Y. 2005. Inverse crustal P-wave velocity model of Bohai bay basin and its adjacent area by using messy GA with Ground-Truth data.ProgressinGeophysics(in Chinese), 20(1): 186-197.Zheng Y, Ma H S, Lü J, et al. 2009.Source mechanism of strong aftershock of (MS≥5.6) of 2008/05/12 Wenchuan earthquake and the implication for seismotectonic.ScienceinChinaSeriesD:EarthScience(in Chinese), 2009,52(6):739-753.

Zhou S Y, Xu Z H, Han J, et al. 1999. Analysis on the Master Event Method and Precise Location of the 1997 Jiashi Strong Earthquake Swarm of Western China.ActaSeismologicaSinica(in Chinese), 21(3): 258-265.

Zhu L P, Helmberger D V. 1996. Advancement in source estimation techniques using broadband regional seismograms.Bull.Seism.Soc.Am., 86(5): 1634-1641.

附中文參考文獻(xiàn)

韓立波, 蔣長勝, 包豐. 2012. 2010年河南太康Ms4.6地震序列震源參數(shù)的精確確定. 地球物理學(xué)報(bào), 55(9): 2973-2981, doi: 10.6038/j.issn.00015733.2012.09.016.

賀振, 于在平, 張學(xué)仁. 2006. 牟乳金礦帶構(gòu)造分區(qū)特征及找礦意義. 西北大學(xué)學(xué)報(bào)(自然科學(xué)版), 36(6): 992-995.

洪德全, 王行舟, 倪紅玉等. 2013. 多種方法研究2012年7月20日江蘇高郵Ms4.9級地震震源機(jī)制解和震源深度. 地球物理學(xué)進(jìn)展, 28(4): 1757-1765, doi: 10.6038/pg20130416.

蔣海昆, 鄭建常, 吳瓊等. 2007. 中國大陸中強(qiáng)以上地震余震分布尺度的統(tǒng)計(jì)特征. 地震學(xué)報(bào), 2007, 29(2): 151-164.

李圣強(qiáng), 陳祺福, 趙里等. 2013. 2011年5月中國東北Mw5.7深震的非同尋常震源機(jī)制: 區(qū)域波形反演與成因探討. 地球物理學(xué)報(bào), 56(9): 2959-2970, doi: 10.6038/cjg20130910.

李霞, 劉希強(qiáng), 李亞軍等. 2012. 山東及鄰區(qū)地震的重新定位及其與活動構(gòu)造的關(guān)系. 中國地震, 28(4): 381-392.

李旭芬, 劉建朝, 張學(xué)仁等. 2013. 牟平—乳山金礦帶構(gòu)造特征及成礦預(yù)測. 黃金科學(xué)技術(shù), 21(3): 10-15.

曲均浩, 劉瑞峰, 李金等. 2014. CAP方法反演2014年山東乳山M4.2、M4.0地震震源機(jī)制解. 地震工程 學(xué)報(bào), 36(4): 1076-1080.

宋明春, 王來明. 2000. 對膠南造山帶基礎(chǔ)地質(zhì)問題的新認(rèn)識. 中國區(qū)域地質(zhì), 2000, 19(1): 1-6.

韋生吉, 倪四道, 崇加軍等. 2009. 2003年8月16日赤峰地震: 一個(gè)可能發(fā)生在下地殼的地震?. 地球物理學(xué)報(bào), 52(1): 111-119.

謝春林. 2004. 山東乳山地區(qū)金礦床成礦信息研究與找礦方向探討[碩士論文]. 西安: 長安大學(xué).

張嶺, 劉勁松, 鄭天珧. 2005. 利用Ground-Truth資料和Messy GA方法反演渤海灣盆地及其鄰區(qū)地殼P 波速度模型. 地球物理學(xué)進(jìn)展, 20(1): 186-197.

鄭勇, 馬宏生, 呂堅(jiān)等. 2009. 汶川地震強(qiáng)余震(Ms≥5.6)的震源機(jī)制解及其與發(fā)震構(gòu)造的關(guān)系. 中國科學(xué)D輯: 地球科學(xué), 39(4): 413-426.

周仕勇, 許忠淮, 韓京等. 1999. 主地震定位法分析以及1997年新疆伽師強(qiáng)震群高精度定位. 地震學(xué)報(bào), 21(3): 258-265.

(本文編輯 汪海英)

Preliminary study for seismogenic structure of the Rushan earthquake sequence in 2013—2014

QU Jun-Hao1,2, JIANG Hai-Kun3*, LI Jin4, ZHANG Zhi-Hui2, ZHENG Jian-Chang2, ZHANG Qin2

1InstituteofGeology,ChinaEarthquakeAdministration,Beijing100029,China2EarthquakeBureauofShandongProvince,Jinan250014,China3ChinaEarthquakeNetworkCenter,Beijing100045,China4EarthquakeAdministrationofXinjiangUygurAutonomousRegion, ürümqi830011,China

There have been many intensive small earthquakes since the 3.8 earthquake of Shandong Rushan occurred on October 1, 2013. Two earthquakes ofM4.2 andM4.0 occurred separately on January 7 and April 4, 2014, and there have been never so many earthquakes in a swarm in the history of Rushan. The location results from network show that the distribution direction of Rushan sequence is NW, which is different from the nearest three known faults. So, it is necessary to study the source rupture property, possible seismogenic structure and the relationships with the known faults, which has certain reference significance for understanding the mechanism of Rushan earthquake sequence.This study is based on relocating the Rushan earthquake sequence in 2013—2014 with double-difference algorithm of waveform cross-correlation and analyzing the focal mechanism of stronger earthquake with “Cut and Paste” (CAP) and first motion of P-wave method. The 27 stations with epicentral distance less than 300 km surrounding the epicenter were used to relocate earthquakes. Picking the earthquakes with clear phase records and at least four recording stations, and eliminating the phase records with obvious mistakes and large errors, only considering earthquakes with more than 8 phases, finally, 306 events, 9268 P phases, 9252 S phases are eligible. The CAP method and the P-wave first motion method were used to calculate the focal mechanisms. According to the quality of waveform records and the clarity of first motion of P-wave, 11 broadband stations were selected, including HAY, WED, RCH, LOK, CHD, YTA, BHC, LZH, QID, ANQ, and RZH, which surround the epicenter completely and the epicentral distances are mainly concentrated in 30~250 km. The frequencies of the band-pass filter of Pnl and Snl parts are 0.04~0.2 Hz and 0.02~0.1 Hz respectively. The weight between Pnl and Snl is 2∶1.306 earthquakes of Rushan sequence relocated by the method of double-difference got 277 basic earthquake parameters. The relocation results show that the earthquake sequence is distributed along NW direction, the length of long axis is about 35 km, and the length of short axis is about 5 km. The distribution of the Rushan earthquake sequence is dense in a scope of 8 km×3 km, and the focal depths vary from 4 km to 10 km with the predominant distribution in 4~7 km. The focal mechanism results show that the two earthquakes get the best focal mechanism at a depth of 6 km, the parameters of nodal planes are the same, which belongs to strike slip type. At the depth of 6 km, among the 40 phases ofM4.2 earthquake recorded by 8 stations 38 have correlation coefficients greater than 0.7, accounting for 95%. The number of correlation coefficients greater than 0.9 is 23, accounting for about 58%. Similarly, at the depth of 6 km, the correlation coefficients of 40 phases ofM4.0 earthquake recorded by 8 stations are all greater than 0.7 and the correlation coefficients greater than 0.9 are 31, accounting for about 78%. So, the synthetic seismograms of two earthquakes fit well with the observed seismograms and the inversion results are credible. The focal mechanism shows that the moment magnitude ofM4.2 earthquake isMw4.3, one nodal plane has the strike of 290°, rake of 90°and dip of 23°, and the other nodal plane has the strike of 200°, rake of 67°and dip of 180°. The moment magnitude ofM4.0 earthquake isMw4.2, one nodal plane has the strike of 289°, rake of 90°and dip of 27°, and the other nodal plane has the strike of 199°, rake of 63°and dip of 180°. Using the first motion method of P-waves to calculate the focal mechanism for more than 9ML3.0 earthquakes, the results show that the 9 earthquake planes are basically the same, with large dip and nearly horizontal slip, which is consistent with the inversion result by CAP method. The hypocentral distance was calculated by the mobile seismic station near the epicenter. The results show that the focal depth should be slightly less than 7 km, which is consistent with the inversion result by CAP method and relocation result.The faults parameters nearest to the epicenter are not consistent with the focal mechanism of larger earthquakes, which shows that they are not the seismic faults. The cross-sections of relocation result show that the hypocentral depth distribution is nearly vertical and relatively the same with the dip of one nodal plane of the focal mechanism. Combining the precise relocation results and larger earthquake focal mechanism, one of the nodal planes of larger earthquakes focal mechanism is consistent with the predominant distribution of earthquake sequence. It is preliminarily concluded that the seismogenic fault of the Rushan earthquake sequence is a nearly vertical strike-slip buried fault in NW direction.

Rushan sequence; Seismogenic structure; Double-difference algorithm; CAP method

10.6038/cjg20150611.

山東省自然科學(xué)基金(ZR2014DQ019),山東省地震局年度震情跟蹤專項(xiàng)資助.

曲均浩,男,1981年生,工程師,在讀博士,主要從事數(shù)字地震學(xué)應(yīng)用及地震序列研究.E-mail:gisqjh@126.com

*通訊作者 蔣海昆,男,1964年生.主要從事地震序列、統(tǒng)計(jì)地震及地震模式方面的研究.E-mail:jianghaikun@sohu.com

10.6038/cjg20150611

P315

2014-04-15,2015-05-08收修定稿

曲均浩, 蔣海昆, 李金等.2015. 2013—2014年山東乳山地震序列發(fā)震構(gòu)造初探.地球物理學(xué)報(bào),58(6):1954-1962,

Qu J H, Jiang H K, Li J,et al. 2015. Preliminary study for seismogenic structure of the Rushan earthquake sequence in 2013—2014.ChineseJ.Geophys. (in Chinese),58(6):1954-1962,doi:10.6038/cjg20150611.

猜你喜歡
乳山精確定位發(fā)震
文化經(jīng)濟(jì)融合視域下乳山民間文學(xué)的傳承與發(fā)展研究
基于構(gòu)造應(yīng)力場識別震源機(jī)制解節(jié)面中發(fā)震斷層面
——以盈江地區(qū)為例
精確定位
山東乳山:草莓小鎮(zhèn)的“莓”好生活
基于鉆孔應(yīng)變觀測約束的2016年新疆呼圖壁M6.2地震的發(fā)震斷層研究
乳山長牡蠣(Crassostrea gigas)的抗性基因表達(dá)和生存環(huán)境的季節(jié)差異
蘆山地震發(fā)震構(gòu)造及其與汶川地震關(guān)系討論
精確定位
電力設(shè)備紅外測溫多點(diǎn)精確定位控制系統(tǒng)設(shè)計(jì)
精確定位