国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

生態(tài)流的構(gòu)成和分析方法研究綜述

2015-03-11 03:04:55郭貝貝楊緒紅金曉斌周寅康
生態(tài)學(xué)報(bào) 2015年5期
關(guān)鍵詞:能值信息流能量

郭貝貝, 楊緒紅, 金曉斌, 周寅康

南京大學(xué)地理與海洋科學(xué)學(xué)院, 南京 210023

生態(tài)流的構(gòu)成和分析方法研究綜述

郭貝貝, 楊緒紅, 金曉斌*, 周寅康

南京大學(xué)地理與海洋科學(xué)學(xué)院, 南京 210023

人類(lèi)活動(dòng)帶來(lái)的生態(tài)環(huán)境和土地利用變化是全球變化研究的重點(diǎn)內(nèi)容之一。在復(fù)雜的自然生態(tài)系統(tǒng)中,各組分之間的物質(zhì)循環(huán)、能量流動(dòng)和信息傳遞通常以流態(tài)形式來(lái)表達(dá),其路徑、方向、強(qiáng)度、速率等對(duì)生態(tài)系統(tǒng)產(chǎn)生重要影響。系統(tǒng)分析了生態(tài)流的起源與發(fā)展,從能流、物質(zhì)流和信息流三方面對(duì)生態(tài)流進(jìn)行了解構(gòu),并對(duì)相關(guān)原理和分析方法進(jìn)行了總結(jié)和述評(píng)。在現(xiàn)有研究基礎(chǔ)上,以典型半人工半自然的農(nóng)田生態(tài)系統(tǒng)為例,通過(guò)生態(tài)網(wǎng)絡(luò)連接度等指標(biāo)與純自然生態(tài)系統(tǒng)對(duì)比分析生態(tài)流的流向、路徑和強(qiáng)度等,人類(lèi)活動(dòng)增強(qiáng)了生態(tài)系統(tǒng)的靈活度,但擾亂了原有的穩(wěn)定性。生態(tài)學(xué)家一直專(zhuān)注于研究適用于統(tǒng)一計(jì)算生態(tài)流的方法,其量化已具有一定的研究基礎(chǔ),但仍存在許多問(wèn)題,在以后的研究中仍需系統(tǒng)地深入探索。

生態(tài)流; 能值; 擴(kuò)展火用分析; 生態(tài)系統(tǒng)

隨著全球生態(tài)環(huán)境問(wèn)題凸顯,采用生態(tài)學(xué)方法從不同時(shí)間和空間尺度對(duì)地球、大氣、地表水和生物系統(tǒng)之間的相互作用以及人類(lèi)活動(dòng)對(duì)地球的影響進(jìn)行分析,揭示生態(tài)系統(tǒng)的演變規(guī)律,研究全球變化對(duì)其影響和反饋得到學(xué)術(shù)界的廣泛關(guān)注。IPCC第四次評(píng)估報(bào)告[1]中指出,全球化的能量、物質(zhì)和信息流動(dòng)跨越邊界、國(guó)家,研究全球變化最大的挑戰(zhàn)是整合全球環(huán)境變化、生態(tài)系統(tǒng)的水文和生物地球化學(xué)循環(huán),生物多樣性、生態(tài)干擾制度等,須了解全球環(huán)境變化對(duì)生態(tài)系統(tǒng)結(jié)構(gòu)和功能的結(jié)合和互動(dòng)效果的影響。

1 生態(tài)流的內(nèi)涵、特征與結(jié)構(gòu)

1864年Marsh[2- 3]的第一部關(guān)于生態(tài)環(huán)境的作品描述人與自然關(guān)系時(shí)記錄人類(lèi)活動(dòng)對(duì)環(huán)境影響,推動(dòng)了生態(tài)學(xué)研究進(jìn)展[4]。生態(tài)系統(tǒng)由Tansley[5]于1935年首次提出,指在一定時(shí)間和空間內(nèi)、由生物群落及其環(huán)境組成的統(tǒng)一整體,各組成要素間借助能量流動(dòng)、物質(zhì)循環(huán)、信息傳遞而相互聯(lián)系并相互制約,形成了具有自調(diào)節(jié)功能的復(fù)合體。在生態(tài)系統(tǒng)中,通常以“流”的形式定量表述各組分之間及其與環(huán)境之間不斷地進(jìn)行著物質(zhì)的、能量的和信息的交換強(qiáng)度[6]。自然生態(tài)系統(tǒng)一般被看作是相對(duì)恒定的,任何新的系統(tǒng)組成都有可能打破原平衡系統(tǒng)的穩(wěn)態(tài),系統(tǒng)通過(guò)“流”(包括路徑、方向、強(qiáng)度和速率等)去影響其他組分并進(jìn)行自我修復(fù)[7]。

生態(tài)流是反映生態(tài)系統(tǒng)中生態(tài)關(guān)系的物質(zhì)代謝、能量轉(zhuǎn)換、信息交流、價(jià)值增減以及生物遷徙等的功能流,是種群(出生與死亡)、物種(傳播)、群落(演替)、物質(zhì)(循環(huán))、能量(流動(dòng))、信息(傳遞)、干擾(擴(kuò)散)等在生態(tài)系統(tǒng)內(nèi)空間和時(shí)間的變化。生態(tài)系統(tǒng)中的生態(tài)流可以聚集和穿越生態(tài)系統(tǒng)進(jìn)行水平擴(kuò)散,但需要通過(guò)克服空間阻力來(lái)影響并實(shí)現(xiàn)與之相聯(lián)系的斑塊之間的相互作用及動(dòng)態(tài)[8],物質(zhì)運(yùn)動(dòng)過(guò)程同時(shí)也伴隨著一系列能量轉(zhuǎn)化和信息傳遞過(guò)程,物質(zhì)流可視為在不同能級(jí)上的有序運(yùn)動(dòng),它們是生態(tài)過(guò)程的具體體現(xiàn)[9]。目前,生態(tài)系統(tǒng)的退化現(xiàn)象較為普遍,生態(tài)流的研究方法可實(shí)現(xiàn)對(duì)國(guó)家到斑塊等不同空間尺度下生態(tài)系統(tǒng)可持續(xù)性的衡量[10]。

目前,生態(tài)流的研究已被應(yīng)用于農(nóng)田生態(tài)系統(tǒng)和城市生態(tài)系統(tǒng)等領(lǐng)域,但從進(jìn)展來(lái)看,相關(guān)研究尚處在“概念引入”階段,相應(yīng)的分析范式、技術(shù)方法和典型分析尚不多見(jiàn)。本文擬在系統(tǒng)回顧與歸納具有自然特性的生態(tài)流結(jié)構(gòu)組成和計(jì)算方法的基礎(chǔ)上,對(duì)比各種生態(tài)流量化模型,并討論生態(tài)流的統(tǒng)一計(jì)算方法,這在生態(tài)學(xué)和地理學(xué)的范式研究中均具有重要意義。

2 生態(tài)流的分析方法

在生態(tài)系統(tǒng)中,能量流動(dòng)、物質(zhì)循環(huán)和信息傳遞是其基本功能,也是地球上生命賴(lài)以生存和發(fā)展的基礎(chǔ),三者相互影響,缺一不可。生態(tài)流(物質(zhì)流、能量流、信息流)和價(jià)值流是生態(tài)經(jīng)濟(jì)系統(tǒng)的四大要素,并通過(guò)多種形式、多種渠道進(jìn)行著物質(zhì)循環(huán)和能量轉(zhuǎn)化,構(gòu)成生態(tài)經(jīng)濟(jì)系統(tǒng)的網(wǎng)絡(luò)系統(tǒng)。價(jià)值流是社會(huì)經(jīng)濟(jì)活動(dòng)的產(chǎn)物,它僅僅在經(jīng)濟(jì)系統(tǒng)內(nèi)部流動(dòng),并與生態(tài)流成相反的方向流動(dòng)[11]。因此,能流、物質(zhì)流和信息流可以看作是自然生態(tài)系統(tǒng)的主要功能流。

2.1 能流和能值

根據(jù)熱力學(xué)第一定律和第二定律,生態(tài)系統(tǒng)的能量在流動(dòng)時(shí),總有一部分能量轉(zhuǎn)化為不能利用的熱能而被耗散,但能的質(zhì)量是逐步提高和濃集的。自Tansley以后,Lindeman R.研究了生態(tài)系統(tǒng)營(yíng)養(yǎng)物質(zhì)流的規(guī)律[12],根據(jù)計(jì)算第n種植物固定的能量An、吸收量In和凈初級(jí)生產(chǎn)力NPP(Net Primary Productivity)出了著名的“百分之十”定律:

In+1/In=An/In×NPPn/An×In+1/NPPn

各級(jí)之間的能量轉(zhuǎn)化率In+1/In約為10%,成為生態(tài)系統(tǒng)能流動(dòng)態(tài)研究的奠基者,開(kāi)啟了生態(tài)學(xué)從定性向定量發(fā)展的新階段[6]。

1971年Odum E.P.提出生態(tài)系統(tǒng)一定的空間內(nèi)生物成分和非生物成分的能量和物質(zhì)關(guān)系會(huì)產(chǎn)生不同特征的功能,建立了包括能量金字塔、數(shù)量金字塔和生物量金字塔三種類(lèi)型的生態(tài)金字塔[13]。20世紀(jì)70年代,學(xué)者們開(kāi)始使用實(shí)測(cè)數(shù)據(jù)和經(jīng)驗(yàn)回歸模型對(duì)生態(tài)系統(tǒng)能量流動(dòng)過(guò)程中的初級(jí)生產(chǎn)力進(jìn)行研究,其中具有代表性氣候生產(chǎn)力模型[14- 18]見(jiàn)表1。

表1 典型NPP模型列表Table1 1 A list of typical Net Primary Productivity Models

1983年Odum H.T.創(chuàng)造了能值(emergy)[19]的概念,創(chuàng)建了能量符號(hào)語(yǔ)言(energy symbol language),其中箭頭指向代表能量流動(dòng)的方向,并逐漸用于能流定量計(jì)算模型研究。Lotka[20]所建立的生物群落進(jìn)化最大功率原理被Odum擴(kuò)展為擴(kuò)散系統(tǒng)進(jìn)化的一般原理[21],后來(lái)多用于建立生態(tài)網(wǎng)絡(luò)模型。20世紀(jì)90年代,聞大中[22]對(duì)近年來(lái)農(nóng)業(yè)生態(tài)系統(tǒng)能流和能量分析方法研究進(jìn)行了介紹和評(píng)述,有很多學(xué)者[23]提出了能流和物質(zhì)流計(jì)算模型設(shè)計(jì)方案。后來(lái),Tilley等[24- 25]利用能流(energy flow)密度和能值密度(emergy flow)密度計(jì)算北卡羅萊納州、德克薩斯州和佛羅里達(dá)州生態(tài)經(jīng)濟(jì)系統(tǒng)中能流。

在計(jì)算機(jī)技術(shù)高速發(fā)展之后,Cathy[26]等使用多智能體系統(tǒng)與人工智能技術(shù)建模,信道模擬系統(tǒng)的能量和系統(tǒng)信息流理論提供了一種機(jī)制。研究表明:它是可能的將這些組件集成到一個(gè)連貫的理論框架,為其實(shí)施和測(cè)試奠定了基礎(chǔ)。Zhang J.[27]使用最大功率原則建立進(jìn)化生態(tài)網(wǎng)絡(luò)計(jì)算能流。李中才[28]提出了生態(tài)網(wǎng)絡(luò)能量傳遞的兩類(lèi)路徑,運(yùn)用輸入-輸出流方法推導(dǎo)了兩種模式下的能流計(jì)算公式,以Pilette[29]提出的生態(tài)網(wǎng)絡(luò)系統(tǒng)為例,計(jì)算兩種模式能流大小。生態(tài)網(wǎng)絡(luò)能量傳遞動(dòng)力學(xué)方程:

式中,fij代表節(jié)點(diǎn)j輸入節(jié)點(diǎn)i的能量流;zi代表網(wǎng)絡(luò)系統(tǒng)外環(huán)境輸入節(jié)點(diǎn)i的能,yi代表節(jié)點(diǎn)i的能量損失流[30]。Matis和Patten[31- 32]提出的生態(tài)網(wǎng)絡(luò)能量動(dòng)力學(xué)方程:

dx/dt=F×l+z=-Ft×l-y

式中,x、z、y是n×l維的矩陣,分別代表某節(jié)點(diǎn)的能量存量、外界能量輸入和能量消耗,l是n維單位列向量,F(xiàn)T代表能量流矩陣F的轉(zhuǎn)置矩陣。當(dāng)生態(tài)系統(tǒng)能量傳遞達(dá)到穩(wěn)定狀態(tài)時(shí),有dx/dt=0,由此可知,能量流矩陣F的對(duì)角元素fii=-Ti。如果將生態(tài)網(wǎng)絡(luò)能量傳遞過(guò)程看作一個(gè)離散過(guò)程,其動(dòng)力學(xué)方程:

x(t+Δt)=x(t)+Δx(t)

式中,Δx=FΔt×1+zΔt。S.Thiede等[33]通過(guò)吞吐量、能源效率、驅(qū)動(dòng)因子、成本和對(duì)環(huán)境影響等指數(shù)建立模型對(duì)制造系統(tǒng)的能流數(shù)值模擬,可見(jiàn),國(guó)內(nèi)外學(xué)者對(duì)能流分析[34]已具有較豐碩的研究成果。

2.2 物質(zhì)流

從生命周期(從搖籃到墳?zāi)?的角度來(lái)看,各個(gè)階段生命周期的物質(zhì)(商品或服務(wù))所有相關(guān)的物質(zhì)流和能流是可持續(xù)的[35- 36]。物質(zhì)流又稱(chēng)資源流,“物質(zhì)流分析”的概念由Ayres[37]引入,早期建立在物質(zhì)能量平衡的基礎(chǔ)上。自20世紀(jì)80年代以來(lái),世界上開(kāi)始建立國(guó)家和全球尺度的觀測(cè)網(wǎng)絡(luò)來(lái)研究生態(tài)系統(tǒng)的物質(zhì)通量變化[38]。C、N、P、S的循環(huán)等的研究在全球范圍內(nèi)已有很多成果,特別是碳循環(huán)與全球變暖的關(guān)系[39- 40]研究等。生態(tài)系統(tǒng)的物質(zhì)循環(huán)一般指的是營(yíng)養(yǎng)物質(zhì),可通過(guò)自然或人為的過(guò)程不斷地在土壤、植物和動(dòng)物間輸入輸出,因此物質(zhì)的流動(dòng)是選擇性的。物質(zhì)循環(huán)一般多是研究單一元素的循環(huán)過(guò)程,實(shí)際上,各元素在循環(huán)過(guò)程中會(huì)產(chǎn)生耦合作用,對(duì)整個(gè)生態(tài)系統(tǒng)會(huì)產(chǎn)生直接影響[41]。例如,Schlesinger[42]在海洋生態(tài)系統(tǒng)研究中發(fā)現(xiàn)一種元素的循環(huán)或過(guò)程可影響另一種元素的循環(huán)和過(guò)程。

對(duì)物質(zhì)流的計(jì)算[43- 45]是從20世紀(jì)90年代開(kāi)始的,主要根據(jù)原材料、土地等輸入輸出計(jì)算物質(zhì)流。Grampietro[46]等根據(jù)生態(tài)系統(tǒng)內(nèi)植物有效水流量和水循環(huán)的能量耗散,使用總初級(jí)生產(chǎn)力與植物有效水流量的和對(duì)生態(tài)系統(tǒng)的生物物理資本進(jìn)行估算,拓展了能流的單一計(jì)算,在能流計(jì)算的基礎(chǔ)上加入了物質(zhì)流。PiletteR[29]對(duì)一個(gè)構(gòu)造的小尺度生態(tài)系統(tǒng)進(jìn)行碳的“流量—通量”轉(zhuǎn)移分析,但這種非循環(huán)的程序是基于窮舉搜索而不是矩陣操作和數(shù)據(jù)管理。

物質(zhì)流分析 (MFA)[47- 50]的目的是分析在特定的環(huán)境內(nèi)和一定的時(shí)間范圍內(nèi)的物質(zhì)流動(dòng),可為生態(tài)可持續(xù)發(fā)展和規(guī)劃管理自然資源提供依據(jù)。JohnBarrett[51]分析了所有物質(zhì)進(jìn)入和離開(kāi)紐約的過(guò)程。MEFA方法到現(xiàn)在為止沒(méi)有被充分利用,因?yàn)樵谶M(jìn)行物質(zhì)流與能流研究時(shí)空間尺度不同,迄今為止只有對(duì)不同區(qū)域物質(zhì)流動(dòng)進(jìn)行研究,還沒(méi)有上升到國(guó)家尺度[52]。Haberla[53- 54]建立物質(zhì)能量流核算(MEFA)框架,這個(gè)框架綜合了生態(tài)和社會(huì)經(jīng)濟(jì)特別為土地可持續(xù)發(fā)展提供了一種非常有價(jià)值的工具,物質(zhì)流和能流會(huì)隨著時(shí)間推移和尺度改變而改變,因此它無(wú)法定義可持續(xù)發(fā)展閾值的精度。ZygmuntKowalski[55]運(yùn)用生命周期理論計(jì)算Na2CrO4在生產(chǎn)系統(tǒng)中的循環(huán)物質(zhì)流,以降低原材料生產(chǎn)成本。還有一些文獻(xiàn)中指出物質(zhì)流分析方法是一種程序方法[56- 57]。

2.3 信息流

信息傳遞是生態(tài)系統(tǒng)的重要功能之一,“信息”一次來(lái)源于拉丁文“informatio”,原意指解釋、陳述。Hartley[58]最早提出一種度量信息的方法,認(rèn)為信息量與字母的選擇次數(shù)成正比例關(guān)系,Shannon[59]繼承了Hartley關(guān)于排除主觀因素的思想,提出了著名的Shannon-Wiener指數(shù)公式:

式中,H為N個(gè)樣本信息量,S為物種數(shù),Pi為樣本屬于第i種個(gè)體的比例,對(duì)于第i個(gè)個(gè)體數(shù)ni,則Pi=ni/N這個(gè)公式用來(lái)度量信息量,而這個(gè)信息量是一種概率信息(熱力學(xué)熵和信息熵的公式是一樣的,信息熵用的是以2為底的對(duì)數(shù),單位是bits,或是以10為底的對(duì)數(shù),單位是Bell;生物多樣性用的是以10為底的對(duì)數(shù);熱力學(xué)熵(波爾茲曼熵)S用的是以e為底的自然對(duì)數(shù),S=kblnW,單位是Nat)。之后Shannon等[60]在《通訊的數(shù)學(xué)理論》中指出:“信息是不肯定程度減小的量”,即信息這個(gè)概念具有不確定的含意。Wiener[61]認(rèn)為:信息就是信息,不是物質(zhì),也不是能量,信息來(lái)源于物質(zhì),與能量密切關(guān)系,信息的實(shí)質(zhì)就是“負(fù)熵”。信息熵與熱熵正從不同方面揭示了事物的不確定性或無(wú)規(guī)則性的數(shù)值關(guān)系。物種的信息存儲(chǔ)量很大,人們發(fā)現(xiàn)每個(gè)物種遺傳密碼中大概有100萬(wàn)到100億比特的信息,都是幾百萬(wàn)年進(jìn)化過(guò)程中形成的[62]。

韓博平根據(jù)貝利斯等[63]的效用信息理論和熵值理論初步提出信息流的計(jì)算方法并分析了信息流與能流、物質(zhì)流的關(guān)系[64- 66]。Md. Jamal Uddin[67]建立孟加拉國(guó)農(nóng)村綜合信息系統(tǒng)(BD-IRIS),側(cè)重于研究孟加拉國(guó)農(nóng)村地區(qū)的訪問(wèn)信息流,特別是信息來(lái)源和渠道、系統(tǒng)和服務(wù)。目前信息流更多地應(yīng)用于IT領(lǐng)域[68],如Shih-Chien Chou[69- 71]使用OORBAC(object-oriented role-based access control)模型進(jìn)行信息流控制。在農(nóng)業(yè)生態(tài)系統(tǒng)中,當(dāng)系統(tǒng)能量產(chǎn)投比大于1時(shí),產(chǎn)出能高于投入能,農(nóng)業(yè)系統(tǒng)的信息熵為負(fù)值,產(chǎn)投比大,負(fù)熵大。農(nóng)業(yè)系統(tǒng)熵的負(fù)值(或絕對(duì)值)越大,農(nóng)業(yè)系統(tǒng)的能量轉(zhuǎn)換效率就越高,可以說(shuō)農(nóng)業(yè)輔助能的投入增加了農(nóng)業(yè)生態(tài)系統(tǒng)中的信息熵,促進(jìn)了信息流的變化。

3 生態(tài)流的應(yīng)用進(jìn)展

3.1 生態(tài)流模型研究

目前,對(duì)能流的研究已經(jīng)漸趨成熟,而物質(zhì)流和信息流的研究還處于探索階段。以前生態(tài)流的計(jì)算都是以單一的介質(zhì)對(duì)其量化[72],例如物質(zhì)流(C×g)或能流(KJ),而一個(gè)復(fù)雜的系統(tǒng)不止存在一種流,學(xué)者們一直在尋找統(tǒng)一計(jì)算生態(tài)流的方法,其中具有代表的是Odum的能值(emergy)理論[73- 76]和火用(exergy)[77- 79]分析方法,列表對(duì)比各種模型的特點(diǎn)(表2)。

1987年Odum以美國(guó)德克薩斯州大型農(nóng)場(chǎng)構(gòu)成的農(nóng)業(yè)生態(tài)系統(tǒng)為例,繪制了農(nóng)業(yè)生態(tài)系統(tǒng)的能流、物質(zhì)流與資金流圖,標(biāo)明了資金流與能流、物質(zhì)流和信息流的流向相反,他認(rèn)為,以貨幣方式表示的勞務(wù)及一些零碎的雜物投入也包含一定的太陽(yáng)能值,亦可通過(guò)能值/貨幣比換算成太陽(yáng)能值[80]。以能值為量綱,可把系統(tǒng)的各種能量與物質(zhì)轉(zhuǎn)換成同一標(biāo)準(zhǔn)能值加以分析,這樣就可以將能流物質(zhì)流乃至信息流都以某種形式的能值流來(lái)表示,通過(guò)能值分析,還可以探討能流和物質(zhì)流相互之間的關(guān)系。能值理論和分析方法為各種生態(tài)系統(tǒng)的定量分析提供了共同的度量標(biāo)準(zhǔn),在理論上開(kāi)拓了生態(tài)流綜合分析研究途徑。

表2 生態(tài)流模型研究Table 2 Research of ecological flow models

3.2 生態(tài)流整合研究

運(yùn)用生態(tài)流方法將研究對(duì)象作為一個(gè)有機(jī)整體開(kāi)展研究,近年來(lái)取得一系列進(jìn)展[74-76,86],這些方法被廣泛應(yīng)用于農(nóng)業(yè)[87-89]、工業(yè)[90-91]、城市[92-95]、生態(tài)經(jīng)濟(jì)流的綜合模擬與應(yīng)用[96-101]。

以農(nóng)田生態(tài)系統(tǒng)為例,它是一種典型的半人工半自然的生態(tài)系統(tǒng),假設(shè)存在人類(lèi)缺少參與的自然農(nóng)田生態(tài)系統(tǒng),對(duì)比分析兩種情況下生態(tài)流的方向、路徑和強(qiáng)度等,可定量研究人類(lèi)活動(dòng)對(duì)生態(tài)系統(tǒng)帶來(lái)的影響,還可優(yōu)化農(nóng)田生態(tài)系統(tǒng)的生態(tài)功能。面對(duì)日益退化的生態(tài)系統(tǒng),管理欠佳可能增加洪澇、干旱、農(nóng)作物歉收,從而進(jìn)一步加劇風(fēng)險(xiǎn)與脆弱性。

系統(tǒng)中能流(Ee)、物質(zhì)流(Em)和信息流(Ei)的流動(dòng)如圖1所示。在Pilette和Kincaid提出的生態(tài)網(wǎng)絡(luò)能量傳遞動(dòng)力學(xué)方程基礎(chǔ)上設(shè)立生態(tài)流計(jì)算方程[113- 117]:

式中,Ef為生態(tài)流矩陣;Ee-in為能量輸入流;Ee-out為能量輸出流;Em-in為物質(zhì)輸入流;Em-out為物質(zhì)輸出流;Ei-in為信息輸入流;Ei-out為信息輸出流。當(dāng)生態(tài)系統(tǒng)達(dá)到平衡時(shí),Ef達(dá)到最大值[118- 119]。

圖1 農(nóng)田生態(tài)系統(tǒng)生態(tài)流框圖[75]Fig.1 System diagram of farmland ecosystem in terms of ecological flows

4 生態(tài)流研究展望

4.1 存在的問(wèn)題

流動(dòng)是復(fù)雜生態(tài)系統(tǒng)的普遍現(xiàn)象之一,流的形式有很多種,是否存在統(tǒng)一的可以描述復(fù)雜系統(tǒng)中流動(dòng)現(xiàn)象的通用規(guī)律一直是生態(tài)學(xué)和非平衡態(tài)統(tǒng)計(jì)物理學(xué)研究的難題之一。用流的形式來(lái)反映三者之間的交換方向、強(qiáng)度、速率;用網(wǎng)絡(luò)的形式來(lái)反映三者之間聯(lián)系的路徑,可以描述復(fù)雜生態(tài)系統(tǒng)中物質(zhì)、能量和信息的流動(dòng)規(guī)律。人類(lèi)活動(dòng)對(duì)生態(tài)系統(tǒng)和生物多樣性的影響都可用生態(tài)流的計(jì)算方法來(lái)定量描述。目前生態(tài)流的研究成果較多,研究方法多樣,涉及到的領(lǐng)域也很多,但是還存在著一些需要解決的問(wèn)題:(1)確定研究時(shí)間。不同時(shí)期生態(tài)系統(tǒng)穩(wěn)定性不同,生態(tài)流計(jì)算結(jié)果也不同,因此,在計(jì)算時(shí)要注意生態(tài)系統(tǒng)變化的時(shí)期一致性;(2)確定研究范圍。目前的生態(tài)流研究主要還是在中宏觀階段,應(yīng)加強(qiáng)區(qū)域范圍的微觀尺度研究,更能精確地描述系統(tǒng)中生態(tài)流;(3)確定假設(shè)條件。自然生態(tài)系統(tǒng)和半自然半人工系統(tǒng)的生態(tài)流計(jì)算有區(qū)別,需要假設(shè)在人類(lèi)對(duì)自然進(jìn)行改造后的環(huán)境與純自然生態(tài)系統(tǒng)相比,既具有優(yōu)越性又有不足。(4)明確研究目的。生態(tài)流計(jì)算的結(jié)果可能因時(shí)間、空間范圍變化而改變,研究一定時(shí)期一定范圍內(nèi)兩種生態(tài)環(huán)境下的生態(tài)流較具有可行性,同時(shí)對(duì)相關(guān)的地理時(shí)空變化研究具有一定意義。

4.2 展望

研究人類(lèi)活動(dòng)對(duì)生態(tài)環(huán)境影響的重要模型和方法有很多,例如:生態(tài)足跡是一種測(cè)算人類(lèi)對(duì)自然利用程度的綜合指標(biāo),該方法通過(guò)將區(qū)域的資源和能源消費(fèi)轉(zhuǎn)化為提供這種物質(zhì)流所必需的各種生物生產(chǎn)土地的面積[120- 121];生態(tài)系統(tǒng)服務(wù)是指人類(lèi)直接或間接從生態(tài)系統(tǒng)得到物質(zhì)資本,其主要研究向經(jīng)濟(jì)社會(huì)系統(tǒng)輸入有用物質(zhì)和能量、接受和轉(zhuǎn)化來(lái)自經(jīng)濟(jì)社會(huì)系統(tǒng)的廢棄物,以及直接向人類(lèi)社會(huì)成員提供服務(wù)[122];而生態(tài)流著重于研究生態(tài)系統(tǒng)中各種自然流動(dòng)的路徑和通量。

生態(tài)流的研究在我國(guó)尚在探索階段,仍需要更系統(tǒng)地對(duì)其原理和研究方法進(jìn)行深入探索。未來(lái)的重點(diǎn)可能在時(shí)空條件下物質(zhì)、能量和信息的流動(dòng)規(guī)律研究、生態(tài)流模型計(jì)算方面。生態(tài)系統(tǒng)是一個(gè)復(fù)雜的系統(tǒng),生態(tài)流的定量計(jì)算方法并未統(tǒng)一,而生態(tài)流是生態(tài)系統(tǒng)中的重要組成部分。在農(nóng)田生態(tài)系統(tǒng)中,由于人類(lèi)活動(dòng)引起的生態(tài)流變化仍會(huì)逐漸引起農(nóng)作物及周?chē)h(huán)境的變化,而改善生態(tài)系統(tǒng)網(wǎng)絡(luò)連通度和生態(tài)流來(lái)優(yōu)化生態(tài)功能是提高農(nóng)田效益和穩(wěn)定性的重要方法之一。目前,國(guó)內(nèi)外學(xué)者的研究成果已具有一定基礎(chǔ),但是生態(tài)流的研究方法還存在一些問(wèn)題,仍需要深入研究。

[1] GLP. Science Plan and Implementation Strategy. IGBP Report No. 53/IHDP Report No. 19. IGBP Secretariat, Stockholm. 2005: 64- 64.

[2] Botkin D B. Discordant Harmonies: A New Ecology for the Twenty-First Century. New York: Oxford University Press, 1990.

[3] Marsh G P. Man and Nature: Or, Physical Geography as Modified by Human Action. Cambridge, Massachusetts: Belknap Press, 1864.

[4] Clements F E. Research Methods in Ecology. Lincoln, Nebraska: University Publishing Company, 1905.

[5] Tansley A G. The use and abuse of vegetational concepts and terms. Ecology, 1935, 16(3): 284- 307.

[6] 戈峰. 現(xiàn)代生態(tài)學(xué) (第二版). 北京: 科學(xué)出版社, 2008: 352- 433.

[7] 劉盛林, 華朝陽(yáng). 生態(tài)系統(tǒng)的信息流. 中學(xué)生物學(xué), 2007, 23(8): 4- 6.

[8] O′N(xiāo)eill R V. Theory in landscape ecology // Wiens J A, Moss M R, eds. Issues in Landscape Ecology. Snowmass Village, Colorado: International Association for Landscape Ecology, 1999: 1- 5.

[9] 肖篤寧, 李秀珍. 景觀生態(tài)學(xué)的學(xué)科前沿與發(fā)展戰(zhàn)略. 生態(tài)學(xué)報(bào), 2003, 23(8): 1615- 1621.

[10] Levine R S, Hughes M T, Mather C R. Sustainable city regions: Mega-projects in balance with the Earth′s carrying capacity // Engineering Earth. Netherlands: Springer, 2011: 1057- 1070.

[11] 海江波. 農(nóng)業(yè)生態(tài)經(jīng)濟(jì)系統(tǒng)生態(tài)流與價(jià)值流耦合機(jī)制 [D]. 楊凌: 西北農(nóng)林科技大學(xué), 2009.

[12] Lindeman R L. The trophic-dynamic aspect of ecology. Ecology, 1942, 23(4): 399- 418.

[13] Odum E P. Fundamentals of Ecology. 3rd ed. Philadelphia: Saunders Co., 1971: 574- 574.

[14] Whittaker R H, Likens G E. World productivity estimate, Brussels Symp. 1969, published in Whittaker (1970) and Whittaker and Woodwell (1971), 1971.

[15] Lieth H. “Modelling the primary productivity of the earth. Nature and resources”, UNESCO, 1972, VIII, 2: 5- 10.

[16] Lieth H. Introduction to phenology and the modeling of seasonality // Lieth H, ed. Phenology and seasonality modeling. Berlin: Springer-Verlag, Ecological Studies, 1974, 8: 3- 19.

[17] Uchijima Z, Seino H. Agroclimatic evaluation of net primary productivity of natural vegetation. (1) Chikugo model for evaluating net primary productivity. Journal of Agricultural Meteorology, 1985, 40(4): 343- 352.

[18] Donmeza C, Berberoglua S, Curranb Paul J. Modelling the current and future spatial distribution of NPP in a Mediterranean watershed. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(3): 336- 345.

[19] Odum H T. Systems Ecology: An introduction. New York: John Wiley and Sons, 1983: 644- 644.

[20] Lotka A J. The stability of the normal age distribution. Proceedings of the National Academy of Sciences of the United States of America, 1922, 8(11): 339- 345.

[21] Odum E P. The strategy of ecosystem development. Science, 1969, 164(3877): 262- 270.

[22] 聞大中. 農(nóng)業(yè)生態(tài)系統(tǒng)能流和能量分析研究的某些新進(jìn)展. 農(nóng)村生態(tài)環(huán)境, 1995, 11(2): 43- 48.

[23] Levine R S, Yanarella E, Radmard T, Dumreicher H. Sustainable cities: A strategy for a post-terrorized world. Terrain. org: A Journal of the built and natural environments. 2003: 13 (Summer/Fall). Retrieved from www.terrain.org/articles/13/strategy.htm.

[24] Tilley D R, Brown M T. The hierarchical pattern of energy flow in ecological-economic systems representing three geographic scales// Brown M T,Brandt-Williams S, Tilley D R, Ulgiati S, eds. Emergy Synthesis: Theory and Applications of the Emergy Methodology. Proceedings from the First Biennial Emergy Analysis Research Conference, Gainesville, Florida, September, 1999.

[25] Tilley D R. Emergy Basis of Forest Systems [D]. Gainesville: University of Florida, 1999: 1- 296.

[26] Hawes C, Reed C. Theoretical Steps Towards Modelling Resilience in Complex Systems // Gavrilova M, et al, eds. Proceedings of ICCSA (1): 2006, LNCS 3980. Berlin: Springer-Verlag, 2006: 644- 653.

[27] Zhang J. Energy flows and maximum power on an evolutionary ecological network model// Advances in Artificial Life: 9th European Conference. Heidelberg: Springer-Verlag, 2007: 113- 122.

[28] 李中才, 徐俊艷, 吳昌友, 張漪. 生態(tài)網(wǎng)絡(luò)分析方法研究綜述. 生態(tài)學(xué)報(bào), 2011, 31(18): 5396- 5405.

[29] Pilette R, Kincaid D T. First flow-thru analysis in ecosystem studies. Ecological Modelling, 1992, 64(1): 1- 10.

[30] 李中才, 席旭東, 高琴,李莉鴻. 基于輸入-輸出流分析的生態(tài)網(wǎng)絡(luò)φ模式能流、ρ模式能流測(cè)度方法. 生態(tài)學(xué)報(bào), 2011, 31(19): 5860- 5864.

[31] Matis J H, Patten B C. Environ analysis of linear compartmental systems: the static, time invariant case. Ecological Modelling, 1981, 48: 527- 565.

[32] Bernard C. Patten. Network integration of ecological extremal principles: exergy, emergy, power, ascendency, and indirect effects. Ecological Modelling, 1995, 79: 75-84.

[33] Thiede S, Herrmann C. Energy flow simulation for manufacturing systems // Seliger G, et al, eds. Advances in Sustainable Manufacturing: Proceedings of the 8th Global Conference on Sustainable Manufacturing. Berlin: Springer-Verlag, 2011: 275- 280.

[34] Chareodrat P. Energy Analysis Methods in Agricultural Production with Applications to Chiang Mai Valley, Thailand [D]. East Lansing: Michigan State University, 1977.

[35] Schaubroeck T, Staelens J, Verheyen K, Muys B, Dewulf J. Improved ecological network analysis for environmental sustainability assessment; a case study on a forest ecosystem. Ecological Modelling, 2012, 247: 144- 156.

[36] M. Federici, S. Ulgiati, R. Basosi. A thermodynamic, environmental and material flow analysis of the Italian highway and railway transport systems. Energy, 2008, 33(5): 760- 775.

[37] Ayres R U. Resources, Environment and Economics: Applications of the Materials/Energy Balance Principle. New York: Wiley, 1978.

[38] 傅伯杰, 牛棟, 于貴瑞. 生態(tài)系統(tǒng)觀測(cè)研究網(wǎng)絡(luò)在地球系統(tǒng)科學(xué)中的作用. 地理科學(xué)進(jìn)展, 2007, 26(1): 1- 16.

[39] Feng Y Y, Chen S Q, Zhang L X. System dynamics modeling for urban energy consumption and CO2emissions: A case study of Beijing, China. Ecological Modelling, 2013, 252: 44- 52.

[40] Robinson D T, Brown D G, Currie W S. Modelling carbon storage in highly fragmented and human-dominated landscapes: Linking land-cover patterns and ecosystem models. Ecological Modelling, 2009, 220(9/10): 1325- 1338.

[41] Wollast R, Mackenzie F T, Chou L. Interactions of C, N, P and S Biogeochemical Cycles and Global Change. 2nd ed. New York: Springer-Verlag, 1993.

[42] Schlesinger W H. Biogeochemistry: An Analysis of Global Change. San Diego, California: Academic Press, 1997.

[43] Steure A. Stoffstrombilanz ?sterreich, 1988. Schriftenreihe Soziale ?kologie. No. Band 26[R]. Wien: IFF/Abteilung Soziale ?kologie, 1992.

[44] Lange C, Kuchenbuch A. Integrated controlling based on material and energy flow analysis: A case study in foundry industries // Wagner B, Enzler S, eds. Material Flow Management. Improving Cost Efficiency and Environmental Performance. Heidelberg, New York: Physica-Verlag HD, 2006: 91- 129.

[45] Environment Agency Japan. Quality of the environment in Japan 1992. Tokyo. European Environment, 1992.

[46] Giampietro M, Cerretelli G, Pimentel D. Energy analysis of agricultural ecosystem management: human return and sustainability. Agriculture, Ecosystems & Environment, 1992, 38(3): 219- 244.

[47] Bringezu S, Fischer-Kowalski M, Klein R, Palm V. Regional and National Material Flow Accounting: From Paradigm to Practice of Sustainability. Wuppertal: Institute for Climate, Environment and Energy, 1997.

[48] Bringezu S, Schütz H. Material use indicators for the European Union, 1980- 1997. Economy-wide Material Flow Accounts and Balances and Derived Indicators of Resource Use. EUROSTAT Working Paper. No. 2/2001/B/2. Wuppertal: Wuppertal Institute, 2002.

[49] Amann C, Bruckner W, Fischer-Kowalski M, Grünbühel C. Material Flow Accounting in Amazonia. A Tool for Sustainable Development; Amazonia 21. Social Ecology Working Paper. No. 63. Vienna: IFF, Abt. Soziale ?kologie, 2002.

[50] Chen X Q, Qiao L J. A preliminary material input analysis of China. Population and Environment, 2001, 23(1): 117- 126.

[51] Barrett J, Vallack H, Jones A, Haq G. A Material Flow Analysis and Ecological Footprint of York. Technical Report. York: Stockholm Environment Institute, 2002.

[52] Muradian R, Martinez-Alier J. South-north materials flow: history and environmental repercussions. Innovation-The European Journal of Social Science Research, 2001, 14(2): 171- 187.

[53] Fischer-Kowalski M, Amann C. Beyond IPAT and Kuznets curves: globalization as a vital factor in analysing the environmental impact of socio-economic metabolism. Population and Environment, 2001, 23(1): 7- 47.

[54] Haberl H, Fischer-Kowalski M, Krausmann F, Weisz H, Winiwarter V. Progress towards sustainability? What the conceptual framework of material and energy flow accounting (MEFA) can offer. Land Use Policy, 2004, 21(3):199- 213.

[55] Kowalski Z, Mazanek C. Sodium chromate-material flow analysis and technology assessment. Journal of Cleaner Production, 1998, 6(2): 135- 142.

[56] Sala S, Farioli F, Zamagni A. Progress in sustainability science: lessons learnt from current methodologies for sustainability assessment: Part 1, life cycle sustainability assessment: from lca to lcsa // The International Journal of Life Cycle Assessment. Berlin: Springer-Verlag, 2012.

[57] Rattanapana C, Suksaroj T T, Ounsaneha W. Development of Eco-efficiency indicators for rubber glove product by material flow analysis. Procedia-Social and Behavioral Sciences, 2012, 40: 99- 106.

[58] Hartley R V L. Transmission of Information. Bell System Technical Journal, 1928, 7(3): 535- 563.

[59] Shannon C E. A mathematical theory of communication. The Bell System Technical Journal, 1948, 27: 379- 423, 623- 656.

[60] Shannon C E. Communication Theory of Secrecy Systems. Bell System Technical Journal, 1949, 28(4): 656- 715.

[61] Wiener N. The Human Use of Human Beings: Cybernetics and Society. New York: Houghton Mifflin, 1950.

[62] Wilson E O. The Diversity of Life . Cambridge: Harvard University Press, 1992: 464- 464.

[63] Belis M, Guiasu S. A quantitative-qualitative measure of information in cybernetic systems. (Corresp.). IEEE Transactions on Information Theory, 1968, 14(4): 593- 594.

[64] 韓博平. 生態(tài)網(wǎng)絡(luò)中物質(zhì)、能量流動(dòng)的信息指標(biāo)及其靈敏度分析. 系統(tǒng)工程理論方法應(yīng)用, 1995, 4(1): 24- 29.

[65] 韓博平. 生態(tài)網(wǎng)絡(luò)中物質(zhì)、能量流動(dòng)的時(shí)間鏈分析. 生態(tài)學(xué)報(bào), 1995, 15(2): 163- 168.

[66] 韓博平, 林鵬. 生態(tài)網(wǎng)絡(luò)中信息分析的方法與應(yīng)用. 廈門(mén)大學(xué)學(xué)報(bào): 自然科學(xué)版, 1996, 35(4): 648- 651.

[67] Uddin M J, Mezbah-ul-Islam M. The flow of, and access to, information in Bangladesh: A village level case study. The International Information & Library Review, 2012, 44(4): 224- 232.

[68] Santen T. Preservation of probabilistic information flow under refinement. Information and Computation, 2008, 206(2/4): 213- 249.

[69] Chou S C. Dynamic adaptation to object state change in an information flow control model. Information and Software Technology, 2004, 46(11): 729- 737.

[70] Chou S C. Managing user associations and the factors of laws and cultures in an information flow control model for object-oriented systems. Journal of Information Science and Engineering-JISE, 2007, 23(3): 949- 961.

[71] Masri W, Podgurski A. Algorithms and tool support for dynamic information flow analysis. Information and Software Technology, 2009, 51(2): 385- 404.

[72] Chen S Q, Fath B D, Chen B. Information indices from ecological network analysis for urban metabolic system. Procedia Environmental Sciences, 2010, 2: 720- 724.

[73] Odum H T, Odum E C, Brown M T. Environment and Society in Florida. Boca Raton, Florida: St. Lucie Press, 1997.

[74] Odum H T. Emergy in ecosystems//Poluin N ed. Ecosystem Theory and Application. Now York: John Wiley & Sons, 1986: 337- 369.

[75] Odum H T. Environmental Accounting: Emergy and Environmental Decision Making. New York: John Wiley & Sons, 1996: 370- 370.

[76] Forman R T T, Godron M. Landscape Ecology. New York: John Wiley, 1986.

[77] J?rgensen S E, Ladegaard N, Debeljak M, Marques J C. Calculations of exergy for organisms. Ecological Modelling, 2005, 185(2/4): 165- 175.

[78] J?rgensen S E, Mejer H F. Ecological Buffer Capacity. Ecological Modelling, 1977, 3(1): 39- 45, 47- 47, 49- 49, 51- 51, 53- 61.

[79] J?rgensen S. Exergy of an isolated living system may increase // Advances in Energy Studies. 2° International Workshop, edited by Sergio Ulgiati. SGEditoriali Padova. Italy: Porto Venere, 2000.

[80] Odum T, Odum E C. Ecology and Economy: Emergy Analysis and Public Policy in Texas. LBJ School of Public Affairs and Texas Dept. of Agriculture (Policy Research Publication No. 78). Austin: University of Texas, 1987: 178- 178.

[81] Rant Z. Exergie, ein neues Wort für “technische Arbeitsf?higkeit”. Forschung im Ingenieurwesen, 1956, 22: 36- 37.

[82] Gibbs J W. A method of geometrical representation of the thermodynamic properties of substances by means of surfaces // Transactions of the Connecticut Academy of Arts and Sciences. Yale: Yale University Press, 1873, 2: 382- 404.

[83] Wall G. Exergy-a useful concept within resource accounting. G?teborg: Institute of Theoretical Physics, Institute of Theoretical Physics, 1977.

[84] Szargut J, Morris D R, Steward F R. Exergy Analysis of Thermal, Chemical, and Metallurgical Processes. New York: Hemisphere, 1988.

[85] Shieh J H, Fan L T. Estimation of energy (enthalpy) and exergy (availability) contents in structurally complicated materials. Energy Sources, 1982, 6(1/2): 1- 46.

[86] Brown M T, McClanahan T R. Emergy analysis perspectives of Thailand and Mekong river dam proposals. Ecological Modelling, 1996, 91(1/3): 105- 130.

[87] 藍(lán)盛芳, 陳飛鵬, 劉新茂. 農(nóng)業(yè)生態(tài)經(jīng)濟(jì)系統(tǒng)的能值分析. 生態(tài)科學(xué), 1995, (2): 172- 172.

[88] 藍(lán)盛芳, 欽佩. 生態(tài)系統(tǒng)的能值分析. 應(yīng)用生態(tài)學(xué)報(bào), 2001, 12(1): 129- 131.

[89] 陸宏芳, 藍(lán)盛芳, 陳飛鵬, 彭少麟. 農(nóng)業(yè)生態(tài)系統(tǒng)能量分析. 應(yīng)用生態(tài)學(xué)報(bào), 2004, 15(1): 159- 162.

[90] 袁婕, 樊鴻濤, 張炳, 畢軍, 王仕, 袁增偉. 基于能值理論的工業(yè)生態(tài)系統(tǒng)分析——以龍盛科技工業(yè)園為例. 環(huán)境保護(hù)科學(xué), 2008, 34(2): 74- 77.

[91] 劉子芳, 李敏, 張小洪, 鄧仕槐. 基于能值的工業(yè)生產(chǎn)系統(tǒng)可持續(xù)性分析. 四川環(huán)境, 2013, 32(1): 129- 133.

[92] Huang S L, Odum H T. Ecology and economy: Emergy synthesis and public policy in Taiwan. Journal of Environmental Management, 1991, 32(4): 313- 333.

[93] 胡聃, 文秋霞, 李鋒, 王震, 馮強(qiáng), 張艷萍. 北京城市生態(tài)系統(tǒng)的能值動(dòng)態(tài)分析. 城市環(huán)境與城市生態(tài), 2006, 19(6): 1- 4.

[94] 吳玉琴, 嚴(yán)茂超, 許力峰. 城市生態(tài)系統(tǒng)代謝的能值研究進(jìn)展. 生態(tài)環(huán)境學(xué)報(bào), 2009, 18(3): 1139- 1145.

[95] 吳玉琴, 嚴(yán)茂超. 廣州城市代謝效率的模擬分析. 資源科學(xué), 2011, 33(8): 1555- 1562.

[96] Yan M C, Odum H T. An eMergy evaluation of the seven year′s development of Qianyanzhou ecological experimental station. The Journal of Chinese Geography, 1998, 8(3): 221- 236.

[97] Yan M C, Odum H T. Eco-economic evolution, emergy evaluation and policy options for the sustainable development of Tibet. The Journal of Chinese Geography, 2000, 10(1): 1- 27.

[98] 嚴(yán)茂超. 生態(tài)經(jīng)濟(jì)學(xué)新論——理論、方法與應(yīng)用. 北京: 中國(guó)致公出版社, 2001.

[99] Dong X B, Ulgiati S, Yan M C, Gao W S. Progress, influence and perspectives of emergy theories in China, in support of environmentally sound economic development and equitable trade. Energy Policy, 2008, 36(3): 1019- 1028.

[100] Dong X B. Ulgiati S, Yan M C, Zhang X S, Gao W S. Energy and eMergy evaluation of bioethanol production from wheat in Henan Province, China. Energy Policy, 2008, 36(10): 3882- 3892.

[101] Ulgiati S, Ascione M, Bargigli S, Cherubini F, Franzese P P, Raugei M, Viglia S, Zucaro A. Material, energy and environmental performance of technological and social systems under a Life Cycle Assessment perspective. Ecological Modelling, 2011, 222(1): 176- 189.

[102] J?gensena S E, Fath B D. Examination of ecological networks. Ecological Modelling, 2006, 196(3/4): 283- 288.

[103] Jiang M M, Chen B. Integrated urban ecosystem evaluation and modeling based on embodied cosmic exergy. Ecological Modelling, 2011, 222(13): 2149- 2165.

[104] Zhang Y, Yang Z F, Yu X Y. Ecological network and emergy analysis of urban metabolic systems: Model development, and a case study of four Chinese cities. Ecological Modelling, 2009: 220(11): 1431- 1442.

[105] Zhang Y, Yang Z F, Fath B D, Li S S. Ecological network analysis of an urban energy metabolic system: Model development, and a case study of four Chinese cities. Ecological Modelling, 2010, 221: 1865- 1879.

[106] Thébault E, Fontaine C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science, 2010, 329(5993): 853-856.

[107] Cohen J E, Briand F, Newman C M. Community Food Webs: Data and Theory. Berlin, New York: Springer-Verlag, 1990.

[108] Martinez N D. Scale-dependent constraints on food-web structure. The American Naturalist, 1994, 144(6): 935- 953.

[109] Bersier L F, Dixon P, Sugihara G. Scale-invariant or scale-dependent behavior of the link density property in food webs: A matter of sampling effort? The American Naturalist, 1999, 153(6): 676- 682.

[110] Hannon B. The structure of ecosystems. Journal of Theoretical Biology, 1973, 41(3): 535- 566.

[111] Patten B C. Network ecology: Indirect determination of the life-environment relationship in ecosystems // Higashi M, Burns T P, eds. Theoretical Studies of Ecosystems: The Network Perspective. Cambridge: Cambridge University Press, 1991: 288- 351.

[112] Kauffman S A, Institute S F. Investigations. Oxford: Oxford University Press, 2000: 1- 302.

[113] Zhang J J, Gurkan Z R, J?rgensen S E. Application of eco-exergy for assessment of ecosystem health and development of structurally dynamic models. Ecological Modelling, 2010, 221(4): 693- 702.

[114] Forman R T T, Some general principles of landscape and regional ecology. Landscape Ecology, 1995, 10(3): 133- 142.

[115] Forman R T T, Moore P N. Theoretical foundations for understanding boundaries in landscape mosaics // Hansen A J, di Castri F, eds. Landscape Boundaries: Consequences for Biotic Diversity and Ecological Flows. New York: Springer-Verlag, 1992: 236- 258.

[116] Myers N, Simon J L. Scarcity or Abundance?: A Debate on the Environment. New York: W W Norton Incorporated, 1994.

[117] Bourne R. Some ecological conceptions. Empire Forestry Journal, 1934, 13(1): 15- 30.

[118] Chen H, Chen G Q, Ji X. Cosmic emergy based ecological systems modelling. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(9): 2672- 2700.

[119] Chen Z M, Chen B, Chen G Q. Cosmic exergy based ecological assessment for a wetland in Beijing. Ecological Modelling, 2011, 222(2): 322- 329.

[120] 徐中民, 程國(guó)棟, 張志強(qiáng). 生態(tài)足跡方法: 可持續(xù)性定量研究的新方法——以張掖地區(qū)1995年的生態(tài)足跡計(jì)算為例. 生態(tài)學(xué)報(bào), 2001, 21(9): 1484- 1493.

[121] He Y Q, Che T, Wang Y. Ecological footprint and endogenous economic growth in the Poyang lake area in China based on empirical analysis of panel data model. Journal of Resources and Ecology, 2012, 3(4): 367- 372.

[122] 呂一河, 馬志敏, 傅伯杰, 高光耀. 生態(tài)系統(tǒng)服務(wù)多樣性與景觀多功能性——從科學(xué)理念到綜合評(píng)估. 生態(tài)學(xué)報(bào), 2013, 33(4): 1153- 1159.

A review on the composition and analysis of ecological flow

GUO Beibei, YANG Xuhong, JIN Xiaobin*, ZHOU Yinkang

SchoolofGeographicandOceanographicSciences,NanjingUniversity,Nanjing210023,China

Ecological environment and land-use changes brought about by human activity are one of the highlights of the global change research. In complex natural ecosystems, among the various components of material cycles, energy flow and information delivery is usually expressed as a flowing form. Its path, direction, intensity, speed have an important impact on the ecosystem. This article analyzes the origin and development of ecological flow. The energy flow, material flow and information flow from the three areas to understand the ecological flow structure. And it gives a summary and review of relevant theory and analysis methods. On the basis of the existing studies, it analyzes the ecological flow in a typical half-sown semi-natural farmland ecological system. For example, through ecological indicators, such as network connections and the pure comparative analysis of natural ecosystems and ecological stream flows, paths and intensities of human activity enhances the flexibility of ecological systems, but disrupting the stability of the original. Conventionally, a single conservative medium is allowed as to the quantification of ecological flows, for example materials (e.g., grams of carbon) or energy (e.g., kilojoules), which is the major constraint during network construction. However, more than one kind of flow operates in ecosystem. Ecologists have been focused on applicable methods for a unification of all the eco-flows. Of which, emergy analysis and extended exergy analysis were invented respectively. Emergy analysis was to integrate the value of free environment investment, goods, services and information in a common unit of measurement via solar transformity, which makes it possible to evaluate all of the eco-flows (materials, energy, and information) with ecosystem. On the other hand, extended exergy analysis also provides a unified way to measure various flows with solid scientific basis, and provides a wide and clear vision of the use and degradation of resources and energy. Research foundation of ecological flow quantification have attained, but there are still many problems in future studies, which still need to be systematically explored.

ecological flow; emergy; extended exergy analyze; ecosystem

教育部博士點(diǎn)基金資助項(xiàng)目(20120091110014); 國(guó)家自然科學(xué)基金資助項(xiàng)目(41201386); 江蘇省普通高校研究生科研創(chuàng)新計(jì)劃資助項(xiàng)目(CXZZ13_0046)

2013- 05- 07;

日期:2014- 04- 17

10.5846/stxb201305070969

*通訊作者Corresponding author.E-mail: jinxb@nju.edu.cn

郭貝貝, 楊緒紅, 金曉斌, 周寅康.生態(tài)流的構(gòu)成和分析方法研究綜述.生態(tài)學(xué)報(bào),2015,35(5):1630- 1639.

Guo B B, Yang X H, Jin X B, Zhou Y K.A review on the composition and analysis of ecological flow.Acta Ecologica Sinica,2015,35(5):1630- 1639.

猜你喜歡
能值信息流能量
基于信息流的作戰(zhàn)體系網(wǎng)絡(luò)效能仿真與優(yōu)化
能量之源
安徽省農(nóng)業(yè)生態(tài)經(jīng)濟(jì)系統(tǒng)能值分析*
基于信息流的RBC系統(tǒng)外部通信網(wǎng)絡(luò)故障分析
戰(zhàn)區(qū)聯(lián)合作戰(zhàn)指揮信息流評(píng)價(jià)模型
基于能值分析法的大慶石化企業(yè)生態(tài)效率研究
詩(shī)無(wú)邪傳遞正能量
生態(tài)經(jīng)濟(jì)系統(tǒng)的動(dòng)態(tài)能值分析
——以湖南新晃縣(2006年~2015年)為例
肉雞日糧添加或不添加酶條件下不同木薯產(chǎn)品能值的評(píng)定
廣東飼料(2016年6期)2016-12-01 03:43:31
基于任務(wù)空間的體系作戰(zhàn)信息流圖構(gòu)建方法
密山市| 寻乌县| 个旧市| 嵊泗县| 宜黄县| 锡林浩特市| 周至县| 泌阳县| 长汀县| 尼木县| 临沂市| 武威市| 太康县| 盐津县| 郎溪县| 清涧县| 桦甸市| 江永县| 义马市| 兴文县| 三台县| 桂阳县| 依兰县| 玛曲县| 清镇市| 伊金霍洛旗| 海南省| 惠州市| 兰溪市| 庐江县| 泊头市| 石阡县| 三都| 大理市| 白城市| 武冈市| 凤冈县| 达尔| 南投市| 香港| 台北县|