張龍飛,許英霞,高孝敏,賈東鎖,王 宇
(1. 河北聯(lián)合大學(xué)礦業(yè)工程學(xué)院地質(zhì)系,河北唐山 063009;2. 河北省地礦局第二地質(zhì)大隊(duì),河北唐山 063000)
?
冀東杏山沉積變質(zhì)型鐵礦床富鐵礦成因探討
張龍飛1,許英霞1,高孝敏2,賈東鎖2,王 宇2
(1. 河北聯(lián)合大學(xué)礦業(yè)工程學(xué)院地質(zhì)系,河北唐山 063009;2. 河北省地礦局第二地質(zhì)大隊(duì),河北唐山 063000)
本文在野外勘查和巖(礦)相學(xué)基礎(chǔ)上,對(duì)杏山鐵礦塊狀富礦和條帶狀普通礦石進(jìn)行主量元素、微量元素和稀土元素等系統(tǒng)研究。杏山鐵礦石主要由磁鐵礦和石英組成,其中塊狀富鐵礦石相較于條帶狀普通礦石含有較多的鎂鐵質(zhì)礦物,另外塊狀富礦(XS-60)手標(biāo)本可見(jiàn)綠泥石化,但鏡下蝕變程度較弱,其富礦成因與后期熱液蝕變相關(guān)度不高;條帶狀貧礦(XS-10)遭受較強(qiáng)的后期熱液蝕變,有一定程度的鐵質(zhì)富集,但僅限于富鐵條帶,富硅條帶未蝕變。礦石中低Al2O3+Na2O含量和Zr、Sc、Th、Hf等含量特征表明杏山鐵礦在沉積過(guò)程中很少有陸源碎屑加入。微量元素和稀土元素配分模式表明條帶狀普通礦石和塊狀富鐵礦有共同的成礦物質(zhì)來(lái)源,富鐵礦和貧礦都是在缺氧環(huán)境下,通過(guò)海底熱液與海水混合后同沉積形成的,而后期褶皺變形作用使貧礦層加厚的同時(shí),也使富鐵層加厚。
杏山鐵礦 富鐵礦 沉積變質(zhì)型鐵礦床 冀東
Zhang Long-fei, Xu Ying-xia, Gao Xiao-min, Jia Dong-suo, Wang Yu. Genesis of high-grade ores in the Xingshan sedimentary metamorphic iron deposit of eastern Hebei Province[J]. Geology and Exploration, 2015, 51(3):0405-0413.
沉積變質(zhì)型鐵礦床是形成于前寒武紀(jì)的沉積鐵礦床或沉積含鐵建造受區(qū)域變質(zhì)作用或混合巖化作用改造后形成的,礦石常具有典型的條帶狀構(gòu)造,又被稱為條帶狀鐵建造(Banded Iron Formation,簡(jiǎn)稱BIF)。國(guó)外鐵礦資源85%以上來(lái)自沉積變質(zhì)型鐵礦,中國(guó)沉積變質(zhì)型鐵礦查明資源儲(chǔ)量占總量的48%(李厚民等,2012)。該類型鐵礦床主要是貧鐵礦石,含鐵品位(TFe)一般為25%~36%,富鐵礦只占少數(shù)(沈保豐,2012)。杏山鐵礦床是冀東地區(qū)僅有的含工業(yè)富礦體的礦山,前人已對(duì)杏山鐵礦床的地球化學(xué)特征、成礦物質(zhì)來(lái)源及富礦成因等方面做了較深入的研究(丁文君等,2009;丁文君等,2010;湯紹合,2012;周永貴等,2012)。筆者通過(guò)對(duì)司家營(yíng)及馬城鐵礦床中的富鐵礦石或較富鐵礦石進(jìn)行了較系統(tǒng)的研究,對(duì)杏山鐵礦床進(jìn)行野外踏勘、采樣,發(fā)現(xiàn)冀東地區(qū)富鐵礦具有高度的相似性,但也具有各自的特點(diǎn)。本文通過(guò)對(duì)杏山鐵礦床針對(duì)性地采集條帶狀普通礦石和富鐵礦石,進(jìn)行巖(礦)相學(xué)、礦石地球化學(xué)等研究,以期深入探討杏山鐵礦床富鐵礦成因機(jī)理。
遷安鐵礦區(qū)位于華北陸塊北緣燕遼沉降帶,馬蘭峪-山海關(guān)復(fù)背斜遷安隆起邊部的緊密褶皺帶中(周永貴等;2012),是冀東地區(qū)兩個(gè)規(guī)模最大的鐵礦區(qū)之一。遷安鐵礦區(qū)北起水廠-建昌營(yíng),南至彭子店,可分為東西兩個(gè)成礦帶:遷安東部成礦帶和遷安西部成礦帶①。遷安東部成礦帶北起青山院,南至首陽(yáng)山和彭店子一帶;遷安西部成礦帶,即水廠一大石河礦帶,位于掛云山的東側(cè),灤河以西,北起候臺(tái)子,南至佛峪院。遷安鐵礦區(qū)內(nèi)含礦地層為遷西群上部的含沉積巖的火山巖硅鐵建造,巖性為黑云角閃斜長(zhǎng)片麻巖夾斜長(zhǎng)角閃巖、麻粒巖、黑云變粒巖、矽線石片麻巖,原巖為一套中基性-中酸性的安山玄武質(zhì)、英安質(zhì)火山熔巖,夾基性火山巖及中酸性凝灰?guī)r和雜砂巖、粉砂巖、粘土半粘土巖。與磁鐵石英巖共生的是一套含不等量暗色硅酸鹽礦物 (輝石、角閃石、黑云母)的變質(zhì)巖石組合,變質(zhì)程度為高角閃巖相-麻粒巖相。區(qū)域重熔型混合巖化普遍且比較強(qiáng)烈,混合花崗巖較為普遍。礦石為中粗粒結(jié)構(gòu),條紋狀、條帶狀和片麻狀構(gòu)造。礦石硅酸鹽礦物含量較少,主要為紫蘇輝石、透輝石和角閃石、黑云母、石榴石。該區(qū)礦層厚度一般較大,延伸較遠(yuǎn),大中型礦床較多,主要有水廠、馬蘭莊、杏山、孟家溝、菜園、棒錘山、彭店子等鐵礦。
杏山鐵礦即位于遷安西部成礦帶的南端,基底為太古宙變質(zhì)巖系,蓋層為中元古界長(zhǎng)城系碎屑巖及碳酸鹽巖建造,與基底呈不整合接觸,北部及東部為第四紀(jì)黃土。出露在杏山鐵礦床的太古宙變質(zhì)巖系為遷西群三屯營(yíng)組,分布于礦床NE側(cè),為杏山鐵礦主要賦礦圍巖。1965年勘探報(bào)告中依據(jù)巖性自下而上劃分為五個(gè)巖性段:上、下混合花崗巖段,上、下混合斜長(zhǎng)片麻巖段及中元古界長(zhǎng)城系。上、下混合花崗巖段主要由混合花崗巖、黑云正長(zhǎng)均質(zhì)混合巖、混合巖等組成。上、下混合斜長(zhǎng)片麻巖段為含礦層,構(gòu)成鐵礦的頂?shù)装鍑鷰r和夾層,與鐵礦層共同形成一多褶曲向西凸出的弧形地層②,該段巖性主要為輝石斜長(zhǎng)角閃巖、黑云變粒巖、黑云淺粒巖、斜長(zhǎng)二輝石巖等和混合質(zhì)巖石(混合質(zhì)輝石角閃黑云片麻巖、混合質(zhì)石榴黑云變粒巖、黑云條帶混合巖等)的組合,磁鐵礦石英巖、輝石磁鐵石英巖層似層狀或透鏡狀?yuàn)A于其中(丁文君,2010)。中元古界長(zhǎng)城系底礫巖、長(zhǎng)石石英砂巖及砂質(zhì)灰?guī)r、頁(yè)巖等分布于礦區(qū)SW側(cè)。
區(qū)內(nèi)巖漿巖活動(dòng)頻繁,巖性復(fù)雜,但規(guī)模較小,分異性差,按侵入時(shí)期大致可分為兩個(gè)階段:混合巖化前及混合巖化后?;旌蠋r化以前侵入的火成巖主要為超基性巖(橄欖輝石巖、橄欖巖、輝石巖)、基性巖(角閃巖和輝石角閃巖)、蛇紋巖等,后期蝕變發(fā)育;混合巖化以后的侵入巖主要為偉晶巖及石英脈和煌斑巖,以偉晶巖為主②。
礦區(qū)的基底構(gòu)造為一向西凸出的多層間褶曲弧形構(gòu)造,巖層產(chǎn)狀走向NNW,傾向SWW,傾角一般50°~75°,南端覆于中元古界長(zhǎng)城系之下。區(qū)內(nèi)受區(qū)域大斷裂構(gòu)造的影響,礦體產(chǎn)生一系列褶曲和次一級(jí)的斷裂,這些斷裂多為橫斷層,對(duì)礦體有影響的斷層主要為F1、F4、F5斷層。F1斷層位于大小杏山之間,以NE30°方向延伸,傾向NW,傾角78°~82°,斷層破碎帶較寬,約10 m左右,斷層上盤上升,向南西移,下盤相對(duì)向北西移,故應(yīng)屬逆掩斷層。水平斷距120 m,導(dǎo)致大小杏山礦體在0 m以上不連續(xù),0 m以下由于大小杏山產(chǎn)狀不一致而相會(huì)合。F4、F5斷層在小杏山礦體A5線兩側(cè),屬F1斷層系統(tǒng)的平行斷層,斷距較小,對(duì)礦體影響不大。礦區(qū)內(nèi)還有其他較小斷層,但對(duì)礦體基本無(wú)破壞作用②。
杏山鐵礦床礦體呈弧形出露,地表全長(zhǎng)780 m,由F1斷層將杏山鐵礦分割成兩個(gè)獨(dú)立礦體:大杏山和小杏山,中元古界長(zhǎng)城系系蓋層將杏山西端盲礦體掩覆,受構(gòu)造影響而將礦體分割為三部分(圖1)。小杏山礦體位于F1斷層?xùn)|側(cè),出露長(zhǎng)度約300 m,礦體呈近東西向分布,走向105°,傾向南偏西,傾角東緩西陡。礦體西厚東薄,呈似層狀自然尖滅于東南端,礦體厚19.9~54.5 m,平均厚38.4 m。大杏山礦體位于F1斷層西側(cè),出露長(zhǎng)度約300 m,沿走向其產(chǎn)狀變化呈弧形彎曲,礦體形態(tài)復(fù)雜,礦體兩端因?qū)ΨQ褶曲而使礦體厚度增加,礦體平均厚度82.98m②。
區(qū)內(nèi)礦石自然類型主要為磁鐵石英巖,其次為輝石磁體石英巖、角閃磁鐵石英巖和赤鐵石英巖等。整個(gè)杏山鐵礦表內(nèi)礦石(SFe)平均品位為34%(丁文君,2010)。礦石礦物主要為磁鐵礦和假象赤鐵礦,脈石礦物為石英、輝石、角閃石和碳酸鹽少量蝕變礦物等。礦石主要為條紋狀構(gòu)造及片麻狀構(gòu)造。
根據(jù)1965年的勘查報(bào)告及2005~2009年的全國(guó)危機(jī)礦山接替資源找礦項(xiàng)目,杏山鐵礦床中有富大鐵礦體的存在,富鐵礦體呈多層狀賦存在貧鐵礦層中,兩者產(chǎn)狀一致,呈過(guò)渡關(guān)系,且與富礦體接觸的頂?shù)装遑毜V石品位也較高(湯紹合,2012)。1965年的勘查報(bào)告根據(jù)富鐵礦中脈石礦物的不同,將富鐵礦劃分為角閃輝石型磁鐵富礦石、綠泥石型磁鐵富礦石和輝石型鐵礦床富礦石三種。富鐵礦石呈黑色和灰黑色,致密塊狀構(gòu)造,部分塊狀富礦石還可見(jiàn)細(xì)條紋狀構(gòu)造,金屬礦物主要為磁鐵礦、少量假象赤鐵礦,脈石礦物以石英為主,次為鎂鐵閃石及輝石,少量碳酸鹽礦物。部分富鐵礦石有明顯的蝕變特征,可見(jiàn)綠泥石化及碳酸鹽化等。
2.1 巖(礦)相學(xué)
用于測(cè)試的樣品XS-6、XS-8和XS-10采于露天采坑,XS-75和XS-60分別采于井下75m和60m中段,對(duì)其的光薄片進(jìn)行了巖(礦)相學(xué)研究。
巖(礦)相學(xué)研究如圖3所示,XS-75、XS-6和XS-60為塊狀富鐵礦樣品。據(jù)鏡下特征將樣品XS-75定為閃石磁鐵石英巖,致密塊狀構(gòu)造,顆粒粗細(xì)不等,其主要礦物磁鐵礦含量大于50%、石英含量15%~20%、角閃石約10%~15%,還有少量輝石。XS-6為磁鐵石英巖,具細(xì)條紋構(gòu)造,較富鐵,主要礦物磁鐵礦含量大于55%、石英含量約35%~40%,少量角閃石主要集中在富鐵條帶中,而富硅條帶中角閃石含量很少。XS-60為綠泥石化閃石磁鐵石英巖,主要礦物為磁鐵礦(含量大于60%),石英含量約30%,角閃石約10%,可見(jiàn)綠泥石化,磁鐵礦顆粒明顯加大,表明其遭受一定的后期熱液蝕變,但由于光薄片切片位置的原因,鏡下的角閃石等鎂鐵質(zhì)礦物蝕變程度較低,僅部分角閃石發(fā)生蝕變,其較富可能與后期熱液蝕變加富關(guān)系不大。
圖1 杏山鐵礦床地質(zhì)簡(jiǎn)圖(據(jù)丁文君,2010)Fig.1 Geological map of the Xingshaniron deposit (after Ding, 2010) 1-鐵礦體;2-遷西巖群三屯營(yíng)組;3-中元古界長(zhǎng)城系;4-斷層;5-背斜軸;6-向斜軸;7-產(chǎn)狀及傾角 1-iron ore body;2-Santunying formation in Qianxi group;3-Changcheng system in middle Proterozoic ;4-fault;5-anticlinal axis; 6-synclinal axis;7-occurrence and dipangle
條帶狀普通礦石XS-8、XS-10為條帶狀普通礦石。XS-8為條帶狀磁鐵礦貧礦石,條帶狀結(jié)構(gòu),顆粒較細(xì),磁鐵礦含量30%~40%,石英含量大于50%,鎂鐵質(zhì)礦物含量很少。XS-10為含假象赤鐵礦的條帶狀磁鐵礦,手標(biāo)本為灰綠色,有綠泥石化,受到后期熱液蝕變的影響;鏡下可以看到富鐵條帶和富硅條帶,富鐵條帶明顯遭受后期熱液蝕變并有加富的現(xiàn)象,蝕變主要為綠泥石化和碳酸鹽化;富硅條帶石英很干凈,呈變晶鑲嵌結(jié)構(gòu),后期熱液蝕變對(duì)富硅條帶基本未改造。
2.2 測(cè)試分析
選擇代表性樣品送到廊坊區(qū)域地質(zhì)調(diào)查所進(jìn)行無(wú)污染-200目碎樣,礦石的主微量元素分析在核工業(yè)北京地質(zhì)研究院分析測(cè)試研究中心完成。主量元素分析采用熔片法,在XRF1500型X射線熒光光譜儀上分析,總量誤差在3%以內(nèi);微量元素分析采用電感耦合等離子體質(zhì)譜法,在Finnigan MAT ElementⅠHR-ICP-MS上完成,測(cè)試誤差小于5%。
3.1 鐵礦石主量元素分析
圖2 杏山鐵礦B11號(hào)勘探線剖面圖Fig.2 Geological profile of B11 exploration line in Xingshang iron deposit 1-鐵礦體;2-遷西巖群三屯營(yíng)組;3-F1斷層;4-鉆孔位 置及編號(hào) 1-iron ore body ;2-Santunying Formation in Qianxi group;3- F1 fault;4-drilling position and number
杏山鐵礦區(qū)3個(gè)塊狀富礦石和2個(gè)條帶狀普通礦石的主量元素分析數(shù)據(jù)見(jiàn)表1。從表1中可以看出,塊狀富礦石和條帶狀普通礦石主要由TFe2O3和SiO2組成。其中塊狀富鐵礦石TFe2O3含量變化范圍為50.07%~78.06%,平均63.14%;SiO2含量變化范圍為15.03%~39.26%,平均29.44%;條帶狀普通鐵礦石TFe2O3含量31.8%~47.76%,平均39.78%;SiO2含量變化范圍為44.81%~52.76%,平均48.79%。塊狀富礦石和條帶狀貧礦石中CaO的含量變化范圍為1.12%~3.16%,MgO的含量變化范圍為2.34%~4.91%,說(shuō)明貧礦石和富礦石中均含有少量的鎂鐵質(zhì)礦物。另外XS-10的燒失量(LOI)達(dá)4.45%,這可能與其含有較多的綠泥石等含水礦物有關(guān)。
3.2 微量元素地球化學(xué)特征
杏山鐵礦床塊狀富礦石和條帶狀貧礦石微量元素含量見(jiàn)表1,微量元素?cái)?shù)據(jù)處理是根據(jù)原始地幔標(biāo)準(zhǔn)化進(jìn)行的(Sunetal.,1989)。塊狀富礦石和條帶狀貧礦石所有樣品微量元素含量都很低,在原始地幔標(biāo)準(zhǔn)化微量元素分配圖上(圖4),兩類礦石微量元素配分形式相似,虧損大離子親石元素,富集高場(chǎng)強(qiáng)元素,表明其可能有共同的成礦物質(zhì)來(lái)源。另外除XS-10外,各樣品Co/Zn和Ni/Zn的比值也比較相近,與熱液成因的BIFs的Co/Zn(0.03~0.15)和Ni/Zn(0.08~0.78)比值非常相似(Sugitani, 1992),XS-10的Co/Zn和Ni/Zn的比值偏高,可能為遭受后期熱液蝕變的結(jié)果。
3.3 稀土元素地球化學(xué)特征
杏山鐵礦塊狀富礦石和條帶狀貧礦石全巖樣品的REE分析結(jié)果見(jiàn)表1。因Y的離子半徑與重稀土元素相似,其化學(xué)性質(zhì)也相近,故也列于表中一起討論。鐵礦石REE配分模式圖,通過(guò)PAAS(Post Archean Australian Shale)標(biāo)準(zhǔn)化(Pourmandetal., 2012),普通礦石與富礦石標(biāo)準(zhǔn)化后的稀土配分曲線如圖5所示。表中La/La*=LaPAAS/(3PrPAAS-2NdPAAS);Ce異常Ce/Ce*=2CePAAS/(PrPAAS+LaPAAS);Eu異常Eu/Eu*= EuPAAS/(0.67SmPAAS+0.37TbPAAS);Y異常Y/Y*=2YPAAS/(DyPAAS+HoPAAS)(Bau,etal., 1999; Robert,etal., 2007)。
由表1和圖5可知,未發(fā)生蝕變的富礦石(XS-75,XS-6)的∑REE+Y為10.16×10-6~10.59×10-6,平均值為10.38×10-6,其稀土配分曲線總體特征為:輕稀土相對(duì)虧損,中重稀土元素相對(duì)富集的分餾模式,其中(Pr/Yb)N=0.22~0.27和(Sm/Yb)N=0.30~0.32。整體顯示出La(La/La*平均值為2.21)、Eu(Eu/Eu*平均值為2.66)、Y(Y/Y*平均值為2.21)的正異常。未蝕變的普通礦石(XS-8)與未蝕變富礦石的稀土元素特征相似,∑REE+Y含量較低,為14.63×10-6,也表現(xiàn)為輕稀土虧損,中重稀土富集的分餾模式,呈現(xiàn)出Eu、Y的正異常。
遭受較弱蝕變的富礦石(XS-60)的∑REE+Y為33.16×10-6,其稀土配分曲線總體為:輕稀土元素相對(duì)虧損,中重稀土元素相對(duì)富集,稀土配分曲線變緩,其中(Pr/Yb)N=0.44和(Sm/Yb)N=0.60。顯示出Eu(Eu/Eu*平均值為1.45)、Y(Y/Y*平均值為1.47)的正異常。與前兩類礦石(未蝕變富礦石及未蝕變條帶狀貧礦石)配分模式基本一致,∑REE+Y含量相對(duì)增加,但并未引起∑REE+Y較大的變化,如丁文君等(2009)所測(cè)的杏山鐵礦中富鐵礦石∑REE+Y為10.34×10-6~37.78×10-6,貧鐵礦石∑REE+Y為8.58×10-6~22.23×10-6。
蝕變劇烈的普通礦石(XS-10)的∑REE+Y為106.96×10-6,其稀土配分曲線總體特征與之前表現(xiàn)完全不同:輕重稀土分餾不明顯,稀土配分曲線較平緩,其中(Pr/Yb)N=0.75和(Sm/Yb)N=0.78。顯示Eu(Eu/Eu*平均值為1.10)、Y(Y/Y*平均值為1.09)的正異常也不明顯。XS-10稀土元素配分模式與許英霞等(2014)所測(cè)的司家營(yíng)鐵礦赤鐵貧礦石稀土元素配分模式和富鐵礦石稀土元素配分模式相似,均比較平緩,∑REE+Y總量增加,且Eu異常值較未蝕變磁鐵石英巖減小。
圖3 杏山鐵礦床礦石手標(biāo)本及鏡下照片(左欄為手標(biāo)本;中欄為單偏光; 右欄為反射光)Fig.3 Microscope photos of ores from the Xingshan deposit (Left:hand specimens; middle:plainlight; right:reflecting microscope) A-XS-75塊狀磁鐵富礦; B-XS-60綠泥石化塊狀磁鐵富礦; C-XS-6塊狀磁鐵富礦;D-XS-8條帶狀磁鐵礦; E-XS-10含假象赤鐵礦的條帶狀磁鐵礦;Q-石英; Amp-角閃石; Mt-磁鐵礦; Hem-赤鐵礦; Chl-綠泥石; Cc-碳酸鹽 A-XS-75 Massive high-grade magnetite ore; B-XS-60 Choritization massive high-grade magnetite ore; C-XS-6 Massive high-grade magnetite ore; D-XS-8 Banded magnetite; E-XS-10 Banded magnetite bearing martite; Q-quartz; Amp-amphibole; Mt-magnetite; Hem-hematite; Chl-chlorite; Cc-carbonate表1 杏山鐵礦床礦石主量元素(%)、微量元素(10-6)分析結(jié)果Table 1 Major (%) and trace (10-6) element contents of iron ores in the Xingshan iron deposit
樣品XS-75XS-60XS-6XS-8XS-10塊狀富礦石條帶狀貧礦石樣品XS-75XS-60XS-6XS-8XS-10塊狀富礦石條帶狀貧鐵礦Na2O0.160.240.180.130.16Eu/Eu*2.681.452.653.341.10K2O0.010.170.080.040.34Y/Y*2.191.472.222.151.09Al2O30.091.290.180.383.23Y/Ho44.1936.5956.5256.6730.91MgO4.304.912.343.893.67(Sm/Yb)N0.300.600.320.320.78CaO1.533.161.122.162.77(Pr/Yb)N0.220.440.270.290.75MnO0.120.140.090.080.11(La/Yb)N0.380.250.340.390.73TiO20.030.080.030.050.13Rb1.200.831.480.3519.30P2O50.070.090.060.100.13Ba3.735.253.241.6214.80SiO215.0339.2634.0344.8152.76Th0.194.070.160.081.96TFe2O378.0650.0761.3047.7631.80U0.070.120.070.160.66FeO23.3518.0518.3514.9012.55Ta0.030.110.010.010.13LOI0.040.700.010.404.45Nb0.191.170.180.041.91Total99.43100.1199.4199.7999.54Pb2.401.851.321.713.50La1.783.041.362.1118.80Sr9.2116.408.1510.4011.50Ce2.328.342.043.1238.20Zr2.729.932.990.6041.30Pr0.241.200.240.354.38Hf0.060.340.060.031.12Nd0.925.541.101.4816.60Ga0.672.230.740.965.93Sm0.221.120.200.273.12Zn9.3716.904.035.999.77Eu0.090.270.090.160.60Cu3.682.315.812.9227.80Gd0.221.160.280.392.75Ni3.402.751.762.1915.50Tb0.040.210.050.070.49V2.9315.801.591.924.48Dy0.241.150.320.482.88Cr2.323.963.201.902.88Y3.809.003.735.2714.90Cs0.160.030.220.150.97Ho0.090.250.070.090.48Sc0.762.940.490.601.16Er0.240.820.310.381.48Co0.462.440.380.326.54Tm0.040.120.050.050.25Li7.865.2415.7014.6036.90Yb0.320.810.270.361.74Be0.510.640.210.410.65Lu0.050.120.060.060.29Cd0.060.060.010.070.05∑REE+Y10.5933.1610.1614.63106.96Co/Zn0.050.140.090.050.67La/La*1.941.182.491.941.04Ni/Zn0.360.160.440.371.59Ce/Ce*1.201.071.281.201.03
圖4 杏山鐵礦床礦石微量元素原始地幔標(biāo)準(zhǔn)化蛛網(wǎng)圖Fig.4 Trace element primitive-mantle-normalized diagram of iron ores from the Xingshan iron deposit
圖5 杏山鐵礦床礦石稀土元素PAAS標(biāo)準(zhǔn)化配分模式圖Fig.5 REE PAAS-normalized diagram of iron ores from the Xingshan iron deposit
與冀東地區(qū)其他鐵礦床相似,杏山鐵礦床礦石以TFe2O3和SiO2為主,Al2O3+TiO2的含量非常低,且與陸源沉積物相比,杏山鐵礦石中Zr、Sc、Th和Hf等元素的含量都非常低,表明其在沉積過(guò)程中很少有陸源碎屑物質(zhì)的混入(Calvertetal.,1993;Tribovillardetal.,1994;Hildetal.,1998;B?ingetal.,2004;李文君等,2012)。杏山鐵礦床礦石樣品與碳酸鹽巖相的BIFs相比相對(duì)富集Cr、Co、Ni、Zn、Ta和 Nb,說(shuō)明可能存在與沉積盆地同時(shí)期的火山活動(dòng)(Raju,2009;丁文君,2010)。
現(xiàn)代海水的REE配分模式具有重稀土富集、輕稀土虧損及明顯的La和Y正異常(Aliboetal.,1999;Bolharetal.,2004),而熱液具有明顯的Eu正異常(Campbelletal.,1988;Douvilleetal.,1999)。杏山鐵礦未蝕變的普通礦石(XS-8)和未蝕變的富礦石(XS-75和XS-6)的稀土元素經(jīng)PAAS標(biāo)準(zhǔn)化后均表現(xiàn)出輕稀土相對(duì)虧損,中重稀土相對(duì)富集的分餾模式,且整體表現(xiàn)出La正異常及強(qiáng)烈的Eu和Y的正異常。這說(shuō)明杏山鐵礦BIF中的稀土元素可能來(lái)自海水與海底熱液的混合溶液,表明杏山鐵礦的部分富鐵礦與普通礦石一樣,主要是原始沉積形成的,這與丁文君(2010)所測(cè)杏山礦石微量和稀土元素的分析結(jié)果相一致。
蝕變不完全的XS-60富鐵礦與前兩者有相似的稀土元素分餾模式,表明其成礦物質(zhì)來(lái)源也與之相同,但受到后期熱液的擾動(dòng)。蝕變較完全的XS-10樣品其稀土配分曲線總體特征與其他礦石表現(xiàn)差別較大,其遭受后期熱液改變最為劇烈。另外,與海水相比,熱液流體具有更高的∑REE+Y含量(Piepgrasetal.,1992),XS-60和XS-10的稀土元素和微量元素總量與未蝕變礦石相比,明顯升高,說(shuō)明XS-60和XS-10遭受到不同程度的后期熱液蝕變,其中XS-10采自露天采坑,可能還遭受了后期天水淋濾作用。高溫?zé)嵋鹤饔玫降蜏匚g變作用的轉(zhuǎn)變可以導(dǎo)致BIF中Eu正異常的減小(Danielsonetal., 1992; 代堰锫,2012),蝕變不完全富鐵礦石(XS-60)和蝕變劇烈的普通礦石(XS-10)Eu/Eu*值分別為1.45和1.10,較未蝕變富鐵礦石和未蝕變條帶狀貧礦石均小很多,說(shuō)明蝕變礦石Eu正異常的減小是由于后期低溫?zé)嵋何g變作用造成的。
自然界中Ce元素一般為+3價(jià),在氧化條件下Ce元素被氧化為+4價(jià),+4價(jià)的Ce容易發(fā)生水解,從而造成REE配分模式曲線中的Ce呈現(xiàn)負(fù)異常。因此Ce通??梢杂脕?lái)判斷海水的氧化還原環(huán)境(Nozakietal.,1999)。各礦石中均未見(jiàn)較明顯的Ce異常,表明杏山鐵礦BIFs沉積和后期熱液蝕變過(guò)程均處于一種缺氧的環(huán)境。
現(xiàn)代海水的Y/Ho比值約為44~74,且隨深度增大而減小,明顯高于球粒隕石和熱液流體的Y/Ho比值(26~28)(Bauetal.,1999; Bolharetal.,2004),因此Y/Ho比值可以作為判斷海水沉積或非海水沉積的依據(jù)。杏山鐵礦未蝕變的普通礦石和未蝕變的富礦石Y/Ho比值的均大于44,其比值遠(yuǎn)遠(yuǎn)高于球粒隕石的平均值,且與海水相接近。說(shuō)明杏山鐵礦沉積形成時(shí)有海水的參與。而XS-60和XS-10兩個(gè)蝕變的樣品Y/Ho比值分別為36.59和30.91,說(shuō)明他們與后期熱液關(guān)系更為緊密。
筆者綜合野外踏勘、顯微鏡下及地球化學(xué)分析得出:杏山沉積變質(zhì)型鐵礦床中塊狀富鐵礦與條帶狀貧鐵礦石呈互層產(chǎn)出,其富鐵礦和貧礦都是在缺氧環(huán)境下,海底熱液與海水混合后,同沉積形成,這是杏山鐵礦床富鐵礦形成的主要原因;后期褶皺作用可以使原本的層狀礦體在褶皺核部加厚和使富鐵礦體變厚加大,但杏山鐵礦床富鐵礦形成受后期斷裂構(gòu)造及熱液蝕變的影響較小。
杏山鐵礦與司家營(yíng)和馬城鐵礦相比,杏山雖然也遭受后期熱液的蝕變,局部有鐵質(zhì)富集的特征,但其主要以與普通礦石同沉積變質(zhì)形成的富鐵礦石占主體,即原始沉積就相對(duì)較富;而司家營(yíng)鐵礦富鐵礦的形成可能是原始沉積經(jīng)變質(zhì)作用形成含鎂鐵質(zhì)礦物較多的鐵礦石(其品位相對(duì)較高),經(jīng)后期熱液改造加富而形成,司家營(yíng)鐵礦的富鐵礦層與貧礦體呈互層狀產(chǎn)出,且蝕變較強(qiáng)(許英霞等,2014),馬城鐵礦與司家營(yíng)鐵礦相類似,但未發(fā)現(xiàn)較成規(guī)模的富礦層。
(1) 巖相學(xué)和礦石主量元素特征表明杏山鐵礦床富礦石和貧鐵礦石均由磁鐵礦、石英及少量角閃石(或輝石)組成,但條帶狀普通礦石中角閃石(輝石)含量較富鐵礦石中少。低Al2O3+Na2O含量和微量元素Zr、Sc、Th、Hf的含量表明杏山鐵礦在沉積過(guò)程中很少有陸源碎屑加入。
(2) 未蝕變富礦石和貧鐵礦石相似的微量元素和稀土元素配分模式表明,其有共同的成礦物質(zhì)來(lái)源,富鐵礦和貧礦都是在缺氧環(huán)境下,海底熱液與海水混合后,同沉積形成,這是杏山鐵礦床富鐵礦形成的主要原因,而后期褶皺作用使原來(lái)的富鐵礦層變厚加大。
(3) XS-60塊狀富礦樣品有弱蝕變,XS-10條帶狀貧鐵礦遭受較強(qiáng)的后期熱液蝕變,這與兩類礦石稀土配分模式及Y/Ho比值相一致,表明杏山鐵礦床礦體局部遭受到后期熱液蝕變,但后期蝕變對(duì)鐵礦石加富的作用不明顯。
致謝 本文野外工作得到首鋼杏山鐵礦的大力支持;審稿人對(duì)本文提出了寶貴意見(jiàn),使文章更加完善,在此一并表示衷心感謝。
[注釋]
① 河北省地勘局第二地質(zhì)大隊(duì). 2014. 冀東地區(qū)沉積變質(zhì)型鐵礦富礦控礦條件及科學(xué)基地研究[R].
② 冶金工業(yè)部石景山鋼鐵公司. 1965. 河北省遷安縣遷安鐵礦區(qū)杏山鐵礦床地質(zhì)勘探總結(jié)報(bào)告[R].
Alibo D S, Nozaki Y. 1999. Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation[J]. Geochimica et Cosmochimica Acta, 63(3): 363-372
Bau M, Dulski P. 1999. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater[J]. Chemical Geology, 155(1): 77-90
Bolhar R, Kamber B S, Moorbath S, Fedo C M, Whitehouse M J. 2004. Characterisation of early Archaean chemical sediments by trace element signatures[J]. Earth and Planetary Science Letters, 222(1): 43-60
B?ning P, Brumsack H J, B?ttcher M E, Schnetger B, Kriete C, Kallmeyer J, Borchers S L. 2004. Geochemistry of Peruvian near-surface sediments[J]. Geochimica et Cosmochimica Acta, 68(21): 4429-4451
Calvert S E, Pedersen T F. 1993. Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record[J]. Marine Geology, 113(1): 67-88
Campbell A C, Palmer M R, Klinkhammer G P, Bowers T S, Edmond J M, Lawrence J R, Casey J F, Thompson G, Humphris S, Rona P, Karson J A.1988. Chemistry of hot springs on the Mid-Atlantic Ridge[J]. Nature, 335(6): 514-519
Dai Yan-pei, Zhang Lian-chang, Wang Chang-le, Liu Li, Cui Min-li, Zhu Xiang-tian, Xiang Peng. 2012. Genetic type, formation age and tectonic setting of the Waitoushan banded iron formation, Benxi,Liaoning Province[J]. Acta Petrologica Sinica, 28(11):3574-3594(in Chinese with English abstract)
Danielson A, M?ller P, Dulski P. 1992. The europium anomalies in banded iron formations and the thermal history of the oceanic crust[J]. Chemical Geology, 97(1): 89-100
Ding wen-jun, Chen Zheng-le, Chen Bo-lin, Dong Fa-xing, Cui Ling-Ling. 2009. Geochemical characters of band iron formations from Xingshan iron deposit in Qian’an area,Hebei Province: Implication for their origin[J]. Journal of Geomechanics, 34(5):663-673(in Chinese with English abstract)
Ding Wen-jun. 2010. Geochemical characteristics and genesis of band iron formations form iron ore in Qian’an area[D].Beijing: China University of Geosciences(Beijing):1-100 (in Chinese with English abstract)
Douville E, Bienvenu P, Charlou J L, Donval J P, Fouquet Y, Appriou P, Gamo T L. 1999. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 63(5): 627-643
Hild E, Brumsack H J. 1998. Major and minor element geochemistry of Lower Aptian sediments from the NW German Basin (core Hohenegglesen KB 40)[J]. Cretaceous Research, 19(5): 615-633
Li Hou-min, Wang Deng-hong, Li Li-xing, Chen Jing, Yang Xiu-qing, Liu Ming-jun. 2012. Metallogeny of iron deposits and resource potential of major iron minerogenetic units in China[J].Geology in China, 39(3): 559-580(in Chinese with English abstract)
Li Wen-jun, Jin Xin-di, Cui Min-li, Wang Chang-le. 2012. Characterisics of rare earth elements , trace elements and geological significations of BIF from Sijiaying in eastern Hebei[J]. Acta Petrologica Sinica, 28(11):3670-3678(in Chinese with English abstract)
Nozaki Y, Alibo D S, Amakawa H, Gamo T, Hasumoto H. 1999. Dissolved rare earth elements and hydrography in the Sulu Sea[J]. Geochimica et Cosmochimica Acta, 63(15): 2171-2181
Piepgras D J, Jacobsen S B. 1992. The behavior of rare earth elements in seawater: Precise determination of variations in the North Pacific water column[J]. Geochimica et Cosmochimica Acta, 56(5): 1851-1862
Pourmand A, Dauphas N, Ireland T J. 2012. A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: Revising CI-chondrite and Post-Archean Australian Shale (PAAS) abundances[J]. Chemical Geology, 291: 38-54Raju P V. 2009. Petrography and geochemical behaviour of trace element, REE and precious metal signatures of sulphidic banded iron formations from the Chikkasiddavanahalli area, Chitradurga schist belt, India[J]. Journal of Asian Earth Sciences, 34(5): 663-673
Robert F,Ali P. 2007. Source heterogeneity for the major components of 3.7 Ga Banded Iron Formations (Isua Greenstone Belt, Western Greenland): tracing the nature of interacting water masses in BIF formation[J]. Earth and Planetary Science Letters, 253(1): 266-281
Shen Bao-feng. 2012. Geological characters and resource prospect of the BIF type iron ore deposits in China[J].Acta Geologica Sinica, 86(9):1376-1395(in Chinese with English abstract)
Sugitani K. 1992. Geochemical characteristics of Archean cherts and other sedimentary rocks in the Pilbara Block, Western Australia: evidence for Archean seawater enriched in hydrothermally-derived iron and silica[J]. Precambrian Research, 57(1): 21-47
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313-345
Tang Shao-he. 2012. Breakthrough in exploration at depth of metamorphic iron deposit in Qian’an country, Hebei province and discussion on genesis of the rich ore [J]. Contributions to Geology and Mineral Resources Research, 27(3):271-277(in Chinese with English abstract)
Tribovillard N P, Desprairies A, Lallier-Vergès E, Bertrand P, Moureau N, Ramdani A, Ramanampisoa L. 1994. Geochemical study of organic-matter rich cycles from the Kimmeridge Clay Formation of Yorkshire (UK): productivity versus anoxia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 108(1): 165-181
Xu Ying-xia, Zhang Long-fei, Gao Xiao-min, Li Hou-min, Jia Dong-suo, Li Li-xing. 2014. Metallogenic conditions of high-grade ores in the Sijiaying sedimentary metamorphic iron deposit, eastern Hebei Province[J]. Geology and exploration, 50(4):0675-0688(in Chinese with English abstract)
Zhou Yong-gui, Chen Zheng-le, Chen Bai-lin, Han Feng-bin. 2012. Genesis of rich large orebody in Xingshan Iron Deposit of Qian’An orefield, Hebei Province[J]. Journal of Jilin University(Earth Science Edition), S3:81-92(in Chinese with English abstract)
[附中文參考文獻(xiàn)]
代堰锫, 張連昌, 王長(zhǎng)樂(lè), 劉 利, 崔敏利, 朱明田, 相 鵬. 2012. 遼寧本溪歪頭山條帶狀鐵礦的成因類型、形成時(shí)代及構(gòu)造背景[J]. 巖石學(xué)報(bào), 28(11): 3574-3594
丁文君, 陳正樂(lè), 陳柏林, 董法先, 崔玲玲. 2009. 河北遷安杏山鐵礦床地球化學(xué)特征及其對(duì)成礦物質(zhì)來(lái)源的指示[J]. 地質(zhì)力學(xué)學(xué)報(bào), 04: 363-373
丁文君. 2010. 遷安鐵礦地球化學(xué)特征及其對(duì)礦床成因的指示[D]. 北京:中國(guó)地質(zhì)大學(xué)(北京):1-100
李厚民, 王登紅, 李立興, 陳 靖, 楊秀清, 劉明軍. 2012. 中國(guó)鐵礦成礦規(guī)律及重點(diǎn)礦集區(qū)資源潛力分析[J]. 中國(guó)地質(zhì), 39(3): 559-580
李文君, 靳新娣, 崔敏利, 王長(zhǎng)樂(lè). 2012. BIF微量稀土元素分析方法及其在冀東司家營(yíng)鐵礦中的應(yīng)用[J]. 巖石學(xué)報(bào), 11: 3670-3678
沈保豐. 2012. 中國(guó)BIF型鐵礦床地質(zhì)特征和資源遠(yuǎn)景[J]. 地質(zhì)學(xué)報(bào), 86(9):1376-1395
湯紹合. 2012. 河北遷安變質(zhì)鐵礦床深部找礦突破及富鐵礦成因探討[J]. 地質(zhì)找礦論叢, 27(3):271-277
許英霞,張龍飛,高孝敏,李厚民,賈東鎖,李立興. 2014. 冀東司家營(yíng)鐵礦床富礦成礦條件研究[J]. 地質(zhì)與勘探, 50(4):675-688
周永貴,陳正樂(lè),陳柏林,韓鳳彬. 2012. 河北遷安杏山富大鐵礦體成因初析[J]. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版), S3:81-92
Genesis of High-Grade Ores in the Xingshan Sedimentary Metamorphic Iron Deposit of Eastern Hebei Province
ZHANG Long-fei1, XU Ying-xia1, GAO Xiao-min2, JIA Dong-suo2, WANG Yu2
(1.CollegeofMiningEngineering,HebeiUnitedUniversity,Tangshan,Hebei063009;2.No.2GeologicalBrigadeofHebeiGeologyandMineralExplorationBureau,Tangshan,Hebei063000 )
Analyses of major, trace, and rare-earth elements were performed to the massive rich ore and the banded ore of the Xingshan iron deposit based on field work and petrographic study. The Xingshan iron ore is mainly composed of magnetite and quartz. Compared with the banded ordinary ore, the massive rich ore contains more mafic minerals. In addition, the chloritization can be found in the hand specimen of the massive rich ore (XS-60), while the alteration under the microscope is weak. And there is low correlativity between the rich ore (XS-60) and the later hydrothermal alteration. Meanwhile, the banded ore(XS-10)has suffered from strong later hydrothermal alteration and a certain degree of enrichment of iron that only appears in the iron rich bands. The content of Al2O3+Na2O and the trace elements such as Zr, Sc, Th and Hf indicates that there is a little terrigenous debris joining the deposition process of the Xingshan iron deposit. The trace elements and REE patterns show that the massive rich ore and the banded ordinary ore have the common source of ore-forming material. After seafloor hydrothermal was mixed with seawater, both the rich iron ore and the banded ore were formed simultaneously with sedimentation in an anoxic environment. The lean ore layer and the rich iron layer were thickened by later fold deformation.
Xingshan iron deposit, rich iron ore, sedimentary metamorphic iron deposit, East Hebei
2014-09-30;
2015-01-09;[責(zé)任編輯]郝情情。
國(guó)土資源部公益性行業(yè)科研項(xiàng)目:冀東地區(qū)沉積變質(zhì)型鐵礦富礦控礦條件及科學(xué)基地研究(201111002-04)資助。
張龍飛(1988年-),男,在讀碩士研究生,主要從事礦床學(xué)研究,E-mail:zhanglongfei18@126.com。
許英霞(1973年-),女,博士,副教授,研究方向?yàn)榈V床礦物學(xué),E-mail:xuyx516319@163.com。
P611.3
A
0495-5331(2015)03-0405-09