李志丹,俞礽安,王佳營,文思博,陳軍強,湯 超
(天津地質(zhì)礦產(chǎn)研究所,天津 300170)
?
內(nèi)蒙古常福龍溝金礦床地質(zhì)特征和硫、鉛同位素地球化學(xué)
李志丹,俞礽安,王佳營,文思博,陳軍強,湯 超
(天津地質(zhì)礦產(chǎn)研究所,天津 300170)
常福龍溝金礦位于華北陸塊北緣隆起帶,是中元古界渣爾泰群阿古魯溝組在內(nèi)蒙古中部金礦找礦的新突破。常福龍溝金礦體呈中脈狀-薄脈狀產(chǎn)出于渣爾泰山群阿古魯溝組淺變質(zhì)碎屑巖中,礦石礦物為黃鐵礦及少量方鉛礦、黃銅礦、自然金和銀金礦;脈石礦物有石英、方解石、絹云母等。發(fā)育自形-半自形粒狀結(jié)構(gòu)、它形粒狀結(jié)構(gòu)、包含結(jié)構(gòu)、交代殘余結(jié)構(gòu)、顯微鱗片粒狀變晶結(jié)構(gòu)和壓碎結(jié)構(gòu)等,以及稀疏或稠密浸染狀、網(wǎng)脈狀、碎裂狀、角礫狀等構(gòu)造。圍巖蝕變主要為硅化、黃鐵絹英巖化、碳酸巖化,其中硅化強度與金礦化呈正相關(guān)關(guān)系。載金礦物黃鐵礦硫同位素組成介于-0.6‰~2.9‰之間,極差較小,暗示硫源比較單一且成礦環(huán)境和物理化學(xué)條件較為穩(wěn)定,硫可能來自于巖漿。黃鐵礦鉛同位素206Pb/204Pb= 16.849~17.035,207Pb/204Pb=15.343 ~15.411,208Pb/204Pb=37.310 ~37.547,與渣爾泰山群全巖鉛同位素范圍相近,結(jié)合鉛同位素模式年齡,推測中元古界渣爾泰山群可能是成礦物質(zhì)的提供者。
金礦床 地質(zhì)特征 S-Pb同位素 常福龍溝 內(nèi)蒙古
Li Zhi-dan, Yu Reng-an, Wang Jia-ying, Wen Si-bo, Chen Jun-qiang, Tang Chao. Geological characteristics and sulfur and lead isotopic geochemistry of the Changfulonggou gold deposit in Inner Mongolia[J]. Geology and Exploration, 2015, 51(3):0414-0421.
內(nèi)蒙古中部烏拉山-大青山地區(qū)金礦床(點)星羅棋布,構(gòu)成華北陸塊北緣重要的金成礦帶(Hartetal., 2002; Nieetal., 2002)。成礦帶西段哈達門溝金礦田近年新增金金屬量達50余噸,累計查明資源儲量超過100t(章永梅,2012);中段固陽縣下濕壕地區(qū)發(fā)現(xiàn)長勝渠金礦儲量達23.5t;東段呼和浩特市北部武川縣一帶發(fā)育有常福龍溝、摩天嶺、大石槽、鹿場、鹿場西、種地窯子、卯獨慶、補換溝及大營子等一系列金礦床(點)(鐘長汀等,2005)。這些金礦床(點)大多與新太古界烏拉山巖群、古元古界二道凹群等基底建造有關(guān),而常福龍溝金礦床賦存于中元古界渣爾泰山群阿古魯溝組中,與朱拉扎嘎金礦容礦層位一致(陳志勇等,2004;李俊建等,2010),是渣爾泰山群阿古魯溝組層位在內(nèi)蒙古中部金礦找礦的新突破。
常福龍溝金礦位于呼和浩特市以北37 km處,該礦最初在20世紀70年代末由1∶20萬化探掃面發(fā)現(xiàn)金異常,2002年底異常檢查發(fā)現(xiàn)3條金礦化蝕變帶(趙維寬等,2008),2003年~2005年內(nèi)蒙古第一地質(zhì)礦產(chǎn)開發(fā)院、天津地質(zhì)礦產(chǎn)研究所開展了預(yù)查工作,2006年天津地質(zhì)礦產(chǎn)研究所進行了普查、詳查工作,探獲金4.2t(平均品位5.02g/t)。作為烏拉山-大青山金礦帶的一例重要金礦床,趙維寬等(2008)最先報道了其地質(zhì)特征并探討了區(qū)域找礦方向;俞礽安等(2009)探討了控礦因素;高幫飛等(2012)研究了Au品位分布特征;陳志廣等(2012)初步總結(jié)了成礦模式;汪勁草等(2012)探討了正花狀節(jié)理系對金礦床的控制。由此可見,常福龍溝金礦床自發(fā)現(xiàn)以來備受學(xué)者關(guān)注,但有關(guān)成礦物質(zhì)來源一直缺乏同位素約束,基于此,本文開展了常福龍溝金礦床載金黃鐵礦硫、鉛同位素組成研究,以期對成礦物質(zhì)來源有所認識。
常福龍溝金礦位于呼和浩特市北部的大青山地區(qū),大地構(gòu)造位置屬華北陸塊北緣隆起帶(俗稱內(nèi)蒙地軸)(圖1A)。區(qū)內(nèi)構(gòu)造演化大致包括4個階段:早前寒武紀基底形成階段、中元古代裂陷階段、晚古生代-早中生代活動陸緣演化階段和中新生代斷陷隆升階段(王惠初等,2012)。早前寒武紀巖石地層廣泛發(fā)育,包括新太古界麻粒巖相變質(zhì)的興和巖群、麻粒巖相-角閃巖相變質(zhì)的烏拉山巖群、古元古界高綠片巖相-低角閃巖相變質(zhì)的二道凹群等,這些地層與早元古代侵入體等一起構(gòu)成研究區(qū)早前寒武紀結(jié)晶基底(圖1B)。中元古代裂陷環(huán)境形成低綠片巖相變質(zhì)的渣爾泰山群,同期還發(fā)育有中元古代閃長巖-石英閃長巖、黑云母花崗巖等。中生界為一套粗碎屑陸緣沉積和火山沉積建造,晚中生代發(fā)育有大型推覆構(gòu)造和變質(zhì)核雜巖(鄭亞東等,1998;Darbyetal., 2001;Davisetal., 2002;戚國偉等,2007)。顯生宙花崗巖包括古生代黑云母花崗巖、花崗閃長巖和堿長花崗雜巖體,中生代為鉀長花崗巖和花崗斑巖(聶鳳軍等,2013)。區(qū)域金成礦作用顯著,發(fā)育有常福龍溝、大石槽、補換溝、卯獨慶、摩天嶺、哈拉沁等金礦床(圖1B),礦區(qū)北部還發(fā)育有與晚古生代巖漿活動相關(guān)的趙井溝大型鈮鉭礦和馬房子鎢礦等(聶鳳軍等,2013)。
圖1 內(nèi)蒙古常福龍溝金礦區(qū)域地質(zhì)簡圖(A-Zhao et al.,2012; B-俞礽安等,2009)Fig. 1 Sketch showing regional geology of the Changfulonggou gold deposit in Inner Mongolia (A-after Zhao et al., 2012; B-after Yu et al., 2009) 1-第四系;2-新近系;3-中生界;4-中元古界渣爾泰山群;5-古元古界二道凹群;6-太古宙基底;7-顯生宙花崗巖;8-中 元古代閃長巖;9-中元古代石英閃長巖;10-中元古代黑云母花崗巖;11-古元古代片麻狀花崗巖;12-金礦床 1-Quaternary; 2-Neogene; 3-Mesozoic; 4-Mesoproterozoic Zhaertaishan group; 5-Paleoproterozoic Erdaowa group; 6-Archean basement; 7-Phanerozoic granite; 8-Mesoproterozoic diorite; 9-Mesoproterozoic quartz diorite; 10-Mesoproterozoic biotitegranite; 11-Paleoproterozoic gneissic granite; 12-gold deposit
常福龍溝金礦區(qū)主要出露新太古界烏拉山巖群和中元古界渣爾泰山群。烏拉山巖群分布于礦區(qū)西南(圖2),呈捕擄體產(chǎn)出,巖性組合以蛇紋石化大理巖、蛇紋石化橄欖石大理巖、金云透輝大理巖為主,夾厚度不等的矽線石榴片麻巖、黑云石榴斜長(鉀長)片麻巖、石榴紫蘇斜長片麻巖條帶。礦區(qū)北部出露渣爾泰山群阿古魯溝組,總體呈SW-NE走向,該組下部為灰黑色黑云母千枚巖夾淺灰色糜棱巖化長石石英砂巖、砂質(zhì)千枚巖;上部為灰黑色含紅柱石黑云母千枚巖、黃褐色含砂絹云母千枚狀板巖夾變質(zhì)長石石英砂巖、硅化大理巖(俞礽安等,2009),局部可見順層脆-韌性與韌性剪切帶,帶內(nèi)發(fā)育順層掩臥褶皺、構(gòu)造透鏡體、雁列石英脈、構(gòu)造片巖或構(gòu)造千枚巖等(汪勁草等,2012)。阿古魯溝組淺變質(zhì)碎屑巖是常福龍溝金礦賦礦圍巖。礦區(qū)東部發(fā)育晚二疊世中細粒角閃二長花崗巖,其與中元古界呈逆斷層接觸,斷層呈弧形,接觸斷層具雙斷面,面上可見幾厘米厚的斷層泥,斷層面所夾破裂帶寬約3~5m,帶內(nèi)殘存花崗巖構(gòu)造透鏡體,靠近斷層面有幾十厘米厚的面理化碎裂巖(汪勁草等,2012)。礦區(qū)南部出露石英閃長巖-閃長巖,巖石呈灰綠色,變余花崗結(jié)構(gòu),片麻狀構(gòu)造,主要礦物為斜長石、石英、角閃石和斜方輝石(鐘長汀等,2014)。礦區(qū)南部尚發(fā)育有早侏羅世細粒鉀長花崗巖(圖2)。
圖2 內(nèi)蒙古常福龍溝金礦區(qū)地質(zhì)簡圖(據(jù)俞礽安等,2009)Fig.2 Generalized geological map of the Changfulonggou gold deposit, Inner Mongolia (after Yu et al., 2009) 1-第四系; 2-渣爾泰山群變質(zhì)砂巖、板巖、千枚狀板巖; 3-烏拉山巖群大理巖; 4-細粒鉀長花崗巖; 5-似斑狀角閃二長花崗巖; 6 -石英閃長巖; 7-閃長巖脈; 8-含金蝕變帶位置; 9-金礦體位置及編號; 10-斷層 1-Quaternary; 2-Zhaertaishan group metasandstone, slate and phyllitic slate; 3-Wulashan group marble; 4-fine grained K-feldspar granite; 5-porphyritic hornblende monzogranite; 6-quartz diorite; 7-diorite dyke; 8-Au-bearing alteration zone; 9-gold orebody; 10-fault
礦區(qū)共圈出7個礦體,其中主要礦體為Au-1號、Au-2號、 Au-3號、 Au-4號。主礦體走向約290°~300°,在平面上和剖面上都呈平行斜列特征(高幫飛等,2012;汪勁草等,2012)。其中,Au-1號為最主要礦體,呈不規(guī)則中脈狀,傾向SW,傾角49°~80°,礦體連續(xù),厚度穩(wěn)定,平均品位3.74 g/t,礦體由黃鐵礦化硅化構(gòu)造角礫巖組成。Au-2號呈薄脈狀產(chǎn)出,礦體傾向SW,傾角50°~60°,礦體厚度穩(wěn)定,平均品位1.49 g/t,主要由硅化黃鐵礦化蝕變巖組成。Au-3號礦體呈薄層脈狀,傾向SW,傾角50°~60°,礦體厚度穩(wěn)定,礦體由黃鐵礦化硅化角礫巖、黃鐵礦化變質(zhì)砂巖組成。Au-4號呈薄層脈狀產(chǎn)出,傾向SW,傾角50°~60°,厚度穩(wěn)定,金品位1.94 g/t,礦體由硅化蝕變巖組成。
礦石中金屬礦物主要為黃鐵礦,少量方鉛礦、黃銅礦、自然金和銀金礦;脈石礦物有石英、方解石、絹云母等(俞礽安等,2009)。其中,黃鐵礦發(fā)育至少2期,早期粗粒黃鐵礦為立方體晶形,呈浸染狀分布于蝕變巖中;成礦期黃鐵礦呈粉末狀-細粒狀結(jié)構(gòu),呈細脈狀或團塊狀構(gòu)造分布于脈石中,是最主要的載金黃鐵礦。自然金多呈它形粒狀、不規(guī)則粒狀集合體產(chǎn)于脈石礦物裂隙和粒間,少量產(chǎn)于黃鐵礦和褐鐵礦裂隙中;銀金礦分布于脈石英、黃鐵礦、褐鐵礦裂隙中,形態(tài)多為它形粒狀、不規(guī)則狀,少量葉片狀。
原生礦石結(jié)構(gòu)有自形-半自形粒狀結(jié)構(gòu)、它形粒狀結(jié)構(gòu)、包含結(jié)構(gòu)、交代殘余結(jié)構(gòu)、顯微鱗片粒狀變晶結(jié)構(gòu)和壓碎結(jié)構(gòu)等,發(fā)育稀疏或稠密浸染狀、網(wǎng)脈狀、碎裂狀、角礫狀等構(gòu)造,氧化礦石發(fā)育土狀-蜂窩狀等構(gòu)造。
礦體圍巖蝕變較強,主要有硅化、黃鐵絹英巖化、碳酸巖化,局部見綠泥石化、黑云母化、鉀化、粘土化等,其中硅化強度與金礦化呈正相關(guān)關(guān)系。
本文對常福龍溝金礦主要載金礦物黃鐵礦進行了硫、鉛同位素組成測定,采樣位置見表1。選取具有代表性的樣品,經(jīng)手工逐級破碎、過篩至40~60目,然后在雙目鏡下挑選純度大于99%的黃鐵礦單礦物2g以上。將挑純后的黃鐵礦單礦物研磨至200目以下,供硫、鉛同位素組成分析,分析測試工作均在核工業(yè)北京地質(zhì)研究院分析測試研究中心完成。
硫同位素組成分析時,首先將黃鐵礦單礦物與氧化亞銅按一定比例研磨、混合均勻后進行氧化反應(yīng),使礦物中硫全部轉(zhuǎn)換成SO2并用冷凍法收集,然后用Finnigan MAT251氣體同位素質(zhì)譜儀分析硫同位素組成,相對標準采用V-CDT,分析精度為±0.2‰,分析結(jié)果見表1。鉛同位素組成分析時,首先將黃鐵礦樣品放入聚四氟乙烯坩堝中,用混合酸(HF+HClO4)溶樣,然后用樹脂交換法分離出鉛,蒸干后用熱表面電離質(zhì)譜法進行鉛同位素測量,儀器型號為ISOPROBE-T,1μg鉛的206Pb/204Pb測量精度<0.05%,208Pb/206Pb測量精度≤0.005%。鉛同位素H-H單階段演化模式計算時,運用Faure(1986)給出的公式進行,分析結(jié)果及計算結(jié)果見表2。
5.1 硫同位素組成
由表1可知,常福龍溝金礦5件黃鐵礦樣品硫同位素組成介于-0.6‰~2.9‰之間,平均值為1.34‰,極差僅為3.5‰。常福龍溝金礦黃鐵礦硫同位素特征明顯不同于渣爾泰山地區(qū)層控硫多金屬礦床的硫同位素組成(丁悌平等,1992;付超等,2010)。將常福龍溝金礦與內(nèi)蒙古中西部重要金礦床硫同位素組成進行對比(圖3),其與大多數(shù)金礦硫同位素組成一致,靠近0‰值線。與同樣賦存于渣爾泰山群阿古魯溝組層位中的朱拉扎嘎金礦硫化物硫同位素特征較為相似(江思宏等,2001,圖3),而明顯不同于近些年有重大突破的哈達門溝金礦(富集32S)和浩堯爾忽洞金礦(富集δ34S)硫同位素組成。
表1 內(nèi)蒙古常福龍溝金礦床黃鐵礦硫同位素組成Table 1 Sulfur isotopic composition of pyrite from the Changfulonggou gold deposit
表2 內(nèi)蒙古常福龍溝金礦床黃鐵礦鉛同位素組成及特征參數(shù)Table 2 Lead isotopic composition and characteristic parameters of pyrite from the Changfulonggou gold deposit
圖3 常福龍溝金礦與內(nèi)蒙古中西部金礦床硫 同位素組成對比圖 (朱拉扎嘎金礦數(shù)據(jù)引自江思宏等,2001;浩堯爾忽洞金礦數(shù)據(jù)引自Wang et al., 2014; Liu et al., 2014; 其它數(shù)據(jù)引自Nie et al., 2002)Fig.3 Comparison of sulfide sulfur isotopes between the Changfulonggou deposit and major gold deposits in the Midwest Inner Mongolia (data of Zhulazhaga after Jiang et al., 2001; Haoyaoerhudong after Wang et al., 2014 and Liu et al., 2014; others after Nie et al., 2002)
在礦物組合簡單且缺乏硫酸鹽礦物的情況下,硫化物δ34S值的平均值可大致代表熱液的總硫同位素組成(Ohmoto, 1986)。常福龍溝金礦中硫化物主要為黃鐵礦,少量方鉛礦、黃銅礦,未見硫酸鹽,因此黃鐵礦的δ34S值可代表熱液的δ34S∑S。常福龍溝金礦黃鐵礦硫同位素極差較小,平均值為1.34‰,明顯不同于炭窯口礦區(qū)渣爾泰山群中硫酸鹽(重晶石平均值32.0‰,石膏平均值32.4‰,膽礬34.6‰,丁悌平等,1992)和甲生盤礦區(qū)硫酸鹽(石膏平均值20.9‰,丁悌平等,1992)。常福龍溝黃鐵礦硫同位素組成集中,暗示硫源比較單一且成礦環(huán)境和成礦物理化學(xué)條件較為穩(wěn)定。已有研究表明,原始地幔δ34S值接近0‰(Chaussidonetal., 1989),花崗巖的δ34S值一般為-10‰~10‰(Rollinson, 1993),沉積巖的硫同位素組成變化極大,達-40‰~50‰(韓吟文等,2003)。常福龍溝金礦黃鐵礦硫同位素組成反映成礦所需的硫可能來自于巖漿。
5.2 鉛同位素組成
常福龍溝金礦黃鐵礦206Pb/204Pb比值范圍為16.849~17.035(平均為16.936),207Pb/204Pb比值范圍為15.343 ~15.411(平均為15.381),208Pb/204Pb比值范圍為37.310 ~37.547(平均為37.453)。經(jīng)H-H單階段鉛演化模式計算(Faure,1986),常福龍溝金礦黃鐵礦鉛同位素模式年齡介于903Ma~1019Ma之間,平均值為975Ma,μ值變化范圍為9.18~9.31,平均值為9.25,ω值變化于38.46~39.78之間,平均值為39.11,κ值變化于4.04~4.14之間,平均值為4.09,Δα值變化于49.48~55.84之間,平均值為52.96,Δβ值變化于6.78~11.32之間,平均值為9.16,Δγ值變化于39.79~46.78之間,平均值為43.21。
將常福龍溝金礦黃鐵礦鉛同位素投點于鉛構(gòu)造模式圖(圖4),在207Pb/204Pb-206Pb/204Pb圖上(圖4左),所有樣品鉛同位素投點于地幔演化線與下地殼之間,在208Pb/204Pb-206Pb/204Pb圖上(圖4右),投點與下地殼和造山帶演化線之間。將常福龍溝金礦黃鐵礦鉛同位素數(shù)據(jù)投點于△β-△γ圖解(圖5),所有樣品均投點于造山帶鉛范圍內(nèi)。本文收集了前人發(fā)表的朱拉扎嘎金礦鉛同位素數(shù)據(jù)(江思宏等,2001)、渣爾泰山群火山巖及沉積巖全巖(丁悌平等,1992,彭潤民等,1993,江思宏等,2001)以及太古宙變質(zhì)巖全巖(Nieetal., 1994; Nieetal., 2002)鉛同位素數(shù)據(jù)進行對比分析。與朱拉扎嘎金礦相比,朱拉扎嘎金礦更富集放射成因鉛,而常福龍溝金礦黃鐵礦鉛同位素可能更富集普通鉛。在鉛構(gòu)造模式圖(圖4)和△β-△γ圖解(圖5)中,常福龍溝金礦均靠近渣爾泰山群鉛同位素范圍,考慮到鉛同位素模式年齡為中元古代晚期-新元古代早期,與容礦層位時代相近,因此推測中元古界渣爾泰山群可能是成礦物質(zhì)的提供者。
圖4 常福龍溝金礦石鉛同位素構(gòu)造模式圖 (底圖據(jù)Zartman, 1981;渣爾泰山群火山巖及沉積巖數(shù)據(jù)來自丁悌平等,1992,彭潤民等,1993,江思宏等,2001;太古 宙變質(zhì)巖數(shù)據(jù)來自Nie et al., 1994; Nie et al., 2002; 朱拉扎嘎金礦數(shù)據(jù)來自江思宏等,2001)Fig.4 Tectonic models of 208Pb/204Pb versus 206Pb/204Pb and 207Pb/204Pb versus 206Pb/204Pb from the Changfulonggou gold deposit (base map after Zartman, 1981; data of Zhaertaishan Group after Ding et al., 1992, Peng et al., 1993 and Jiang et al., 2001; Archean metamorphic rock after Nie et al., 1994 and Nie et al., 2002; Zhulazhaga after Jiang et al., 2001) A-地幔;B-造山帶;C-上地殼;D-下地殼 A-mantle; B-orogene; C-upper crust; D-lower crust
圖5 常福龍溝金礦石黃鐵礦鉛成因的△β-△γ圖解 (底圖據(jù)朱炳泉等,1998;數(shù)據(jù)來源同圖4)Fig.5 △β-△γ diagram of genetic classification by pyrite lead isotopes of Changfulonggou gold ore (base map after Zhu et al., 1998; the data sources are same with Fig.4) 1-地幔源鉛;2-上地殼鉛;3-上地殼與地幔混合的俯沖帶鉛(3a-巖漿作用;3b-沉積作用);4-化學(xué)沉積型鉛;5-海底熱水作用鉛;6-中深變質(zhì)作用鉛;7-深變質(zhì)下地殼鉛;8-造山帶鉛; 9-古老頁巖上地殼鉛;10-退變質(zhì)鉛 1-mantle-derived lead; 2- upper crust lead; 3-mixed lead of the upper crust and mantle subduction zones(3a-magmatism, 3b-sedimentation); 4-chemical sedimentary lead; 5-submarine Hydrothermal lead; 6-medium-high grade metamorphism lead; 7-lower crust lead of high grade metamorphism; 8-orogenic belt lead; 9-upper crust lead of ancient shale; 10-retrograde metamorphism lead
常福龍溝金礦位于華北陸塊北緣隆起帶,該礦床賦存于渣爾泰山群阿古魯溝組中,是該層位在內(nèi)蒙古中部金礦找礦的新突破。
礦體呈中脈狀-薄脈狀分布于渣爾泰山群淺變質(zhì)碎屑巖中。金屬礦物為黃鐵礦及少量方鉛礦、黃銅礦、自然金和銀金礦;脈石礦物有石英、方解石、絹云母等。礦區(qū)發(fā)育硅化、黃鐵絹英巖化、碳酸巖化等蝕變,硅化強度與金礦化呈正相關(guān)關(guān)系。
常福龍溝金礦載金礦物黃鐵礦硫同位素組成介于-0.6‰~2.9‰之間,反映成礦所需硫可能來自于巖漿。鉛同位素206Pb/204Pb= 16.849~17.035,207Pb/204Pb=15.343~15.411,208Pb/204Pb=37.310 ~37.547,推測中元古界渣爾泰山群可能是成礦物質(zhì)的提供者。
Chaussidon M, Albarède F, Sheppard S M F. 1989. Sulfur isotope variations in the mantle from ion microprobe analyses of micro-sulphide inclusions[J]. Earth and Planetary Science Letters,92: 144-156.
Chen Zhi-guang, Gao Bang-fei, Huang Rong-wei, Bo Ji-dong. 2012. Geological characteristics, metallogenic patterns and geological significances of Changfulong gold deposit in Inner Mongolia[J]. Gold, 33(6): 11-16(in Chinese with English abstract)
Chen Zhi-yong, Yang Shuai-shi, Meng Er-gen, Huang Zhan-qi. 2004. Revision of Precambrian stratigraphic units in the Bayan Nuru area, Alxa Zuoqi, Inner Mongolia[J]. Geological Bulletin of China, 23(4): 345-351(in Chinese with English abstract)
Darby B J, Davis G A, Zheng Y. 2001. Evolving geometry of the Hohhot metamorphic core complex, Inner Mongolia, China[J]. Geol. Soc. America Abstracts with Programs, 33(3): A~32
Davis G A, Darby B J, Zheng Y D, Spell T L. 2002. Geometric and temporal evolution of an extensional detachment fault, Hohhot metamorphic core complex, Inner Mongolia, China[J]. Geology, 30(11): 1003-1006
Ding, T.P., Jiang, S.Y., Wan, D.F., Li, J.C., Song, B., Zhao, D.M. 1992. A study on stable isotopes of Proterozoic Pb-Zn mineral belt in northern China[M]. Beijing: Beijing Science & Technology Publishing House: 9-35(in Chinese)
Faure G. 1986. Principles of isotope geology [M]. New York: John wiley and Sons: 589
Fu Chao, Wang Jian-ping, Peng Run-min, Liu Jia-jun, Liu Zhen-jiang, Liu Zhe-ming. 2010. Features of sulfur isotope of the Jiashengpan Lead-Zinc-Sulfur deposit in Inner Mongolia and its genesis significance[J]. Geoscience, 24(1): 34-41(in Chinese with English abstract)
Gao Bang-fei, Chen Zhi-guang, Sun Gang, Li Shi-qing, Huang Rong-wei. 2012.The characteristics of gold grade distributions and its geological significance of Changfulong gold deposit, Inner Mongolia[J]. Gold, 33(9): 9-12 (in Chinese with English abstract)
Han Yin-wen, Ma Zhen-dong. 2003. Geochemistry[M]. Beijing: Geological Publishing House: 248-250(in Chinese)
Hart C J, Goldfarb R J, Qiu Y M, Snee L, Miller L D, Miller M L. 2002. Gold deposits of the northern margin of the North China Craton: multiple late Paleozoic-Mesozoic mineralizing events[J]. Mineralium Deposita, 37(3-4): 326-251
Li Jun-jian, Zhai Yu-sheng, Yang Yong-qiang, Wang Yan-bin, Li Cheng-dong, Cui Lai-wang, Zhou Hong-ying, Liu Xiao-yang, Liu Xiao-xue, Li Sheng. 2010. Re-discussion on the metallogenic age of Zhulazhaga gold deposit in Alashan area, Inner Mongolia: evidence from zircon U-Pb SHRIMP age [J]. Earth science frontiers, 17(2): 178-184 (in Chinese with English abstract)
Nie F J, Jiang S H, Su X X, Wang X L. 2002. Geological features and origin of gold deposits occurring in the Baotou-Bayan Obo district, south-central Inner Mongolia, People's Republic of China[J]. Ore Geology Reviews, 20(3-4): 139-169
Nie Feng-jun, Wang Feng-xiang, Zhao Yu-an, Sun Yan, Chai Hua. 2013. Geological features and origin of Zhaojinggou Nb-Ta deposit in Wuchuan County, Inner Mongolia [J]. Mineral deposits, 32(4): 730-743 (in Chinese with English abstract)
Nie, F. J, Bjorlykke, A.. 1994. Lead and sulfur isotope studies of the Wulashan quartz-K feldspar and quartz vein gold deposit, southwestern Inner Mongolia, People's Republic of China [J]. Economic Geology, 89: 1289-1305
Ohmoto H. 1986. Stable isotope geochemistry of ore deposits [J]. Reviews in Mineralogy and Geochemistry, 16(1): 491-559
Peng Run-min. 1993. The discovery of quartz keratophyre in Langshan group of the Dongshengmiao ore district and its significance [J]. Mineral deposits, 12(3): 273-283 (in Chinese with English abstract)
Qi Guo-wei, Zhang Jin-Jiang, Wang Xin-she, Guo Lei. 2007. The structural patterns and spatial relationship of the Mesozoic thrusting-extending tectonics on the Daqingshan Mountain, Inner Mongolia [J]. Progress in Natural Science, 17(3): 329-338 (in Chinese)
Rollinson, H.R. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation[M]. Pearson Education, Upper Saddle River, New Jersey:1-352
Wang Hui-chu, Xiang Zhen-qun, Zhao Feng-qing, Li Hui-min, Yuan Gui-bang, Chu Hang. 2012. The alkaline plutons in eatern part of Guyang County, Inner Mongolia: Geochronology, petrogenesis and tectonic implications[J]. Acta petroligica sinica, 28(9): 2843-2854(in Chinese with English abstract)
Wang Jin-cao, Wang Yong-dong, Cheng Xiong-wei. 2012. Control of positive flower joint system on Changfulong gold deposit in Inner Mongolia[J]. Journal of Guilin University of Technology, 32(4): 447-454(in Chinese with English abstract)
Yu Reng-an, Zhong Chang-ting, Tang Yong-xiang, Xi-Zhong, Liu Xiao-xue. 2009. Mineralization geological condition and ore-control factor of the changfulonggou gold deposit in Wuchuan County, Inner Mongolia[J]. Geological survey and research, 32(1): 27-33(in Chinese with English abstract)
Zartman R E, Doe B R. 1981. Plumbotectonics-the model[J]. Tectonophysics, 75:135-162
Zhang Yong-mei. 2012. Metallogenesis, ore-controlling factors and prospecting direction of the Liubagou-Hadamengou gold deposit, Inner Mongolia[D]. Dissertation supervisor: Gu Xue-xiang. Beijing: China University of Geosciences (Beijing): 1-253(in Chinese with English abstract)
Zhao G C, Cawood P A. 2012. Precambrian geology of China[J]. Precambrian Res., 222-223: 13-54
Zhao Wei-kuan, Xu Jiu-hua, Zhuang Chang-sheng, Jia Li-jiong, Zhao Yu. 2008. Geological characteristics of the Changfulonggou gold deposit in Inner Mongolia and prospecting[J]. Geology and mineral resources of South China, 1: 18-22 (in Chinese with English abstract)
Zheng Ya-dong, Davis G A, Wang Cong, Darby B J. Hua Yong-gang. 1998. A large-scale thrust-nappe in Daqingshan Mountain, Inner Mongolia[J]. Science in China (Series D), 28(4): 289-295(in Chinese)
Zhong Chang-ting, Deng Jin-fu, Wan Yu-sheng, Tu Wei-ping. 2014. Paleoproterozoic granitoids in the Daqingshan Mountain area, Inner Mongolia: Geochemistry, SHRIMP zircon dating and geological significance[J]. Acta Petrologica Sinica, 30(11): 3172-3188 (in Chinese with English abstract)
Zhong Chang-ting, Xi Zhong, Zhao Wei-kuan, Mao De-bao, Shen Bao-feng, Chen Bo, Yu Reng-an. 2005. Types, metallotects and exploration direction of the gold deposit in Daqingshan mountain, Inner Mongolia[J]. Geological survey and research, 28(4): 240-248 (in Chinese with English abstract)
Zhu Bing-quan, Li Xian-hua, Dai Tong-mo, Chen Yu-wei, Fan Si-kun, Gui Xun-tang, Wang Hui-fen. 1998. The isotopic system theory and application in earth science- and on the crust-mantle evolution in China [M]. Beijing: Science Press: 1-330(in Chinese)
[附中文參考文獻]
陳志廣, 高幫飛, 黃榮偉, 李世清, 薄濟東. 2012. 內(nèi)蒙古常福龍金礦床地質(zhì)特征、成礦模式及其地質(zhì)意義[J]. 黃金, 33(6): 11-16
陳志勇, 楊帥師, 孟二根, 黃占起. 2004. 內(nèi)蒙古阿拉善左旗巴音諾日公地區(qū)前寒武系的厘定[J]. 地質(zhì)通報, 23(4): 345-351
丁悌平, 蔣少涌, 萬德芳, 李金城, 宋 彪, 趙敦敏. 1992. 華北元古宙鉛鋅成礦帶穩(wěn)定同位素研究[M]. 北京: 北京科學(xué)技術(shù)出版社: 9-35
付 超, 王建平, 彭潤民, 劉家軍, 柳振江, 劉哲銘. 2010. 內(nèi)蒙古甲生盤鉛鋅硫礦床硫同位素特征及其成因意義[J]. 現(xiàn)代地質(zhì), 24(1): 34-41
高幫飛, 陳志廣, 孫 剛, 李世清, 黃榮偉. 2012. 內(nèi)蒙古常福龍金礦床Au品位分布特征及其地質(zhì)意義[J]. 黃金, 33(9): 9-12
韓吟文, 馬振東. 2003. 地球化學(xué)[M]. 北京: 地質(zhì)出版社: 248-250
李俊建, 翟裕生, 楊永強, 王彥斌, 李承東, 崔來旺, 周紅英, 劉曉陽, 劉曉雪, 李 生. 2010. 再論內(nèi)蒙古阿拉善朱拉扎嘎金礦的成礦時代:來自鋯石SHRIMP U-Pb年齡的新證據(jù)[J]. 地學(xué)前緣, 17(2): 178-184
聶鳳軍, 王豐翔, 趙宇安, 孫 艷, 柴 華. 2013. 內(nèi)蒙古趙井溝大型鈮鉭礦床地質(zhì)特征及成因[J]. 礦床地質(zhì), 32(4): 730-743
彭潤民. 1993. 內(nèi)蒙東升廟礦區(qū)狼山群中石英角斑巖的發(fā)現(xiàn)及意義[J]. 礦床地質(zhì), 12(3): 273-283
戚國偉, 張進江, 王新社, 郭 磊. 2007. 內(nèi)蒙古大青山中生代逆沖-伸展構(gòu)造格局及空間關(guān)系[J]. 自然科學(xué)進展, 17(3): 329-338
汪勁草, 王永東, 程雄衛(wèi). 2012. 正花狀節(jié)理系對內(nèi)蒙古常福龍金礦床的控制[J]. 桂林理工大學(xué)學(xué)報, 32(4): 447-454
王惠初, 相振群, 趙鳳清, 李惠民, 袁桂邦, 初 航. 2012. 內(nèi)蒙古固陽東部堿性侵入巖:年代學(xué)、成因與地質(zhì)意義[J]. 巖石學(xué)報, 28(9): 2843-2854
俞礽安, 鐘長汀, 唐永香, 席 忠, 劉曉雪. 2009. 內(nèi)蒙古武川縣常福龍溝金礦成礦地質(zhì)條件及控礦因素[J]. 地質(zhì)調(diào)查與研究, 32(1): 27-33
章永梅. 2012. 內(nèi)蒙古柳壩溝-哈達門溝金礦田成因、控礦因素與找礦方向[D].北京:中國地質(zhì)大學(xué)(北京): 1-253
趙維寬, 徐九華, 莊長生, 賈立炯, 趙 宇. 2008. 內(nèi)蒙古常福龍溝金礦地質(zhì)特征與找礦方向[J]. 華南地質(zhì)與礦產(chǎn), 1: 18-22
鄭亞東, G A Davis, 王 琮, B J Darby, 華永剛. 1998. 內(nèi)蒙古大青山大型逆沖推覆構(gòu)造[J]. 中國科學(xué)(D輯), 28(4): 289-295
鐘長汀, 鄧晉福, 萬渝生, 涂偉萍. 2014. 內(nèi)蒙古大青山地區(qū)古元古代花崗巖: 地球化學(xué)、鋯石SHRIMP定年及其地質(zhì)意義[J]. 巖石學(xué)報, 30(11): 3172-3188
鐘長汀, 席 忠, 趙維寬, 毛德寶, 沈保豐, 陳 博, 俞礽安. 2005. 內(nèi)蒙古大青山地區(qū)金礦床類型、控礦規(guī)律及找礦方向[J]. 地質(zhì)調(diào)查與研究, 28(4): 240-248
朱炳泉, 李獻華, 戴橦謨, 陳毓蔚, 范嗣昆, 桂訓(xùn)唐, 王慧芬.1998.地球科學(xué)中同位素體系理論與應(yīng)用-兼論中國大陸殼幔演化[M]. 北京: 科學(xué)出版社: 1-330
Geological Characteristics and Sulfur and Lead Isotopic Geochemistry of the Changfulonggou Gold Deposit in Inner Mongolia
LI Zhi-dan, YU Reng-an, WANG Jia-ying, WEN Si-bo, CHEN Jun-qiang, TANG Chao
(TianjinInstituteofGeologyandMineralResources,Tianjin300170)
The Changfulonggou gold deposit, located in the uplift belt of the northern margin of the North China block, is a new prospecting breakthrough in the Agulugou Formation of the Zhaertaishan Group in central Inner Mongolia. The vein gold orebodies are hosted in the low-grade metamorphic clastic rocks of the Agulugou Formation. The main metallic minerals are pyrite and minor galena, chalcopyrite, native gold and electrum, and gangue minerals are mainly quartz and calcite. The ores have textures of euhedral-subhedral granular, anhedral granular, poikilitic, metasomatic relict, lepidoblast and crush, and structures of dissemination, net vein, cataclastic and brecciate. Wall-rock alteration contains silication, pyrite-sericitization and carbonation, of which the silication is closely related with gold mineralization. The pyrite δ34SV-CDTvalues vary from -27.9‰ to 2.9‰, indicating that the sulfur was sourced from magma. The206Pb/204Pb,207Pb/204Pb and208Pb/204Pb ratios for pyrite have homogenous compositions, varying in 16.849~17.035, 15.343 ~15.411 and 37.310 ~37.547, respectively. The Pb-isotopic compositions of pyrite are very close to the field of the Zhaertaishan Group and the model ages are Late Mesoproterozoic to Early Neoproterozoic time. The Pb-isotopic compositions indicate that the ore-forming materials likely emanated from the Mesoproterozoic Zhaertaishan Group.
gold deposit, geological characteristics, S and Pb isotopic geochemistry, Changfulonggou, Inner Mongolia
2015-01-31;
2015-03-12;[責(zé)任編輯]陳偉軍。
中國地質(zhì)調(diào)查項目(12120113057300)資助。
李志丹(1986年-),男,2011年畢業(yè)于中國地質(zhì)大學(xué)(北京),獲碩士學(xué)位,工程師,從事礦產(chǎn)勘查與研究工作。
俞礽安(1980年-),男,工程師,從事礦產(chǎn)勘查與研究工作。E-mail:cugcug@qq.com。
P61
A
0495-5331(2015)03-0414-08