司瑞瑞 吳育鋒 孫奮勇
[摘要] ATP結(jié)合盒(ABC)轉(zhuǎn)運蛋白超家族利用水解ATP的能量將藥物泵出細(xì)胞外,其功能和表達(dá)的改變參與了幾乎所有腫瘤多藥耐藥的形成。研究通過作用于跨膜轉(zhuǎn)運蛋白而逆轉(zhuǎn)腫瘤多藥耐藥已經(jīng)成為目前的熱點,雖然一系列臨床實驗的失敗使逆轉(zhuǎn)耐藥的研究遇到了挫折,但是研究仍在推進(jìn)。在此基礎(chǔ)上,本文主要論述了以ABC轉(zhuǎn)運蛋白為代表的跨膜轉(zhuǎn)運蛋白在腫瘤多藥耐藥及逆轉(zhuǎn)耐藥方面的研究進(jìn)展,并展望未來研究的方向。
[關(guān)鍵詞] ABC轉(zhuǎn)運蛋白;腫瘤;多藥耐藥;逆轉(zhuǎn)耐藥
[中圖分類號] R92 [文獻(xiàn)標(biāo)識碼] A [文章編號] 1673-7210(2015)02(c)-0150-06
在對抗腫瘤的過程中,作為主要治療手段之一的化療,由于多藥耐藥現(xiàn)象(multi-drug resistance,MDR)的出現(xiàn)影響了腫瘤化療的效果[1]。ATP結(jié)合盒(ATP-binding cassette,ABC)轉(zhuǎn)運蛋白超家族成員利用ATP水解的能量跨膜轉(zhuǎn)運各種底物,包括肽、脂質(zhì)和抗癌藥物,幾乎參與了所有腫瘤的化療耐藥形成過程。人們已付出大量努力來明確這些蛋白的結(jié)構(gòu)和功能[2-5],以探索可拮抗其作用并克服MDR(既具有臨床特異性又具有高親和力)的抑制劑。雖然前三代拮抗劑由于不同的原因而失敗了,但研究仍在推進(jìn)。本文通過對ABC轉(zhuǎn)運蛋白及逆轉(zhuǎn)臨床耐藥的新方法進(jìn)行系統(tǒng)評價,討論出現(xiàn)的問題和取得的經(jīng)驗,對臨床治療工作和未來應(yīng)用前景有重要的指導(dǎo)意義。
1 ABC轉(zhuǎn)運蛋白概述
人類基因組包含48個ABC轉(zhuǎn)運蛋白基因,它們在序列同源性和結(jié)構(gòu)域相似性的基礎(chǔ)上可進(jìn)一步分為七個不同的亞家族(ABCA~ABCG)。典型的ABC轉(zhuǎn)運蛋白由兩個高度疏水的跨膜區(qū)(transmembrane domain,TMD)和兩個核苷酸結(jié)合區(qū)(nucleotide-binding domain,NBD)組成,少數(shù)ABC轉(zhuǎn)運蛋白只有一個NBD和一個TMD組成(半轉(zhuǎn)運蛋白),比如ABCG2(breast cancer resistance protein,BCRP),被稱為半轉(zhuǎn)運蛋白,通過形成二聚體來發(fā)揮功能[6-7]。目前研究最多的是P-糖蛋白(P-gp,ABCB1)、多藥耐藥性蛋白(MRP1,ABCC1;MRP2,ABCC2)和乳腺癌耐藥蛋白(BCRP,ABCG2)。
1.1 P-gp
P-gp的檢測和分離最初是由Juliano等[8]于1976年在具有MDR表型的中國倉鼠卵巢癌細(xì)胞中發(fā)現(xiàn)的,位于人染色體7q21.1,它是由MDR1基因編碼的170 kDa的質(zhì)膜蛋白[9-10]。在生理條件下,P-gp主要表達(dá)于由上皮細(xì)胞內(nèi)襯的排泄器官(如肝、腎、腸、肺和腎上腺)、血液-組織的毛細(xì)血管內(nèi)皮細(xì)胞的近頂膜處(如血-腦,血-睪丸屏障等)。
P-gp利用ATP水解提供的能量將親脂疏水性藥物主動泵出到細(xì)胞外,致使細(xì)胞內(nèi)藥物濃度降低而產(chǎn)生耐藥。P-gp通過將外來物質(zhì)泵出細(xì)胞以減少對細(xì)胞本身的傷害,它的跨膜區(qū)域結(jié)合帶有中性正電荷的疏水性底物,可將底物從脂質(zhì)雙分子層遞呈給轉(zhuǎn)運蛋白[11]。綜合文獻(xiàn)報道,P-gp膜轉(zhuǎn)運蛋白參與了長春堿類、蒽類化合物、紫杉醇類等藥物耐藥性的形成。P-gp作用方式就像“疏水真空泵”,當(dāng)化療藥物經(jīng)濃度梯度進(jìn)入細(xì)胞后與P-gp底物結(jié)合區(qū)結(jié)合,同時NBD水解ATP;隨后,P-gp構(gòu)型發(fā)生改變,藥物由蛋白的高親和位點移到低親和位點并被排出胞外[12]。其次,P-gp還可使胞內(nèi)藥物重新分布,使藥物聚集在細(xì)胞器如溶酶體內(nèi),進(jìn)一步使化療藥物脫離作用靶點,從而導(dǎo)致耐藥。另外,P-gp對細(xì)胞程序性凋亡級聯(lián)反應(yīng)有抑制作用,從而提高了腫瘤細(xì)胞的存活率[13],并能保護(hù)耐藥細(xì)胞免于細(xì)胞毒性藥物的攻擊及Fas配體誘導(dǎo)的多種形式的半胱氨酸依賴性凋亡[14]。
1.2 多藥耐藥性蛋白(multidrug resistance-associated protein,MRP)
MRP最初在多柔比星耐藥的H69AR肺腫瘤細(xì)胞中被檢測到,約190 kD[15]。MRP主要表達(dá)于人體許多正常組織內(nèi),尤其高表達(dá)于血-腦屏障的脈絡(luò)細(xì)胞基底外側(cè)膜上,以及支氣管上皮細(xì)胞、胎盤中[16-18]。不同于P-gp的是,MRP不能轉(zhuǎn)運未經(jīng)修飾的化療藥物的天然產(chǎn)物,但可轉(zhuǎn)運經(jīng)生物轉(zhuǎn)化后與谷胱甘肽(glutathione,GSH)結(jié)合的產(chǎn)物[19]。MRP1的活性可以被GSH增強(qiáng),這使得它可以輸送許多中性和堿性的藥物[20]。另外,MRP1可調(diào)節(jié)細(xì)胞氧化應(yīng)激和氧化還原之間的平衡,保持靈敏的免疫反應(yīng)性[21-22]。MRP1可廣泛介導(dǎo)轉(zhuǎn)運腫瘤細(xì)胞內(nèi)的抗癌藥物,包括長春花生物堿、蒽環(huán)類、表鬼臼毒素、紫杉烷、氨甲蝶呤和喜樹堿[23-24]。
MRP蛋白介導(dǎo)的耐藥機(jī)制與P-gp不同的是,MRP并不能獨立泵出未經(jīng)修飾的化療藥物及其天然代謝產(chǎn)物,它的底物需要與還原型GSH相結(jié)合,通過MRP/GS-X泵外排。GSH也可調(diào)節(jié)MRP蛋白對藥物的轉(zhuǎn)運,降低GSH的胞內(nèi)濃度將影響MRP2蛋白的轉(zhuǎn)運功能;而GSH合酶的抑制劑(如:丁硫氨酸亞砜胺等)可逆轉(zhuǎn)MRP蛋白對柔紅霉素的耐藥性。另外有報道指出,柔紅霉素的胞內(nèi)聚集與胞內(nèi)GSH水平呈負(fù)相關(guān)[25]。還有研究表明,MRP參與了更多底物的耐藥,如喜樹堿衍生物、順鉑、長春堿類和多柔比星等的耐藥[26]。
1.3 乳腺癌耐藥蛋白
BCRP最早被發(fā)現(xiàn)在多柔比星抵抗的MCF7/AdrVp乳腺癌細(xì)胞中[27]。BCRP基因定位于4q22.23,它是一個有665個氨基酸的(75 kDa)ABC半轉(zhuǎn)運蛋白,僅具有1個TMD和1個NBD。在跨膜轉(zhuǎn)運中,單體BCRP形成二聚體或多聚體[28]。BCRP主要定位于一些健康組織細(xì)胞的頂膜,包括胎盤合體細(xì)胞、肝細(xì)胞和腸黏膜細(xì)胞中,在那里它可能通過外排潛在的破壞性毒素,以保護(hù)胎兒,或?qū)⒍舅赝馀胖聊懝芎湍c腔等特定的體腔[29]。在大腦微血管,BCRP駐留在微血管內(nèi)皮細(xì)胞的管腔側(cè),通過血腦屏障限制了毒物的滲透性[30]。同時,BCRP也參與維持細(xì)胞內(nèi)激素和葉酸的動態(tài)平衡,主要通過轉(zhuǎn)運類固醇結(jié)合物以及葉酸和它的谷氨酸聚合物來實現(xiàn)[31-32]。
研究證實,BCRP的耐藥機(jī)制也具有自身的特點,即BCRP單體之間通過二硫鍵形成同二聚體,使結(jié)構(gòu)近似于完全轉(zhuǎn)運蛋白,而后再發(fā)揮藥物排出泵的功能[33-34]。Zhou等[35]發(fā)現(xiàn)BCRP可使細(xì)胞內(nèi)比生群、米托蒽醌、拓?fù)涮婵?、柔紅霉素、羅丹明和哌唑嗪等藥物的濃度下降。另外有報道指出,在生理pH值條件下BCRP具有轉(zhuǎn)運甲氨蝶呤、葉酸的功能[36]。Shulenin等[37]的研究顯示,低pH值環(huán)境可提高BCRP對藥物的轉(zhuǎn)運作用。
1.4 其他ABC轉(zhuǎn)運蛋白
ABCA1廣泛表達(dá)于腎上腺及子宮中,高表達(dá)于肝和腦,在調(diào)節(jié)脂蛋白代謝方面具有重要作用,在載脂蛋白的刺激下,轉(zhuǎn)運膽固醇和磷脂通過胞膜[33-34]。ABCA2主要表達(dá)于中樞神經(jīng)系統(tǒng)(CNS),介導(dǎo)細(xì)胞內(nèi)脂質(zhì)運輸[33,35-36]。ABCA3高表達(dá)于肺泡Ⅱ型細(xì)胞,參與合成和分泌肺表面活性物質(zhì)[37]。ABCA4與視網(wǎng)膜細(xì)胞磷脂轉(zhuǎn)運有關(guān)[38]。ABCA12在角質(zhì)細(xì)胞表面參與轉(zhuǎn)運葡萄糖[39]。還有一些成員參與神經(jīng)退行性疾病過程,如:ABCA1調(diào)節(jié)中樞神經(jīng)系統(tǒng)的膽固醇濃度和淀粉樣前體蛋白加工產(chǎn)生的神經(jīng)毒性淀粉樣蛋白[40-42];ABCA7與阿爾茨海默病密切相關(guān)[43];ABCA13參與精神分裂癥和雙相情感障礙[44]。ABCD亞科包含由4個基因編碼的半轉(zhuǎn)運體。ABCD1與腎上腺腦白質(zhì)營養(yǎng)不良(ALD)疾病有關(guān)。其他ABCD家族基因的功能還沒有被制訂出來,但其序列相似性表明,它們可能參與脂肪酸代謝。ABCE亞科包含單個成員,如OABP、ABCE1,這種蛋白質(zhì)識別某些病毒感染后產(chǎn)生的寡聚腺苷酸。
2 逆轉(zhuǎn)多藥耐藥現(xiàn)象的研究現(xiàn)狀
第一代抑制劑已被批準(zhǔn)用于臨床,包括奎尼丁、醋酸甲地孕酮、他莫昔芬、維拉帕米以及環(huán)孢菌素A。維拉帕米是第一個P-gp的抑制劑,它能直接與抗癌藥物競爭ABC轉(zhuǎn)運蛋白的外排作用,使得抗癌藥物在細(xì)胞內(nèi)保持較高的濃度,從而逆轉(zhuǎn)MDR作用。在第Ⅰ期臨床試驗研究評估中,其產(chǎn)生P-gp抑制作用的劑量閾值較高,這導(dǎo)致了較大的心臟毒性[45]而未能應(yīng)用于臨床。另外,觀察其他第一代抑制劑,雖沒有太大的毒性,但在隨機(jī)臨床試驗中缺乏有效的差異性[46-47]而中止。
第二代抑制劑為第一代抑制劑的衍生物,以增加在正常組織中對ABC轉(zhuǎn)運蛋白的抑制,提高治療指數(shù)并減少毒性為目的。該類藥物包括環(huán)胞素A的衍生物代司樸達(dá)(Valspodar,PSC833)、以維拉帕米為結(jié)構(gòu)基礎(chǔ)的S9788、奎尼丁的類似物比立考達(dá)(Biricodar,VX-710)及MS209等。大多數(shù)這些抑制劑可抑制細(xì)胞色素P450同工酶3A4介導(dǎo)的抗癌藥物如紫杉醇和長春新堿的代謝作用,從而使患者血液中的藥物濃度增高而增加毒副作用[48]。多非喹達(dá)(MS209)被證明可使對多西他賽和紫杉醇耐藥的B16黑色素瘤重新獲得化療敏感性,同樣的實驗結(jié)果也表現(xiàn)在大腸癌HCT-15和小乳腺癌MCF-7移植瘤中[49]。但是多非喹達(dá)雖然沒有增加毒性,但是在與環(huán)磷酰胺、阿霉素、氟尿嘧啶聯(lián)合用藥時對晚期或復(fù)發(fā)性乳腺癌無進(jìn)展生存期(PFS)并沒有改善[50]。該類藥物可干擾化療藥物代謝,抑制其他轉(zhuǎn)運蛋白超家族的成員,并帶來不可預(yù)知的毒副作用,使重要臟器的解毒能力降低,因此,雖然該類藥物有逆轉(zhuǎn)活性高且無心血管毒性的特點,但仍未能應(yīng)用于臨床。
第三代抑制劑有高效力的ABC轉(zhuǎn)運蛋白抑制作用,可特異性的與P-gp作用,并可減少化療藥帶來的藥物毒性,具有良好的開發(fā)前景。此類抑制劑的優(yōu)點在于它不是細(xì)胞色素P450的底物,因而不會改變與其合用的抗癌藥物的藥動學(xué)性質(zhì)。同時它對其他轉(zhuǎn)運蛋白超家族的影響較小,從而最大限度地減少了對其他轉(zhuǎn)運蛋白的抑制而產(chǎn)生的副作用。但是因為大多數(shù)人對這些藥物仍然產(chǎn)生了較大的副作用而使臨床試驗(Ⅱ期或Ⅲ期)終止。例如,Tariquidar(XR-9576),是鄰氨基苯甲酰胺的衍生物,無論是在體外和體內(nèi)都表現(xiàn)出可高效力的逆轉(zhuǎn)P-gp介導(dǎo)的多藥耐藥,在裸鼠體內(nèi)Tariquidar可完全恢復(fù)耐藥小細(xì)胞肺癌和卵巢癌異種移植物對紫杉醇、依托泊苷、長春新堿的抗腫瘤活性[51]。盡管如此,Tariquidar在Ⅱ期臨床研究完成之前仍然被終止了,因有研究表明它與其他化療藥物合用后,其毒性比對照組更強(qiáng)。Biricodar(VX-710)增加腫瘤細(xì)胞對米托蒽醌、阿霉素、柔紅霉素的吸收和保留,并在抗P-gp、MRP1和BCRP過表達(dá)的過程中恢復(fù)腫瘤細(xì)胞的敏感性[52-53]。Ⅱ期臨床研究與阿霉素和長春新堿的組合因藥物毒性和沒有明顯改善患者小細(xì)胞肺癌的復(fù)發(fā)率而終止[54]。
3 逆轉(zhuǎn)ABC轉(zhuǎn)運蛋白所致MDR的展望
3.1 針對ABC轉(zhuǎn)運蛋白的單克隆抗體
有證據(jù)表明,在體內(nèi)體外研究中單克隆抗體(如MRK16、UIC2和HYB-241)可特異性結(jié)合于P-gp,可以通過抑制許多化療藥物的外排作用而提高化療效果(例如,柔紅霉素、阿霉素、長春新堿、依托泊苷、紫杉醇)[55-56]。該MRK16抗體識別人P-gp的表位,并能至少部分地逆轉(zhuǎn)P-gp在相關(guān)組織中的表達(dá)[57]。
3.2 抑制相關(guān)的信號轉(zhuǎn)導(dǎo)及核受體
在腫瘤細(xì)胞中ABC藥物轉(zhuǎn)運蛋白的過度表達(dá)可能通過干擾其信號轉(zhuǎn)導(dǎo)途徑而受到抑制。有研究通過靶向轉(zhuǎn)錄因子阻斷hedgehog通路,增加了對長春新堿和依托泊苷的敏感性,通過抑制P-gp和MRP1的表達(dá)緩解膠質(zhì)瘤細(xì)胞耐藥[58]。
3.3 納米載體
納米載體分為磁性納米載體、聚酰胺-胺行樹枝狀高分子(PAMAM)、穹窿體。磁性納米載體中的鐵氧化物Fe3O4納米顆粒的磁性最強(qiáng),易實現(xiàn)靶向定位。將化療藥物裝入Fe3O4顆粒中作用于腫瘤細(xì)胞將減少化療藥物的外排及下調(diào)轉(zhuǎn)運蛋白的表達(dá)。PAMAM是一個球形分子,其優(yōu)點是具有低毒性、幾乎無免疫原性。它可以聯(lián)合轉(zhuǎn)運抗癌藥物和siRNA,通過改變細(xì)胞內(nèi)藥物分布逆轉(zhuǎn)MDR。此外,siRNA與化療藥物結(jié)合可表現(xiàn)出令人滿意的基因沉默效果,使化療藥物進(jìn)入細(xì)胞,誘導(dǎo)更多的細(xì)胞毒性。穹窿體的優(yōu)點在于體積?。ㄐ∮?00 nm),其外殼可防止外來蛋白酶侵犯且不會引起體內(nèi)免疫反應(yīng),可特異地定位于細(xì)胞表面受體,轉(zhuǎn)運特定藥物。
3.4 生物技術(shù)
短發(fā)夾狀RNA(shRNA)和siRNA技術(shù)是基因沉默的一種手段,他們通過慢病毒及質(zhì)粒等載體的攜帶可以靶向沉默MDR1、MRP1、MRP4、BCRP等基因,從而抑制相應(yīng)的跨膜轉(zhuǎn)運蛋白的表達(dá),進(jìn)而減少抗癌藥物的外排,達(dá)到逆轉(zhuǎn)耐藥的作用。例如:MDR1及MDR3基因沉默能恢復(fù)A2780/taxol細(xì)胞對紫杉醇的敏感性并誘導(dǎo)細(xì)胞凋亡,從而逆轉(zhuǎn) A2780/taxol細(xì)胞對紫杉醇的耐藥性[59]。
4 小結(jié)
隨著對ABC轉(zhuǎn)運蛋白的結(jié)構(gòu)和功能的了解日益深入,大量的基礎(chǔ)和臨床研究已經(jīng)介入,抑制這些轉(zhuǎn)運蛋白的活性、提高抗癌療效的藥物研發(fā)已經(jīng)著手。但是目前評估這些藥物的臨床試驗還正在挫折中前行。展望新的戰(zhàn)略,如涉及RNAi技術(shù)和納米粒子等研究不斷創(chuàng)新,可能會克服以前幾代抑制劑的局限性。雖然說MDR是一個復(fù)雜的現(xiàn)象,源于不同的機(jī)制,但是繼續(xù)研究抑制MDR以造?;颊呤侨祟惖淖非?。
[參考文獻(xiàn)]
[1] Edwards BK,Noone AM,Mariotto AB,et al. Annual report to the nation on the status of cancer, 1975-2010, featuring prevalence of comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancer [J]. Cancer,2013,116(3):544-573.
[2] Gillet JP,Gottesman MM. Advances in the molecular detection of abc transporters involved in multidrug resistance in cancer [J]. Current Pharmaceutical Biotechnology,2011, 12(4):686-692.
[3] Huang Y,Penchala S,Pham AN,et al. Genetic variations and gene expression of transporters in drug disposition and response [J]. Expert Opinion on Drug Metabolism & Toxicology,2008,4(3):237-254.
[4] Zinzi L,Capparelli E,Cantore M,et al. Small and innovative molecules as new strategy to revert MDR [J]. Frontiers in Oncology,2014,4(2):194-213.
[5] Colabufo NA,Berardi F,Contino M,et al. Abc pumps and their role in active drug transport [J]. Current Topics in Medicinal Chemistry,2009,9(2):119-129.
[6] Dean M,Hamon Y,Chimini G. The human atp-binding cassette(ABC)transporter superfamily [J]. Journal of Lipid Research,2001,42(7):1007-1017.
[7] Gottesman MM,F(xiàn)ojo T,Bates SE. Multidrug resistance in cancer:Role of atp-dependent transporters [J]. Nature reviews Cancer,2002,2(1):48-58.
[8] Juliano RL,Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants [J]. Biochimica Et Biophysica Acta,1976,455(1):152-162.
[9] Zhou SF. Structure,function and regulation of p-glycoprotein and its clinical relevance in drug disposition [J]. Xenobiotica,2008,38(7-8):802-832.
[10] Loo TW,Bartlett MC,Clarke DM. Drug binding in human p-glycoprotein causes conformational changes in both nucleotide-binding domains [J]. The Journal of Biological Chemistry, 2003,278(3):1575-1578.
[11] Sauna ZE,Ambudkar SV. Evidence for a requirement for atp hydrolysis at two distinct steps during a single turnover of the catalytic cycle of human p-glycoprotein [J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97(6):2515-2520.
[12] Sauna ZE,Kim IW,Ambudkar SV. Genomics and the mechanism of p-glycoprotein(ABCB1)[J]. Journal of Bioenergetics and Biomembranes,2007,39(5-6):481-487.
[13] Robinson LJ,Roberts WK,Ling TT,et al. Human MDR1 protein overexpression delays the apoptotic cascade in Chinese hamster ovary fibroblasts [J]. Biochemistry,1997,36(37):11169-11178.
[14] Smyth MJ,Krasovskis E,Sutton VR,et al. The drug efflux protein, p-glycoprotein,additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis [J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95(12):7024-7029.
[15] Cole SP,Bhardwaj G,Gerlach JH,et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line [J]. Science,1992,258(5088):1650-1654.
[16] Wijnholds J,DeLange EC,Scheffer GL,et al. Multidrug resistance protein 1 protects the choroid plexus epithelium and contributes to the blood-cerebrospinal fluid barrier [J]. The Journal of Clinical Investigation,2000,105(3):279-285.
[17] Van Der Deen M,De Vries EG,Timens W,et al. ATP-binding cassette(ABC)transporters in normal and pathological lung [J]. Respiratory Research,2005,6(59):345-350.
[18] Nagashige M,Ushigome F,Koyabu N,et al. Basal membrane localization of MRP1 in human placental trophoblast [J]. Placenta,2003,24(10):951-958.
[19] Cole SP,Deeley RG. Transport of glutathione and glutathione conjugates by MRP1 [J]. Trends in Pharmacological Sciences,2006,27(8):438-446.
[20] Renes J,De Vries EG,Nienhuis EF,et al. ATP and glutathione-dependent transport of chemotherapeutic drugs by the multidrug resistance protein MRP1 [J]. British Journal of Pharmacology,1999,126(3):681-688.
[21] Mueller CF,Widder JD,McNally JS,et al. The role of the multidrug resistance protein-1 in modulation of endothelial cell oxidative stress [J]. Circulation Research,2005,97(7):637-644.
[22] Wijnholds J,Evers R,Van Leusden MR,et al. Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein [J]. Nature Medicine,1997,3(11):1275-1279.
[23] Allen JD,Brinkhuis RF,Van Deemter L,et al. Extensive contribution of the multidrug transporters p-glycoprotein and MRP1 to basal drug resistance [J]. Cancer Research,2000,60(20):5761-5766.
[24] Keppler D. Multidrug resistance proteins(MRPs,ABCCs):Importance for pathophysiology and drug therapy [J]. Handbook of Experimental Pharmacology,2011,(201):299-323.
[25] Koike K,Kawabe T,Tanaka T,et al. A canalicular multispecific organic anion transporter(cmoat)antisense cdna enhances drug sensitivity in human hepatic cancer cells [J]. Cancer Research,1997,57(24):5475-5479.
[26] Borst P,Evers R,Kool M,et al. The multidrug resistance protein family [J]. Biochimica Biophysica Acta,1999, 1461(2):347-357.
[27] Doyle LA,Yang W,Abruzzo LV,et al. A multidrug resistance transporter from human MCF-7 breast cancer cells [J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95(26):15665-15670.
[28] Ni Z,Bikadi Z,Rosenberg MF,et al. Structure and function of the human breast cancer resistance protein(bcrp/ABCG2)[J]. Current drug Metabolism,2010,11(7):603-617.
[29] Sarkadi B,Homolya L,Szakacs G,et al. Human multidrug resistance ABCB and ABCG transporters: Participation in a chemoimmunity defense system [J]. Physiological Reviews,2006,86(4):1179-1236.
[30] Tainton KM,Smyth MJ,Jackson JT,et al. Mutational analysis of p-glycoprotein:suppression of caspase activation in the absence of atp-dependent drug efflux [J]. Cell death and Differentiation,2004,11(9):1028-1037.
[31] Assaraf YG. The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostasis [J]. Drug Resistance Updates:Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy,2006,9(4-5):227-246.
[32] Suzuki M,Suzuki H,Sugimoto Y,et al. ABCG2 transports sulfated conjugates of steroids and xenobiotics [J]. The Journal of Biological Chemistry,2003,278(25):22644-22649.
[33] Langmann T,Mauerer R,Zahn A,et al. Real-time reverse transcription-PCR expression profiling of the complete human ATP-binding cassette transporter superfamily in various tissues [J]. Clinical Chemistry,2003,49(2):230-238.
[34] McNeish J,Aiello RJ,Guyot D,et al. High density lipoprotein deficiency and foam cell accumulation in mice with targeted disruption of ATP-binding cassette transporter-1 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000,97(8):4245-4250.
[35] Zhou C,Zhao L,Inagaki N,et al. ATP-binding cassette transporter ABC2/ABCA2 in the rat brain: a novel mammalian lysosome-associated membrane protein and a specific marker for oligodendrocytes but not for myelin sheaths [J]. The Journal of Neuroscience:the Official Journal of the Society for Neuroscience,2001,21(3):849-857.
[36] Mack JT,Beljanski V,Tew KD,et al. The ATP-binding cassette transporter ABCA2 as a mediator of intracellular trafficking [J]. Biomedicine & Pharmacotherapy,2006,60(9):587-592.
[37] Shulenin S,Nogee LM,Annilo T,et al. ABCA3 gene mutations in newborns with fatal surfactant deficiency [J]. The New England Journal of Medicine,2004,350(13):1296-1303.
[38] Allikmets R. A photoreceptor cell-specific ATP-binding transporter gene(ABCR) is mutated in recessive stargardt macular dystrophy [J]. Nature Genetics,1997,17(1):122.
[39] Akiyama M,Sugiyama-Nakagiri Y,Sakai K,et al. Mutations in lipid transporter ABCA12 in harlequin ichthyosis and functional recovery by corrective gene transfer [J]. The Journal of Clinical Investigation,2005,115(7):1777-1784.
[40] Chan SL,Kim WS,Kwok JB,et al. ATP-binding cassette transporter A7 regulates processing of amyloid precursor protein in vitro [J]. Journal of Neurochemistry,2008,106(2):793-804.
[41] Kim WS,Chan SL,Hill AF,et al. Impact of 27-hydroxycholesterol on amyloid-beta peptide production and ATP-binding cassette transporter expression in primary human neurons [J]. Journal of Alzheimer's Disease:JAD,2009,16(1):121-131.
[42] Wahrle SE,Jiang H,Parsadanian M,et al. Overexpression of ABCA1 reduces amyloid deposition in the pdapp mouse model of alzheimer disease [J]. The Journal of Clinical Investigation,2008,118(2):671-682.
[43] Hollingworth P,Harold D,Sims R,et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2ap are associated with alzheimer's disease [J]. Nature Genetics,2011,43(5):429-435.
[44] Knight HM,Pickard BS,Maclean A,et al. A cytogenetic abnormality and rare coding variants identify ABCA13 as a candidate gene in schizophrenia,bipolar disorder,and depression [J]. American Journal of Human Genetics,2009,85(6):833-846.
[45] Ozols RF,Cunnion RE,Klecker RW,et al. Verapamil and adriamycin in the treatment of drug-resistant ovarian cancer patients [J]. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology,1987,5(4):641-647.
[46] Millward MJ,Cantwell BM,Munro NC,et al. Oral verapamil with chemotherapy for advanced non-small cell lung cancer: a randomised study [J]. British Journal of Cancer,1993,67(5):1031-1035.
[47] Milroy R. A randomised clinical study of verapamil in addition to combination chemotherapy in small cell lung cancer. West of scotland lung cancer research group, and the aberdeen oncology group [J]. British Journal of Cancer,1993,68(4):813-818.
[48] Bates SE,Bakke S,Kang M,et al. A phase Ⅰ/Ⅱ study of infusional vinblastine with the p-glycoprotein antagonist valspodar(PSC 833) in renal cell carcinoma [J]. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research,2004,10(14):4724-4733.
[49] Naito M,Matsuba Y,Sato S,et al. Ms-209,a quinoline-type reversal agent,potentiates antitumor efficacy of docetaxel in multidrug-resistant solid tumor xenograft models [J]. Clinical Cancer Research:An Official Journal of the American Association for Cancer Research,2002,8(2):582-588.
[50] Saeki T,Nomizu T,Toi M,et al. Dofequidar fumarate(MS-209)in combination with cyclophosphamide,doxorubicin,and fluorouracil for patients with advanced or recurrent breast cancer [J]. Journal of Clinical Oncology:Official Journal of the American Society of Clinical Oncology,2007,25(4):411-417.
[51] Mistry P,Stewart AJ,Dangerfield W,et al. In vitro and in vivo reversal of p-glycoprotein-mediated multidrug resistance by a novel potent modulator,XR9576 [J]. Cancer Research,2001,61(2):749-758.
[52] Germann UA,Shlyakhter D,Mason VS,et al. Cellular and biochemical characterization of VX-710 as a chem-osensitizer: reversal of p-glycoprotein-mediated multidrug resistance in vitro [J]. Anti-cancer Drugs,1997,8(2):125-140.
[53] Minderman H,O'Loughlin KL,Pendyala L,et al. VX-710(biricodar) increases drug retention and enhances chem-osensitivity in resistant cells overexpressing p-glycoprotein,multidrug resistance protein,and breast cancer resistance protein [J]. Clinical Cancer Research:An Official Journal of the American Association for Cancer Research,2004,10(5):1826-1834.
[54] Gandhi L,Harding MW,Neubauer M,et al. A phase Ⅱ study of the safety and efficacy of the multidrug resistance inhibitor VX-710 combined with doxorubicin and vincristine in patients with recurrent small cell lung cancer [J]. Cancer,2007,109(5):924-932.
[55] Iwahashi T,Okochi E,Ariyoshi K,et al. Specific targeting and killing activities of anti-p-glycoprotein monoclonal antibody MRK16 directed against intrinsically multidrug-resistant human colorectal carcinoma cell lines in the nude mouse model [J]. Cancer Research,1993, 53(22):5475-5482.
[56] Mechetner EB,Roninson IB. Efficient inhibition of p-glycoprotein-mediated multidrug resistance with a monoclonal antibody [J]. Proceedings of the National Academy of Sciences of the United States of America,1992,89(13):5824-5828.
[57] Mickisch GH,Pai LH,Gottesman MM,et al. Monoclonal antibody MRK16 reverses the multidrug resistance of multidrug-resistant transgenic mice [J]. Cancer Research,1992,52(16):4427-4432.
[58] Cui D,Xu Q,Wang K,et al. Gli1 is a potential target for alleviating multidrug resistance of gliomas [J]. Journal of the Neurological Sciences,2010,288(1-2):156-166.
[59] Eyre R,Harvey I,Stemke-Hale K,et al. Reversing paclitaxel resistance in ovarian cancer cells via inhibition of the ABCB1 expressing side population [J]. Tumour Biology:the Journal of the International Society for Oncodevelopmental Biology and Medicine,2014,35,10):9879-9892.
(收稿日期:2014-11-22 本文編輯:程 銘)