1維石墨烯光子晶體的電磁吸收特性
寧仁霞1,2,劉少斌2,章海鋒2,孔祥鯤2,卞博銳2
(1.黃山學(xué)院 機(jī)電與信息工程學(xué)院, 黃山 245041; 2.南京航空航天大學(xué) 電子信息工程學(xué)院 雷達(dá)成像與微波光子技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室, 南京 210016)
摘要:為了研究1維石墨烯光子晶體在可見(jiàn)光波段的吸收特性,采用傳輸矩陣的方法進(jìn)行了理論分析和數(shù)值仿真,得到了1維石墨烯吸收特性與石墨烯層數(shù)、缺陷層介質(zhì)厚度、電磁波模式有關(guān)的結(jié)果。結(jié)果表明,增加石墨烯層數(shù)時(shí),對(duì)波長(zhǎng)為556nm左右的綠光的吸收作用明顯增強(qiáng);缺陷層介質(zhì)厚度增加時(shí)會(huì)引起吸收峰的增加;在TE模式下,入射角對(duì)石墨烯光子晶體吸收特性影響較小。該研究結(jié)果為1維石墨烯光子晶體吸收器的設(shè)計(jì)提供了理論依據(jù)。
關(guān)鍵詞:光電子學(xué);吸收特性;傳輸矩陣法;石墨烯光子晶體
E-mail:nrxxiner@hsu.edu.cn
引言
光子晶體的研究已經(jīng)持續(xù)了20多年[1-2],目前依然是研究的熱點(diǎn)問(wèn)題之一[3-5]。光子晶體是由介質(zhì)材料按周期結(jié)構(gòu)排列的一種人工材料,某些頻段的電磁波因?yàn)槠渲芷谛越Y(jié)構(gòu)產(chǎn)生的散射效應(yīng)而無(wú)法傳播,產(chǎn)生了光子帶隙(photonic band gap,PBG)。近年來(lái)關(guān)于光子晶體的研究成果非常豐富[6-8],研究的重點(diǎn)已逐步向色散介質(zhì)光子晶體方向轉(zhuǎn)移。HOJO等人[9]和LI[10]首次提出等離子體光子晶體的概念。LIU等人[6]利用時(shí)域有限差分方法重點(diǎn)研究了等離子體光子晶體(plasma photonic crystal,PPC)的帶隙、缺陷模等特性,得到PPCs具有高通濾波特性。WANG等人[7]研究了在含有單負(fù)材料光子晶體中,全向帶隙的產(chǎn)生是由于倏逝波相互作用的結(jié)果。ZHANG等人[8]研究了電磁波在3維色散光子晶體中的傳播特性,研究表明通過(guò)改變等離子體頻率、填充率及相對(duì)介電常數(shù)等參量調(diào)諧PBG。KONG等人[11]對(duì)等離子體光子晶體的截止頻率展開(kāi)了研究。
石墨烯作為一種具有蜂窩狀2維晶體結(jié)構(gòu)半金屬材料,其特殊的特性很快被人們所關(guān)注[12-14]。研究結(jié)果顯示,單層石墨烯對(duì)可見(jiàn)光的吸收率為2.3%,石墨烯層數(shù)對(duì)吸收率有明顯的影響[13]。BONACCORSO等人[14]詳細(xì)分析了石墨烯的特性,提出了在透光導(dǎo)體、光伏器件等方面的應(yīng)用。FURCHI[15]和FERRIERIA等人[16]分別利用石墨烯作為缺陷層設(shè)計(jì)了Fabry-Perot 微諧振腔,吸收率可達(dá)90%以上。AREFINIA[17]利用傳輸矩陣法研究了基于光子晶體的1維石墨烯在太赫茲波段的色散曲線和帶隙特性,并分析了含有ZnS缺陷模的帶隙特性,結(jié)果表明,缺陷厚度可調(diào)諧缺陷模的位置及寬度。VINCENTI等人[18]研究了1維光子晶體中引入單層石墨烯缺陷,結(jié)果顯示,增加石墨烯可產(chǎn)生完美的窄帶吸收效應(yīng),在抽運(yùn)頻率的激勵(lì)下吸收率的非線性變化。LIU等人[19]研究了含有石墨烯的1維光子晶體的吸收率隨石墨烯層數(shù)、電磁波模式及入射角的變化情況,從理論上得出吸收率受入射角、襯底厚度等參量調(diào)諧。以上研究結(jié)果表明,石墨烯光子晶體在光電設(shè)備、太陽(yáng)能電池、發(fā)光設(shè)備等方面有十分強(qiáng)大的潛在應(yīng)用。
本文中利用傳輸矩陣法研究了1維石墨烯光子晶體在可見(jiàn)光波段的吸收特性,探討了當(dāng)增加石墨烯厚度時(shí),對(duì)一定波長(zhǎng)的光,其吸收率的變化;分析了缺陷模的厚度對(duì)吸收峰的影響;分析了入射光角度對(duì)其吸收特性的影響。
11維石墨烯光子晶體理論依據(jù)及建模
本文中在理想情況下討論可見(jiàn)光波段1維石墨烯光子晶體,分析了其結(jié)構(gòu)變化引起的吸收特性變化,當(dāng)入射角發(fā)生變化時(shí)吸收特性,以及電磁波模式對(duì)吸收特性影響。
本文中設(shè)計(jì)的1維石墨烯光子晶體選用石墨烯、鋯酸鋇(barium zirconate,BaZrO3)和金屬鈦(titanium,Ti)組成。
首先分析石墨烯的介電常數(shù)模型。參考文獻(xiàn)[21]中通過(guò)理論分析以及實(shí)驗(yàn)對(duì)比給出了石墨烯在可見(jiàn)光波段的折射率ng,表示為:
式中,λ為入射電磁波波長(zhǎng),C1為系數(shù),取值為5.446μm-1,n為石墨烯折射率實(shí)部,取3.0。
BaZrO3是一種高介電常數(shù)的新型陶瓷,具有耐高溫等特殊的性質(zhì)[20],常應(yīng)用于電容器等[22-24]的制備中。本文中利用其高介電常數(shù)的特性,設(shè)計(jì)的1維石墨烯光子晶體在TE模式下,角度對(duì)缺陷模的影響會(huì)比較小。其介電常數(shù)的選擇見(jiàn)參考文獻(xiàn)[25]。
Ti在光波段的介電常數(shù)εt采用杜德(Drude)模型,表示如下[26-27]:
2石墨烯光子晶體參量
作者從理論上研究的1維石墨烯光子晶體由石墨烯層,鋯酸鋇層和鈦層組成,可表示為G/A0/AB,其中G表示石墨烯層,厚度為dG,A0為BaZrO3缺陷層,厚度為dA0,A和B分別為BaZrO3和Ti,厚度分別為dA和dB。A,B呈周期性排列,周期數(shù)用N表示,其結(jié)構(gòu)示意圖如圖1所示。設(shè)3種介質(zhì)磁導(dǎo)率均為1。
Fig.1 Model of 1-D graphene photonic crystals
3分析與討論
下面從石墨烯厚度、電磁波入射角及模式等方面分析其吸收特性。單層石墨烯的厚度為dG=0.334nm[29],dA=dB=0.1λ0,λ0=650nm。
首先考慮只有一種介質(zhì)時(shí)的吸收特性。選擇參量為N=10,dA0=0.1λ0,dA=0.1λ0,dB=0.1λ0,考慮在垂直入射的情況下對(duì)TE波的吸收率,計(jì)算結(jié)果見(jiàn)圖2。圖中正方形連接線表示單層石墨烯的吸收特性,圓點(diǎn)連接線表示厚度為1.1λ0鋯酸鋇的吸收特性,三角形連接線表示厚度為λ0金屬鈦的吸收特性。
Fig.2Absorptance of only one material of graphene (dG=0.335nm),BaZrO3(dA=0.1λ0,dA0=0.1λ0) and Ti (dB=0.1λ0),N=10
從圖2中可看出,只有單層石墨烯時(shí)的吸收率略大于0,與參考文獻(xiàn)[3]中相吻合。BaZrO3的吸收率為0,這是因?yàn)锽aZrO3為高介電常數(shù)陶瓷類材料,對(duì)電磁波無(wú)吸收。金屬Ti對(duì)波長(zhǎng)為460nm左右的藍(lán)光有較強(qiáng)的吸收作用,在N=10時(shí)吸收率達(dá)到0.7233。計(jì)算結(jié)果顯示,當(dāng)層數(shù)N增加時(shí),該吸收峰的吸收率相應(yīng)增加。很顯然,當(dāng)層數(shù)增加時(shí),鈦厚度也隨之增加,因此吸收性能有一定的提高。
下面考慮石墨烯層數(shù)變化對(duì)吸收特性影響。取N=10,石墨烯層數(shù)Ng分別為0層、1層、2層、4層,其它參量不變,考慮TE波情況,其吸收特性變化如圖3所示。從圖3中可以看出,在波長(zhǎng)556nm處的吸收峰隨著石墨烯層數(shù)增加,其吸收率的大小呈近似線性增加,這與參考文獻(xiàn)[19]中的結(jié)論一致,但由于本文中所選介質(zhì)不同,吸收峰值超過(guò)0.6。而在波長(zhǎng)為428nm處的吸收率接近至1,此處吸收峰主要是金屬Ti對(duì)藍(lán)光的吸收作用,當(dāng)石墨烯層數(shù)增加時(shí),對(duì)其吸收頻點(diǎn)略有影響。
Fig.3Absorptance of different graphene layers forN=10,dA=0.1λ0,dA0=0.1λ0,dB=0.1λ0
這里選擇石墨烯層數(shù)Ng= 4,AB周期數(shù)、厚度均不變,A0層厚度改變后,從圖4可以看出,當(dāng)缺陷層厚度dA0分別為0.1λ0,0.2λ0和0.4λ0時(shí),反射區(qū)分別出現(xiàn)1個(gè)、2個(gè)、3個(gè)吸收峰,當(dāng)厚度增加到0.6λ0時(shí),在反射區(qū)會(huì)出現(xiàn)4個(gè)吸收峰,同時(shí),在反射區(qū)之外會(huì)產(chǎn)生新的吸收峰。這里需要說(shuō)明的是,在波長(zhǎng)為428nm處的吸收峰幾乎沒(méi)有變化,這是因?yàn)樵撎幍奈辗逯饕蠺i的吸收特性產(chǎn)生,因此當(dāng)BaZrO3發(fā)生變化時(shí),幾乎對(duì)其無(wú)影響。但當(dāng)BaZrO3厚度增加到一定值時(shí),會(huì)產(chǎn)生新的吸收峰。主要是由于BaZrO3作為缺陷層,其厚度改變時(shí),使得反射的電磁波與行進(jìn)的電磁波的相位差發(fā)生變化,當(dāng)相位差滿足2π的整數(shù)倍時(shí),產(chǎn)生干涉相長(zhǎng)的作用,也就必然使得缺陷模數(shù)產(chǎn)生變化[30]。因而增加BaZrO3厚度時(shí),當(dāng)電磁波頻率在一定范圍內(nèi),可使缺陷模數(shù)目增加。
Fig.4Absorptance of different defect layers forNg= 4,N=10,dA=0.1λ0,dB=0.1λ0
選擇缺陷層厚度dA0=0.1λ0,其余參量不變,首先考慮TE波的情況。改變電磁波入射角θ時(shí),可以看出,當(dāng)θ從0°到85°時(shí),在波長(zhǎng)556nm處吸收率幾乎不變,吸收峰略微向右偏移,如圖5a所示。從圖中可看出,在428nm處的吸收峰的頂點(diǎn)在向左偏移的同時(shí)其值略有下降。這是由于BaZrO3的介電常數(shù)比較大,使得入射角對(duì)相位差δ的影響很小,幾乎可以忽略[31]。
Fig.5Absorptance of 1-D graphene PCs for different incident angles fordA0=0.1λ0,dA=0.1λ0,dB=0.1λ0,Ng= 4,N=10
圖5b是在TM模式下入射角變化時(shí)的吸收特性,從圖中可以看出,在波長(zhǎng)428nm左右的吸收峰隨著入射角從0°到85°變化時(shí),其值先略有增加而后減小,在30°時(shí)的值最大,吸收率基本為1。在波長(zhǎng)556nm處的吸收峰在入射角為0°時(shí)其值最小,在入射角大于30°時(shí),吸收率達(dá)到0.9以上,其值基本不變。
圖6所示的是不同模式下,入射角θ從0°到85°變化時(shí)吸收率隨波長(zhǎng)變化情況,橫坐標(biāo)表示波長(zhǎng),縱坐標(biāo)表示入射角,圖片右邊的色度條表示吸收率A。從圖6a可以看出,在TE波模式下,在波長(zhǎng)556nm左右的吸收率在大角度時(shí)略有左移,吸收率維持在0.6以上。從圖6b可以看出,在TM波模式下,吸收峰依然在556nm左右,此時(shí)的吸收率較TE模式要高,大約在0.9以上,在入射角較小時(shí)吸收率略有減小。
在前面的研究中發(fā)現(xiàn),在電磁波入射角大于30°以后,對(duì)比單頻點(diǎn)和多頻點(diǎn)吸收特性,可以看出在TM模式下吸收率更高。選擇參量Ng=4,N=10,dA=dB=0.1λ0,dA0=0.1λ0(單頻吸收,見(jiàn)圖7a),dA0=0.2λ0(雙頻吸收,見(jiàn)圖7b)。
Fig.6Absorptance of 1-D graphene photonic crystals as a function of the light wavelength and the incident angles fordA0=0.1λ0,dA=0.1λ0,dB=0.1λ0,Ng= 4,N=10
Fig.7Absorptance relationship between different electromagnetic wave modes and incidence angle atdA0=0.1λ0,dA0=0.2λ0
4結(jié)論
從石墨烯層數(shù)、缺陷層厚度及電磁波入射角變化等方面分析了石墨烯光子晶體的吸收特性。發(fā)現(xiàn)當(dāng)石墨烯層數(shù)增加,對(duì)應(yīng)的吸收率也會(huì)增加;當(dāng)缺陷層厚度增加,導(dǎo)致吸收峰個(gè)數(shù)相應(yīng)變化;當(dāng)電磁波入射角改變時(shí),在角度較小時(shí)對(duì)TE波基本無(wú)影響,角度偏大時(shí)吸收頻率略向右移動(dòng),吸收率基本不變。對(duì)TM波,在入射角較小時(shí)其吸收率較小,在入射角大于30°以后基本無(wú)影響。以上這些研究工作為石墨烯光子晶體在可見(jiàn)光波段的應(yīng)用提供了理論依據(jù)。在設(shè)計(jì)1維石墨烯光子晶體作為吸波器時(shí),應(yīng)選擇石墨烯層數(shù)4層(此時(shí)吸收率超過(guò)0.6);多頻吸收時(shí),缺陷層厚度根據(jù)頻點(diǎn)個(gè)數(shù)進(jìn)行選擇;電磁波入射角對(duì)TE波影響較小,在TM波入射的條件下,應(yīng)使入射角大于30°。
參考文獻(xiàn)
[1]JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J].Phyical Review Letters, 1987,58(23):2486-2489.
[2]YABLONOVITCH E.Inhibited spontaneous emission in solid-state physics and electronics[J].Physical Review Letters, 1987,58(20): 2059-2061.
[3]ZHANG H F,ZHENG J P,ZHU R J. Analysis of transmission characteristics of 1-D ternary magnetized plasma photonic crystals[J]. Laser Technology,2012,36(2):208-216(in Chinese).
[4]XIONG C X, JIANG L J. Influence of material dispersion on defect modes of 1-Dphotonic crystal[J]. Laser Technology,2013,37(6):743-746(in Chinese).
[5]GOTO T, INOUE M.Magnetophotonic crystal comprising electrooptical layer for controlling helicity of light[J]. Journal of Applied Physics, 2012,111(7): 07A913.
[6]LIU Sh B,ZHU Ch X,YUAN N Ch.FDTD simulation for plasma photonic crystals[J].Acta Physica Sinica,2005,54(6):2804-2808(in Chinese).
[7]WANG L G, CHEN H, ZHU S Y.Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials[J].Physical Review, 2004,B70(24):245102.
[8]ZHANG H F, LIU Sh B, KONG X K,etal. The properties of photonic band gaps for three-dimensional plasma photonic crystals in a diamond structure[J].Physics of Plasmas, 2013, 20(4): 042110.
[9]HOJO H, MASE A.Dispersion relation of electromagnetic waves in one-dimensional plasma photonic crystals[J]. Plasma and Fusion Research, 2004, 80(4): 89-92.
[10]LI W, ZHANG H T,GONG M L,etal.Plasma photonic crystal[J].Optical Technique, 2004,30(1):263-266(in Chinese).
[11]KONG X K,WANG Y Sh,YANG H W,etal. Study on cut-off frequency of 1-D plasma photonic crystals[J].Laser Technology,2011,35(1):126-129(in Chinese).
[12]NOVOSELOV K S, GEIM A K, MOROZOV S V,etal. Electric field effect in atomically thin carbon films[J].Science,2004,306(5696): 666-669.
[13]NAIR R R, BLAKE P, GRIGORENKO A N,etal. Fine structure constant defines visual transparency of graphene[J].Science,2008,320(5881):1308.
[14]BONACCORSO F,SUN Z, HASAN T,etal. Graphene photonics
and optoelectronics[J].Nature Photonics,2010,4(9):611-622.
[15]FURCHI M, URICH A, POSPISCHIL A,etal. Microcavity-integrated graphene photodetector[J]. Nano Letters,2012,12(6):2773-2777.
[16]FERREIRA A, PERES N M R, RIBEIRO R M,etal. Graphene-based photodetector with two cavities[J].Physical Review,2012,B85(11):115438.
[17]AREFINIA Z,ASGARI A.Novel attributes in the scaling and performance considerations of the one-dimensional graphene-based photonic crystals for terahertz applications[J].Physica,2013,E54(12):34-39.
[18]VINCENTI M A, de CEGLIA D, GRANDE M,etal. Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect[J].Optics Letters,2013,38(18): 3550-3553.
[19]LIU J T, LIU N H, LI J,etal. Enhanced absorption of graphene with one-dimensional photonic crystal[J].Applied Physics Letters,2012,101(5):052104.
[20]WANG H. An eigen matrix method for obtaining the band structure of photonic crystals [J] Acta Physica Sinica, 2004,50(11):2172-2178(in Chinese).
[21]BRUNA M, BORINI S.Optical constants of graphene layers in the visible range[J].Applied Physics Letters,2009,94(3):031901.
[22]PARIDA S, ROUT S K, CAVALCANTE L S,etal. Structural refinement, optical and microwave dielectric properties of BaZrO3[J]. Ceramics International, 2012,38(3):2129-2138.
[23]LUPINA G, DABROWSKI J, DUDEK P,etal. Dielectric constant and leakage of BaZrO3films[J].Applied Physics Letters,2009,94(15):152903.
[24]FUENZALIDA V M, PILLEUX M E. Hydrothermally grown BaZrO3films on zirconium metal: microstructure, X-ray photoelectron spectroscopy, and Auger electron spectroscopy depth profiling[J].Journal of Materials Research,1995,10(11):2749-2754.
[25]FREDERIKSE H P R.CRC handbook of chemistry and physics[M]. Boca Raton, FL,USA:CRC Press, 2003:195.
[26]WINDT D L, CASH W C, Jr, SCOTT M,etal. Optical constants for thin films of Ti, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Ir, Os, Pt, and Au from 24?to 1216?[J].Applied Optics,1988, 27(2):246-278.
[27]PALIK E D.Handbook of optical constants of solids[M].New York,USA: Elsevier,1998:240-249.
[28]RAKIC A D, DJURISIC A B, ELAZAR J M,etal. Optical properties of metallic films for vertical-cavity optoelectronic devices[J].Applied Optics,1998,37(22):5271-5283.
[29]ZHANG Y, TANG T T, GIRIT C,etal. Direct observation of a widely tunable bandgap in bilayer graphene[J].Nature,2009,459(7248):820-823.
[30]ZHANG H F,ZHENG J P,YANG G H.The forbidden band gap of tiame-varying magnetized plasma photonic crystals[J]. Laser Physics,2011,30(1):74-78(in Chinese).
[31]FANG Y T, HE S. Transparent structure consisting of metamaterial layers and matching layers[J].Physical Review, 2008,A78(2):2381301.
Electromagnetic absorption characteristics of 1-D graphene photonic crystals
NINGRenxia1,2,LIUShaobin2,ZHANGHaifeng2,KONGXiangkun2,BIANBorui2
(1.College of Mechanical and Information Engineering, Huangshan University, Huangshan 245041, China; 2.Key Laboratory of Radar Imaging and Microwave Photonics of Ministry of Education, College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)
Abstract:In order to study the absorption characterisctics of 1-D graphene photonic crystal in the visible band, theoretical analysis and numerical simulation were conducted by using transfer matrix method. The dependance of absorption characterisctics of 1-D graphene on graphene layers, dielectric thickness of defect layers, and electromagnetic mode were obtained. The results show that the absorption with green light of wavelength of about 556nm is enhanced significantly with the increasing of the layers of graphene. The absorption peak will increase with the increasing of dielectric thickness of defect layer. In the TE mode, the angle of incidence has a little effect on the absorption characterisctics of graphene photonic crystal. The results provide the theoretical basis for the study of 1-D graphene photonic crystal absorbers.
Key words:optoelectronics; absorption characterisctics; transfer matrix method; graphene photonic crystal
收稿日期:2014-02-16;收到修改稿日期:2014-02-24
作者簡(jiǎn)介:寧仁霞(1978-),女,講師,主要從事等離子體光子晶體、石墨烯光子晶體電磁特性研究。
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(61307052);航空科學(xué)基金資助項(xiàng)目(20121852030);江蘇省自然科學(xué)基金資助項(xiàng)目(BK2011727);黃山學(xué)院科研資助項(xiàng)目(2010xkj006);江蘇省普通高校研究生科研創(chuàng)新計(jì)劃資助項(xiàng)目(CXZZ13-0166);安徽省教育廳自然科學(xué)研究資助項(xiàng)目(KJ2013B267);大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃資助項(xiàng)目(201210375030)
中圖分類號(hào):O734
文獻(xiàn)標(biāo)志碼:A
doi:10.7510/jgjs.issn.1001-3806.2015.01.006
文章編號(hào):1001-3806(2015)01-0028-05