国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

滇西蘭坪盆地茅草坪脈狀Cu 礦床流體包裹體和穩(wěn)定同位素地球化學(xué)研究*

2015-03-15 12:26程楊宋玉財(cái)侯增謙薛傳東黃世強(qiáng)韓朝輝莊亮亮
巖石學(xué)報(bào) 2015年11期
關(guān)鍵詞:氣相巖漿同位素

程楊 宋玉財(cái) 侯增謙 薛傳東 黃世強(qiáng) 韓朝輝 莊亮亮

CHENG Yang1,2,SONG YuCai2**,HOU ZengQian2,XUE ChuanDong3,HUANG ShiQiang1,2,HAN ChaoHui1,2 and ZHUANG LiangLiang1,2

1. 中國地質(zhì)大學(xué)地球科學(xué)與資源學(xué)院,北京 100083

2. 中國地質(zhì)科學(xué)院地質(zhì)研究所,北京 100037

3. 昆明理工大學(xué)國土資源工程學(xué)院,昆明 650093

1. School of Geosciences and Resources,China University of Geosciences,Beijing 100083,China

2. Institute of Geology,CAGS,Beijing 100037,China

3. Faculty of Land Resource Engineering,Kunming University of Science and Technology,Kunming 650093,China

2015-04-01 收稿,2015-07-29 改回.

1 引言

滇西蘭坪盆地是我國重要的沉積巖容礦Cu、Pb、Zn 賤金屬礦床富集區(qū),發(fā)育金頂——世界級(jí)超大型Pb-Zn 礦床、白秧坪Pb-Zn-Cu-Ag 多金屬礦集區(qū)、金滿、連城脈狀Cu 礦床、白洋廠砂巖型Cu 礦床等多金屬多類型礦床(趙大康,2004;宋玉財(cái)?shù)龋?011;王曉虎等,2011;張錦讓等,2012;Deng et al.,2014a,b;Deng and Wang,2015;Wang et al.,2014;Zhang et al.,2014)。其中,包括金滿在內(nèi)的脈狀Cu 礦床沿盆地西緣瀾滄江斷裂帶分布,構(gòu)成一條近南北向展布、長(zhǎng)達(dá)100 多千米的銅礦帶(圖1)。前人對(duì)脈狀Cu 礦床成因進(jìn)行了大量的研究,主要集中在這條成礦帶北段的金滿、連城、科登澗、小格拉等Cu 礦床。成礦流體來源一直是過去研究的重點(diǎn),長(zhǎng)期以來,多數(shù)學(xué)者認(rèn)為脈狀Cu 礦床成礦與蘭坪盆地的演化有關(guān),成礦流體來自盆地鹵水(肖榮閣等,1994;Yan and Li,1995;顏文和李朝陽,1997;李峰和甫為民,2000;劉家軍等,2000;吳南平等,2003;徐啟東和李建威,2003;徐仕海等,2005;徐曉春等,2005;He et al.,2009),然而,這些脈狀Cu 礦床的成礦流體均富含CO2,正如Chi and Xue(2011)所指出的“富CO2的成礦流體不是典型的盆地流體”,故其他學(xué)者主張有其他的來源流體加入、或以其他來源的流體為主,提出成礦流體:為盆地流體和巖漿流體或幔源流體的混合(季宏兵和李朝陽,1998;Chi and Xue,2011);為巖漿流體和大氣降水的混合(趙海濱,2006;張錦讓等,2012);為地幔流體和變質(zhì)流體的混合(闕梅英等,1998),為大氣降水、巖漿水、變質(zhì)流體三種流體的混合(張立生,2000)。由此可見,滇西脈狀Cu 礦床的成礦流體來源存在較大爭(zhēng)議,富CO2流體的成因尚無統(tǒng)一認(rèn)識(shí)。

茅草坪脈狀Cu 礦床位于該礦帶南部(圖1、圖2),是近年來新發(fā)現(xiàn)的礦床,目前圈定銅資源量8.5 萬噸,為目前蘭坪盆地西緣脈狀Cu 礦帶中規(guī)模較大的礦床。流體包裹體研究能夠最真實(shí)觀察成礦流體信息,同時(shí),熱液礦物的元素、同位素示蹤是研究成礦流體來源的主要途徑。本文試圖通過對(duì)茅草坪脈狀Cu 礦床的流體包裹體研究,以及石英的O-H、方解石的C-O 同位素和黃銅礦的S 同位素研究,結(jié)合與該帶其他脈狀Cu 礦床和盆地西緣脈狀Pb-Zn 礦床的綜合對(duì)比研究,揭示茅草坪脈狀Cu 礦床的成礦流體特征,探討成礦流體來源,以期為限定滇西脈狀Cu 礦床的流體來源提供新的信息。

圖2 滇西蘭坪盆地茅草坪脈狀Cu 礦床地質(zhì)圖(據(jù)成祥,2014 修改)Fig.2 Geological map of Maocaoping vein Cu deposit in Lanping basin,western Yunnan (modified after Cheng,2014)

2 成礦地質(zhì)背景和礦床地質(zhì)

滇西地區(qū)地處揚(yáng)子板塊與印度板塊之間特殊地帶,是西南“三江”復(fù)合造山帶的重要組成部分(葛良勝等,2012;Deng et al.,2014a)。蘭坪盆地位于“三江”造山帶蘭坪-思茅地塊北部,盆地呈南北向展布,向北趨于尖滅,向南與思茅盆地相接,西部以碧羅雪山-崇山剪切帶(Zhang et al.,2011)為界,東部以雪龍山-點(diǎn)蒼山剪切帶(Cao et al.,2011)為界。盆地主要充填中、新生界沉積巖和火山巖。中三疊世至晚三疊世早期,盆地內(nèi)發(fā)育碎屑巖和中基性-中酸性火山巖;晚三疊世中、晚期沉積暗色為主的碎屑巖和碳酸鹽巖;中侏羅世至新近紀(jì),盆地充填了厚層紅色碎屑巖建造,伴有蒸發(fā)鹽巖沉積和少量的碳酸鹽巖。侵入巖主要出露在盆地兩側(cè),西緣發(fā)育有早中三疊世、白堊紀(jì)S 型花崗巖(Peng et al.,2008;Zhu et al.,2011),始新世至中新世的花崗巖(Zhang et al.,2011;唐淵等,2013);東緣發(fā)育42 ~20Ma 富堿性花崗巖(Wang et al.,2001)(圖1)。受新生代以來印-亞大陸碰撞的影響,青藏高原東緣在晚始新世至早中新世發(fā)育大型走滑構(gòu)造(侯增謙等,2006;Hou and Cook,2009),伴隨大規(guī)模走滑,在蘭坪盆地西緣形成碧羅雪山-崇山剪切帶、東緣形成雪龍山-點(diǎn)蒼山剪切帶(Wang and Burchfiel,1997;劉俊來等,2006;Zhang et al.,2012)。

茅草坪脈狀Cu 礦床位于蘭坪盆地西緣脈狀Cu 礦帶的南段,發(fā)育在強(qiáng)烈變形的崇山剪切帶內(nèi)(圖1)。礦區(qū)內(nèi)巖石全部發(fā)生剪切變形,原巖地層層面已難以恢復(fù)。礦區(qū)內(nèi)主要發(fā)育中、新生代地層,其中,侏羅紀(jì)和白堊紀(jì)為礦區(qū)內(nèi)出露的主要地層,兩者南北貫穿整個(gè)礦區(qū)沿瀾滄江西側(cè)展布(圖2)。侏羅紀(jì)地層出露在礦區(qū)中部,中侏羅統(tǒng)花開左組(J2h),為礦區(qū)主要地層,大面積出露,可分為上、下兩段:下段(J2h1)巖性為淺灰綠色片巖夾變質(zhì)石英砂巖、粉砂巖;上段(J2h2)巖性為灰白色、淺綠色片巖、千枚巖夾大理巖。上侏羅統(tǒng)壩注路組(J3b)巖性為黑色、淺灰色、淺灰綠色片巖、千枚巖夾變質(zhì)石英砂巖(圖2)。下白堊統(tǒng)景星組(K1j)出露面積廣泛,為礦區(qū)次主要地層,分布于礦區(qū)東部,可分為上下兩段:下段(K1j1)為淺灰色-灰白色中-厚層狀變質(zhì)細(xì)粒巖屑鈣質(zhì)石英砂巖夾淺灰綠色、暗灰色粉砂質(zhì)板巖,局部夾絹云母板巖;上段(K1j2)為淺灰綠色、暗灰色局部淺肉紅色薄層狀鈣質(zhì)粉砂質(zhì)板巖夾變質(zhì)泥質(zhì)粉砂巖、細(xì)砂巖。礦區(qū)西部出露一套片麻巖,其時(shí)代不清;西南側(cè)出露花崗巖體,為灰白色含電氣石二云母花崗巖,巖體邊部局部糜棱巖化、片麻巖化,并見大量電氣石呈細(xì)脈狀、團(tuán)塊狀產(chǎn)出(成祥,2014),其形成時(shí)代約22Ma(薛傳東等,未發(fā)表資料)。礦區(qū)內(nèi)地層受構(gòu)造變質(zhì)作用影響強(qiáng)烈。受東西向的強(qiáng)烈擠壓,區(qū)內(nèi)斷裂多呈NS 走向分布,褶皺、劈理較為發(fā)育,主要構(gòu)造線呈N-S 走向展布,與蘭坪盆地長(zhǎng)軸方向基本一致。

礦體呈脈狀、透鏡狀,近N-S 走向、陡傾產(chǎn)出,賦礦圍巖主要是中侏羅統(tǒng)花開左組的粉砂質(zhì)泥巖和大理巖,均發(fā)生糜棱巖化。單條礦脈多呈脈狀、網(wǎng)脈狀、透鏡狀產(chǎn)出,脈寬0.2~3m,走向330°,傾角70° ~90°,走向長(zhǎng)300 ~500m,傾向延伸200 ~300m(成祥,2014),總體順圍巖剪切面理發(fā)育(圖3a)。礦脈由密集的石英-碳酸鹽脈組成,礦石礦物主要有黃銅礦,含有少量黃鐵礦和磁鐵礦。脈石礦物以電氣石、石英、方解石和白云石為主,并見白云母。礦石結(jié)構(gòu)較為簡(jiǎn)單,礦物結(jié)晶大多呈自形-半自形粒狀結(jié)構(gòu),晶粒結(jié)構(gòu)以中粒為主,交代結(jié)構(gòu)發(fā)育。礦石構(gòu)造主要為團(tuán)塊狀構(gòu)造、浸染狀構(gòu)造、脈狀構(gòu)造等。

根據(jù)礦床熱液礦物的共生組合、結(jié)構(gòu)構(gòu)造、生長(zhǎng)方式及蝕變交代、穿切關(guān)系,礦化賦存形式可分為以下3 種(程楊等,2015):(1)富電氣石蝕變暈(圖3a,b),呈脈狀生長(zhǎng)于圍巖中。由電氣石、石英以及少量黃鐵礦和磁鐵礦組成,無含Cu 硫化物。相對(duì)于脈體內(nèi)礦物,蝕變暈內(nèi)電氣石和石英粒度較小,受剪切變形作用強(qiáng)烈地定向排列,長(zhǎng)軸方向與剪切面理近平行(圖3d,e)。少量的黃鐵礦和磁鐵礦在此階段呈稀疏浸染狀產(chǎn)出,也具有定向排列的特點(diǎn);(2)平行剪切面理的脈體(A1 脈),呈拉長(zhǎng)的透鏡狀產(chǎn)出(圖3b),由石英、電氣石、方解石、白云母組成,含黃銅礦和少量黃鐵礦、磁鐵礦。相對(duì)于蝕變暈內(nèi)礦物,A1 脈中礦物的粒度明顯變粗,具有定向或弱定向生長(zhǎng)特點(diǎn),長(zhǎng)軸方向與脈壁及圍巖的剪切面理大致平行(圖3d,e),顯示出同構(gòu)造期脈體特征。其中,少數(shù)脈體內(nèi)電氣石和石英的長(zhǎng)軸方向斜交或垂直于剪切面理,并對(duì)壁生長(zhǎng),與多數(shù)A2 脈相似(見下文);(3)橫切剪切面理的脈體(A2 脈),產(chǎn)狀與剪切面理和A1 脈近垂直,緩傾(圖3c),呈短脈狀或短透鏡狀產(chǎn)出。脈體內(nèi)礦物由石英、方解石、白云石、電氣石、白云母組成,含黃銅礦。多數(shù)A2 脈與A1 脈體相連,或切穿A1 脈(圖3c)。脈體內(nèi)各類礦物或自由生長(zhǎng),或?qū)Ρ谑釥钌L(zhǎng),不具有定向性(圖3f)。個(gè)別A2 脈雖從宏觀上橫切剪切面理和A1 脈,但脈中礦物生長(zhǎng)特點(diǎn)與A1 脈內(nèi)一致(電氣石長(zhǎng)軸方向近平行于剪切面理),表現(xiàn)出A1 脈向A2 脈逐漸過渡的生長(zhǎng)特點(diǎn)。這3 種形式出現(xiàn)的礦物在空間上緊密伴生,連續(xù)過渡,但其之間又存在一定穿插關(guān)系,為同一時(shí)期形成,只是不同脈體內(nèi)礦物沉淀略有早晚。礦化過程為富電氣石蝕變暈→平行剪切面理的脈體(A1 脈)→橫切剪切面理的脈體(A2 脈)3 個(gè)階段。其中,A1 脈和A2 脈中硫化物含量較高,代表主成礦階段的產(chǎn)物。

3 流體包裹體特征

3.1 樣品及測(cè)試方法

進(jìn)行流體包裹體觀察的樣品采自茅草坪脈狀Cu 礦床1號(hào)礦洞和礦部礦石堆,經(jīng)緯度坐標(biāo)分別為25°55'00″N,99°07'29″E,具體位置見圖2 所示。

對(duì)所采樣品磨制厚約0.2mm 的雙面剖光薄片,用于流體包裹體巖相學(xué)觀察、激光拉曼光譜分析和顯微測(cè)溫。包裹體激光拉曼光譜分析在中國地質(zhì)科學(xué)院礦產(chǎn)資源研究所的激光拉曼光譜實(shí)驗(yàn)室完成。測(cè)試儀器為英國Renishaw 公司產(chǎn)RM-2000 型激光共焦顯微拉曼光譜儀,r+激光器,激光波長(zhǎng)514.5nm,激光功率20mW;分辨率1 ~2cm-1;掃描范圍100 ~4500cm-1;50 倍物鏡,最小激光光斑直徑1μm;實(shí)驗(yàn)室溫度25℃,相對(duì)濕度50%。流體包裹體的顯微測(cè)溫工作在中國地質(zhì)科學(xué)院礦產(chǎn)資源研究所流體包裹體實(shí)驗(yàn)室完成。測(cè)試儀器為L(zhǎng)inkam THMSC 600 型冷熱臺(tái),測(cè)溫范圍為-196~+ 600℃,冷凍數(shù)據(jù)和加熱數(shù)據(jù)精度分別為± 0.1℃和±2℃。

進(jìn)行包裹體測(cè)溫?cái)?shù)據(jù)處理時(shí),利用含NaCl 子礦物熔化溫度估算含石鹽子晶包裹體的鹽度(盧煥章等,2004);根據(jù)Bodnar(1993)對(duì)NaCl-H2O 體系流體包裹體冰點(diǎn)估算富液相包裹體的鹽度;富氣相包裹體的鹽度是采用Collins(1979)CO2籠合物熔化溫度計(jì)算。

3.2 流體包裹體巖相學(xué)

茅草坪礦床早階段富電氣石蝕變暈中無含銅硫化物,且石英快速結(jié)晶形成,顆粒較小,難以觀察到流體包裹體。因此本次工作對(duì)主成礦期的不同階段脈體(A1 脈和A2 脈)石英中流體包裹體進(jìn)行巖相學(xué)觀察,流體包裹體主要有3 種類型:(1)富液相包裹體(W 型,溶液相充填度約大于50%);(2)富氣相包裹體(C 型,氣相充填度約大于50%);(3)含石鹽子晶包裹體(S 型)(圖4a-d)。

圖3 滇西蘭坪盆地茅草坪脈狀Cu 礦床礦化特征(a)礦體呈脈狀、透鏡狀近N-S 走向、陡傾產(chǎn)出,礦脈為電氣石-石英-碳酸鹽-硫化物脈;(b)富電氣石蝕變暈、平行剪切面理的脈體(A1 脈)及橫切剪切面理的脈體(A2 脈);(c)橫切剪切面理的脈體(A2 脈)切穿平行剪切面理的脈體(A1 脈);(d)A1 脈內(nèi)石英受剪切呈波狀消光,發(fā)育晶內(nèi)裂隙,正交偏光;(e)A1 脈內(nèi)電氣石弱定向生長(zhǎng),正交偏光;(f)A2 脈內(nèi)電氣石梳狀生長(zhǎng),顯示脈體張性充填特點(diǎn),透射光. Cp-黃銅礦;Qz-石英;Cal-方解石;Dol-白云石;Mus-白云母;Tur-電氣石. 紅色箭頭指示礦物長(zhǎng)軸方向Fig.3 Mineralization features in Maocaoping vein Cu deposit in Lanping basin,western Yunnan(a)the attitude of the orebody is veined,lenticular and steep dip with a trend of nearly north to south. The veins are composed of tourmaline,quartz,carbonate and sulfide;(b)hydrothermal alteration halo enriched in tourmaline,ore-bearing vein paralleling to shear foliation (A1 vein)and orebearing vein crosscutting shear foliation (A2 vein);(c)A2 veins crosscutting A1 veins;(d)An A1 vein composed of quartz with undulatory extinction and intracrystalline fractures,cross-polarized light;(e)weakly-orientated tourmaline and quartz crystals in an ore-bearing vein paralleling to shear foliation (A1 vein),cross-polarized light;(f)tourmaline with comb texture in an A2 vein,indicating extensional veins,transmission light. Cpchalcopyrite;Qz-quartz;Cal-calcite;Dol-dolomite;Mus-muscovite;Tur-tourmaline. Red arrow indicates mineral macroaxis

富液相包裹體(W 型)在A1 脈和A2 脈中均大量出現(xiàn),個(gè)體直徑介于3 ~12μm 之間,形態(tài)多呈橢圓狀,也有不規(guī)則形,氣相充填度為10% ~40%;富氣相包裹體(C 型)在A1脈和A2 脈中也大量分布,直徑多介于3 ~20μm 之間,形態(tài)多樣,常見橢圓形、負(fù)晶形和不規(guī)則形,氣相充填度為60% ~80%。根據(jù)其在室溫下的相態(tài)特征又可細(xì)劃分為兩相型(L(H2O)+V(CO2))和三相型(L(H2O)+ L(CO2)+V(CO2))富氣相包裹體。有時(shí)包裹體氣相充填度較高,可見純CO2包裹體,室溫下呈棕褐色,缺乏可見的H2O 液相;含石鹽子晶包裹體主要出現(xiàn)在A1 脈中,由氣相、液相和石鹽子晶組成,直徑介于8 ~12μm 之間,包裹體形態(tài)多呈橢圓形、不規(guī)則形,石鹽子晶形態(tài)呈立方體,氣相充填度為10% ~25%。原生包裹體多呈孤立狀分布,而次生包裹體多沿礦物裂隙成線狀分布。

圖4 滇西蘭坪盆地茅草坪脈狀Cu 礦床流體包裹體顯微特征(a)含石鹽子晶包裹體;(b、c)富液相包裹體;(d)富氣相包裹體;(e)第Ⅰ組包裹體組合:Ⅰ-S 型與Ⅰ-W 型包裹體共存;(f)第Ⅰ組包裹體組合,Ⅰ-S 型與Ⅰ-W 型和Ⅱ-C 型包裹體共存;(g)第Ⅱ組包裹體組合:Ⅱ-W 型與Ⅱ-C 型包裹體共存;(h)第Ⅲ組包裹體組合:Ⅲ-W 型與Ⅲ-C 型包裹體共存Fig.4 Microphotos of fluid inclusions in the Maocaoping vein Cu deposit in Lanping basin,western Yunnan(a)halite-bearing inclusion;(b,c)inclusions enriched in aqueous;(d)inclusions enriched in vapor;(e)the first group of inclusion combination:Ⅰ-S type and Ⅰ-W type of inclusions occurring together;(f)the first group of inclusion combination:Ⅰ-S type,Ⅰ-W type and Ⅱ-C type of inclusions occurring together;(g)the second inclusion combination:Ⅱ-W type and Ⅱ-C type of inclusions occurring together;(h)the third inclusion combination:Ⅲ-W type and Ⅲ-C type of inclusions occurring together

3.3 流體包裹體激光拉曼光譜分析

對(duì)不同類型流體包裹體進(jìn)行激光拉曼成分分析,結(jié)果表明不論是富液相包裹體、富氣相包裹體還是含石鹽子晶包裹體,氣相成分均以CO2為主,液相成分以H2O 為主(圖5)。

3.4 流體包裹體顯微測(cè)溫

對(duì)石英中的原生包裹體進(jìn)行了詳細(xì)的顯微測(cè)溫研究,發(fā)現(xiàn)包裹體在鏡下不同視域里具有不同的的共生組合,這可能反映了包裹體并不是同一階段流體演化的產(chǎn)物,而是不同階段流體特征的體現(xiàn)。因此,我們將具有同時(shí)捕獲特征的包裹體劃分成組(圖4)(即同一階段的流體形成的包裹體,通常以同一有限視域內(nèi)共生的包裹體特征為劃分依據(jù)),茅草坪脈狀Cu 礦床的流體包裹體可分為3 組流體包裹體組合:

A1 脈石英中原生流體包裹體組合分為兩組:第I 組為含石鹽子晶(S 型)、富液相(水溶液相)(W 型)和富氣相(C型)包裹體共生;第Ⅱ組無含石鹽子晶包裹體,為富液相(水溶液相)(W 型)和富氣相(C 型)包裹體共生;A2 脈石英中原生流體包裹體僅出現(xiàn)一組(為第Ⅲ組),可見富液相(水溶液相)(W 型)和富氣相(C 型)包裹體共生,為了突出不同組中包裹體的共生特點(diǎn),將第I 組包裹體記為I-S 型、I-W 型和I-C 型(圖4e,f),第Ⅱ組和第Ⅲ組包裹體分別記為Ⅱ-W 型、Ⅱ-C 型(圖4g)和Ⅲ-W 型、Ⅲ-C 型(圖4h)。

表1 滇西蘭坪盆地茅草坪脈狀Cu 礦床流體包裹體顯微測(cè)溫結(jié)果Table 1 Microthermometric data of fluid inclusion in Maocaoping vein Cu deposits in Lanping basin,western Yunnan

圖5 滇西蘭坪盆地茅草坪脈狀Cu 礦床流體包裹體激光拉曼光譜分析結(jié)果(a)測(cè)試含石鹽子晶包裹體的氣相(V);(b)測(cè)試富液相包裹體的氣相(V);(c)測(cè)試富氣相包裹體的液相(L);(d)測(cè)試富氣相包裹體的氣相(V)Fig.5 Representative Raman spectra of fluid inclusions in Maocaoping vein Cu deposit in Lanping basin,western Yunnan(a)testing vapor phase in halite-bearing inclusions;(b)testing vapor phase in rich aqueous inclusions;(c)testing liquid phase in rich vapor inclusions;(d)testing vapor phase in rich vapor inclusions

顯微測(cè)溫結(jié)果顯示于表1、圖6 和圖7,可見上述3 組流體包裹體的均一溫度和鹽度具有一定的差異。

(1)第I 組:I-S 型包裹體多數(shù)石鹽子晶較氣泡先消失,鹽子晶熔化溫度為248 ~320℃,包裹體最后形成均一的液相,少數(shù)均一呈氣相,完全均一溫度為293 ~370℃,鹽度為30.06% ~39.76% NaCleqv;I-W 型包裹體僅獲得2 個(gè)有效數(shù)據(jù),包裹體均一溫度分別為400℃和490℃,鹽度為11.10%~13.94% NaCleqv;所觀察到I-C 型包裹體多接近純CO2氣相包裹體,難以觀察是否完全均一,且多數(shù)在加熱過程中爆裂,未獲得有效均一溫度。(圖6a,b)

(2)第Ⅱ組:Ⅱ-W 型包裹體多均一至液相,均一溫度為302 ~490℃,鹽度為1.23% ~18.63% NaCleqv;Ⅱ-C 型包裹體初熔溫度為-60.5 ~-57.2℃,略低于純CO2三相點(diǎn)溫度(-56.6℃),可能含有其他揮發(fā)份。包裹體CO2部分均一溫度為16.2 ~29.9℃,多均一至液相,完全均一溫度為307 ~400℃,多均一至液相,部分均一至氣相。鹽度為0.02% ~13.82% NaCleqv(圖6c,d)。

(3)第Ⅲ組:Ⅲ-W 型包裹體均一溫度為263 ~400℃,鹽度為1.20% ~11.34% NaCleqv;Ⅲ-C 型包裹體CO2部分均一溫度為23.5 ~30.9℃,多均一至氣相,部分均一至液相,完全均一溫度為280 ~330℃,多均一至液相。鹽度為0.02% ~6.30% NaCleqv(圖6e,f)。

4 穩(wěn)定同位素組成

4.1 樣品及測(cè)試方法

圖6 滇西蘭坪盆地茅草坪脈狀Cu 礦床流體包裹體均一溫度直方圖和鹽度直方圖(a)A1 脈I 組包裹體組合中含石鹽子晶(I-S 型)和富液相(I-W 型)包裹體均一溫度直方圖;(b)A1 脈I 組包裹體組合中含石鹽子晶(I-S型)和富液相(I-W 型)包裹體鹽度直方圖;(c)A1 脈Ⅱ組包裹體組合中富液相(Ⅱ-W 型)和富氣相(Ⅱ-C 型)包裹體均一溫度直方圖;(d)A1 脈Ⅱ組包裹體組合中富液相(Ⅱ-W 型)和富氣相(Ⅱ-C 型)包裹體鹽度直方圖;(e)A2 脈Ⅲ組包裹體組合中富液相(Ⅲ-W 型)和富氣相(Ⅲ-C 型)包裹體均一溫度直方圖;(f)A2 脈Ⅲ組包裹體組合中富液相(Ⅲ-W 型)和富氣相(Ⅲ-C 型)包裹體鹽度直方圖Fig.6 Histograms of homogenization temperatures and salinity of fluid inclusions in Maocaoping vein Cu deposit in Lanping basin,western Yunnan(a)homogenization temperature histograms of I-S type and I-W type of inclusions from Group I in A1 vein;(b)salinity Histograms of I-S type and IW type of inclusions from Group I in A1 vein;(c)homogenization temperature histograms of Ⅱ-W type and Ⅱ-C type of inclusions from GroupⅡin A1 vein;(d)salinity histograms of Ⅱ-W type and Ⅱ-V type of inclusions from GroupⅡin A1 vein;(e)homogenization temperatures histograms ofⅢ-L type and Ⅲ-C type of inclusions from Group Ⅲin A2 vein;(f)salinity histograms of Ⅲ-W type and Ⅲ-C type of inclusions from Group Ⅲin A2 vein

本文用于測(cè)試的樣品采自茅草坪脈狀Cu 礦床礦部1 號(hào)礦洞,經(jīng)緯度坐標(biāo)分別為25°55'00″N,99°07'29″E,具體位置見圖2 所示。由于多數(shù)A1 脈與A2 脈相連,且A2 脈寬度較窄,因此在挑選單礦物時(shí)難以將A1 脈與A2 脈的石英、方解石區(qū)分挑出,并且黃鐵礦含量較少,難以挑出足夠量的單礦物。故本次測(cè)試工作選取與含銅硫化物同期形成的石英進(jìn)行H-O 同位素、方解石C-O 同位素以及黃銅礦S 同位素分析。

圖7 滇西蘭坪盆地茅草坪脈狀Cu 礦床流體包裹體均一溫度與鹽度散點(diǎn)圖Fig.7 Homogenization temperature versus salinity of fluid inclusions in Maocaoping vein Cu deposit in Lanping basin,western Yunnan

石英H-O 同位素分析在核工業(yè)北京地質(zhì)研究院分析測(cè)試研究中心Delta V Plus 質(zhì)譜儀上完成。分析精度分別為±2‰和±0.2‰,相對(duì)標(biāo)準(zhǔn)均為SMOW。實(shí)驗(yàn)分析測(cè)試流程為:選取40 ~60 目的純凈樣品,在150℃低溫下真空去氣4h以上,以徹底除去表面吸附水和次生包裹體水,在400℃高溫下用爆裂法提取出包裹體中的水,進(jìn)行收集、冷凝和純化處理,然后用金屬鋅置換出水中的氫,在質(zhì)譜儀上測(cè)試氫的組成。熱液方解石C-O 同位素分析在南京大學(xué)內(nèi)生金屬礦床成礦機(jī)制研究國家重點(diǎn)實(shí)驗(yàn)室完成,利用碳酸鹽礦物中碳、氧同位素組成磷酸法測(cè)定。實(shí)驗(yàn)過程如下:選取200 目的純凈樣品,浸入正磷酸中反應(yīng)24h,反應(yīng)溫度維持在50℃,以產(chǎn)生CO2。使用DELTA plus+XP+Gas Bench 型穩(wěn)定同位素質(zhì)譜儀對(duì)CO2中C、O 同位素進(jìn)行測(cè)量,利用中國GBW00405標(biāo)準(zhǔn)碳酸鹽對(duì)實(shí)驗(yàn)結(jié)果進(jìn)行校正,測(cè)量誤差δ13CV-PDB為±0.1‰,δ18OV-PDB為±0.1‰,方解石樣品根據(jù)δ18OV-SMOW=1.03086 ×δ18OV-PDB+30.86(Friedman and O’Neil,1977)進(jìn)行O 的V-SMOW 標(biāo)準(zhǔn)化。黃銅礦S 同位素分析在核工業(yè)北京地質(zhì)研究院分析測(cè)試研究中心完成。實(shí)驗(yàn)過程如下:選取200 目的純凈樣品,和氧化亞銅按一定比例混合均勻,在真空達(dá)2.0 ×10-2Pa 狀態(tài)下加熱,進(jìn)行氧化反應(yīng),反應(yīng)溫度為980℃,生成二氧化硫氣體。真空條件下,用冷凍法收集二氧化硫氣體,并用Delta V Plus 氣體同位素質(zhì)譜分析硫同位素組成。測(cè)量結(jié)果以V-CDT 為標(biāo)準(zhǔn),記為δ34SV-CDT(‰)。分析精度優(yōu)于±0.2‰(2σ)。

4.2 分析結(jié)果

4.2.1 石英H-O 同位素

圖8 滇西茅草坪脈狀Cu 礦床和區(qū)域其他脈狀Cu 礦床成礦流體δDV-SMOW-δ18OV-SMOW同位素圖解大氣降水線據(jù)陳駿和王鶴年,2004;Michigan 盆地趨勢(shì)據(jù)Clayton et al. ,1966;Alberta 盆地趨勢(shì)據(jù)Hitchon and Friedman,1969;原生巖漿水和變質(zhì)水D-O 同位素范圍據(jù)Misra,2000;其他脈狀Cu礦床前人的石英樣品數(shù)據(jù)來自肖榮閣,1989;李峰等,1992,1994,1995;季宏兵和李朝陽,1998;王光輝,2010;張錦讓等,2012Fig. 8 Diagram of δDV-SMOW vs. δ18 OV-SMOW of the hydrothermal fluid in Maocaoping and other vein Cu deposits in regional area in Lanping basin,western YunnanLine for meteoric waters are from Chen and Wang (2004);trends of Michigan basins and Alberta basin are from Clayton et al. (1966)and Hitchon and Friedman (1969),respectively;fields of primary magmatic and metamorphic waters are from Misra (2000);previous published data from hydrothermal quartz in other vein Cu deposits are from Xiao (1989);Li et al. (1992,1994,1995);Ji and Li(1998);Wang (2010);Zhang et al. (2012)

茅草坪礦床中石英的δ18OV-SMOW值變化在16.7‰ ~18.2‰之 間,流 體 中 δDV-SMOW變 化 范 圍 在 -94.6‰ ~-56.2‰之間。根據(jù)熱液礦物(石英)-水體系的氧同位素分餾方程:103lnα石英-水= 3.306 × 106/T2- 2.71(張 理 剛 等,1990),結(jié)合流體包裹體顯微測(cè)溫結(jié)果(“真實(shí)”捕獲溫度280℃,見文中討論),計(jì)算出成礦流體的δ18OV-SMOW值在+8.1‰~+9.6‰之間(表2)。在δ18OV-SMOW-δDV-SMOW同位素圖解中(圖8),茅草坪礦床數(shù)據(jù)點(diǎn)分布較集中,除了個(gè)別樣品數(shù)據(jù)落在變質(zhì)水和巖漿水區(qū)域,其余大部分都落在巖漿水下方區(qū)域,具有相對(duì)均一的δ18OV-SMOW值,而δDV-SMOW值較原生巖漿水明顯降低。

4.2.2 方解石C-O 同位素

茅草坪礦床礦區(qū)內(nèi)未見與方解石共生的石墨等含碳礦物,因此方解石的C 同位素值可以近似作為該礦床成礦熱液中總碳同位素組成。方解石C 同位素組成總體上分布在相對(duì)窄的范圍內(nèi),除了一個(gè)樣品的數(shù)據(jù)δ13CV-PDB值為-2.4‰,其余樣品δ13CV-PDB值為-8.3‰ ~-8.1‰,δ18OV-SMOW變化范圍為14.46‰~16.63‰(表3)。在δ13CV-PDB-δ18OV-SMOW圖解中,數(shù)據(jù)點(diǎn)均位于巖漿、地幔與海相碳酸鹽C-O 同位素組成之間偏下方的區(qū)域(圖9)。

表2 滇西蘭坪盆地茅草坪脈狀Cu 礦床和區(qū)域其他脈狀Cu 礦床石英的H、O 同位素組成Table 2 H and O isotopic composition of quartz from Maocaoping and other vein Cu deposits in regional area in Lanping basin,western Yunnan

表3 滇西蘭坪盆地脈狀Cu 礦床和脈狀Pb-Zn 礦床碳酸鹽的C、O 同位素組成Table 3 C and O isotopic composition of carbonate from vein Cu deposits and vein Pb-Zn deposits in Lanping basin,western Yunnan

4.2.3 黃銅礦S 同位素

茅草坪礦床硫化物與石英和方解石伴生,缺乏硫酸鹽,因此硫化物黃銅礦S 同位素組成大致可以代表成礦流體的S 同位素組成。黃銅礦S 同位素組成變化范圍較窄,集中在-6.4‰ ~-3.9‰之間,平均值為-4.9‰(表4、圖10)。

5 討論

5.1 成礦流體特征

前文已述,茅草坪礦床的流體包裹體主要為含CO2鹽水包裹體,表明成礦流體為CO2鹽水體系。同時(shí),不論第I 組、第Ⅱ組還是第Ⅲ組,每組中均可見不同類型的包裹體(S 型、W 型或C 型)在同一微觀視域內(nèi)共存,且包裹體的氣/液相比變化大(圖4e-h),具有相似的完全均一溫度,表明包裹體捕獲時(shí),流體始終處于不均一態(tài)(盧煥章等,2004)。

表4 滇西蘭坪盆地脈狀Cu 礦床和砂巖型Cu 礦床硫化物S同位素組成Table 4 Sulfur isotope composition of sulfide from vein Cu deposits and sediment-hosted stratiform Cu deposits in Lanping basin,western Yunnan

圖9 滇西蘭坪盆地脈狀Cu 礦床和脈狀Pb-Zn 礦床熱液碳酸鹽礦物的δ13CV-PDB-δ18OV-SMOW圖解(底圖據(jù)劉建明和劉家軍,1997 修改)脈狀Cu 礦床前人碳酸鹽樣品數(shù)據(jù)來自肖榮閣等,1994;顏文,1993;李峰等,1995;季宏兵和李朝陽,1998;劉家軍等,2000;徐啟東和李建威,2003;張錦讓等,2012;脈狀Pb-Zn 礦床前人碳酸鹽樣品數(shù)據(jù)來自陳開旭等,2000;劉家軍等,2004;薛偉等,2012;鄒志超等,2013Fig.9 Diagram of δ13CV-PDB vs. δ18OV-SMOW of hydrothermal carbonate in vein Cu deposits and vein Pb-Zn deposits in Lanping basin,western Yunnan (original figure after Liu and Liu,1997)Previous published data from hydrothermal carbonate in vein Cu deposits are from Xiao et al. (1994);Yan (1993);Li et al.(1995);Jiand Li(1998);Liu et al. (2000);Xu and Li(2003);Zhang et al. (2012);previous published data from hydrothermal carbonate in vein Pb-Zn deposits are from Chen et al. (2000);Liu et al. (2004);Xue et al. (2012);Zou et al. (2013)

由于流體為不均一體系,包裹體捕獲時(shí)的流體多數(shù)不是單一的液相或氣相,而是同時(shí)捕獲了不同比例的氣相和液相。因此,多數(shù)包裹體加熱后所處均一狀態(tài)時(shí)的均一溫度并不是流體包裹體捕獲時(shí)的溫度,而高于“真實(shí)”捕獲溫度。此體系中,捕獲純液相(或純氣相)的包裹體的溫度等同于捕獲溫度,他們往往具有最低的均一溫度值(Bodnar,2003)。但在實(shí)際測(cè)溫過程中,很難判斷哪些包裹體完全捕獲了純的液相或氣相,因此,通常將獲得的均一溫度中低值部分近似地視為“真實(shí)”捕獲溫度。茅草坪礦床中,第I 組與第Ⅱ組流體包裹體的最低均一溫度相近,在280 ~320℃之間,而第Ⅲ組流體包裹體的最低均一溫度為260 ~280℃(圖7),顯示出第I 組與第Ⅱ組流體包裹體的捕獲溫度稍高,第Ⅲ組流體包裹體較低。

圖10 滇西蘭坪盆地脈狀Cu 礦床和砂巖型Cu 礦床硫化物δ34SV-CDT同位素分布圖脈狀Cu 礦床數(shù)據(jù)包括茅草坪、金滿、連城、水泄和科登澗礦床的黃銅礦、斑銅礦/砷銅礦、輝鉬礦、輝銅礦和黃鐵礦的S 同位素,除茅草坪礦床數(shù)據(jù)為本文測(cè)得外,其他礦床據(jù)第三地質(zhì)大隊(duì),1975;肖榮閣和李朝陽,1993;王根等,1991;李峰等,1992,1997;季宏兵和李朝陽,1998;吳南平等,2003;張立生,2000;張錦讓等,2012;砂巖型Cu 礦床數(shù)據(jù)包括瑤家山、白洋廠、德安和南坡礦床的黃銅礦、斑銅礦/砷銅礦、黃鐵礦、方鉛礦和輝銅礦的S 同位素,據(jù)顏文,1993;李峰等,1997Fig.10 Sulfur isotope of sulfide from vein Cu deposits and sediment-hosted stratiform Cu deposits in Lanping basin,western YunnanS isotopic data of chalcopyrite,bornite/tennantite,molybdenite,molybdenite and pyriteare from vein Cu deposits of Jinman,Lianchen,Shuixie and Kedengjian deposits from Xiao and Li (1993);Wang et al. (1991);Li et al. (1992,1997);Ji and Li (1998);Wu et al. (2003);Zhang(2000);Zhang et al. (2012),of Maocaoping deposit from this study;S isotopic data of chalcopyrite,bornite/arsenic copper,pyrite,galena and molybdenite from sediment-hosted stratiform Cu deposits of Yaojiashan,Baiyangchang,Dean and Nanpo deposits from Yan (1993);Li et al. (1997)

結(jié)合流體包裹體的組合特征和鹽度數(shù)據(jù),我們推測(cè)茅草坪礦床成礦流體可能經(jīng)歷了如下演化(圖7):(1)以第I 組包裹體代表的高鹽度含CO2的流體,在280 ~320℃左右,流體處于不均一狀態(tài),由于一些水分配到氣相中,導(dǎo)致液相鹽度增高,并可能伴有石鹽子晶析出;(2)成礦流體溫度沒有變化,流體仍處于不均一態(tài),但隨著石鹽子晶析出,流體總體鹽度降低,此時(shí)形成了較第I 組流體包裹體鹽度低的第Ⅱ組Ⅱ-W 包裹體和Ⅱ-C 包裹體,無含石鹽子晶包裹體;(3)流體溫度隨著礦化的進(jìn)行降低至260 ~280℃,仍處于不均一態(tài),鹽度較第Ⅱ組變化不大,此時(shí)形成了較Ⅱ-W 包裹體和Ⅱ-C 包裹體溫度低的第Ⅲ組Ⅲ-W 包裹體和Ⅲ-C 包裹體。

5.2 成礦流體來源

在δ18OV-SMOW-δDV-SMOW同位素圖解中(圖8),茅草坪脈狀Cu 礦床H-O 同位素組成與前人金滿、連城等脈狀Cu 礦床H-O 同位素組成基本一致,顯示出與其他脈狀Cu 礦床成礦流體同源的特征。數(shù)據(jù)點(diǎn)分布較集中,既沒有落在大氣降水和盆地鹵水區(qū)域,也沒有落在兩者與變質(zhì)水/巖漿水之間區(qū)域,從而排除大氣降水和盆地鹵水來源,以及兩者與變質(zhì)水/巖漿水混合來源。同時(shí),除了個(gè)別樣品數(shù)據(jù)落在變質(zhì)水和巖漿水區(qū)域,其余大部分?jǐn)?shù)據(jù)都落在巖漿水下方區(qū)域,具有相對(duì)均一的δ18OV-SMOW值。這是由于巖漿脫氣作用會(huì)導(dǎo)致D 優(yōu)先向氣相分配,18O 優(yōu)先向液相分配,從而導(dǎo)致殘余巖漿水的δDV-SMOW值降低和δ18OV-SMOW值升高,但δ18OV-SMOW值變化很小(Shmulovich et al.,1999)。故圖8 所示茅草坪等脈狀Cu 礦床δDV-SMOW值較原生巖漿水明顯降低,而δ18OV-SMOW值變化不大,指示成礦流體來自發(fā)生過脫氣作用的巖漿水。由于茅草坪礦床成礦流體D 同位素較原生巖漿水降低至少達(dá)到30‰,這在封閉體系的巖漿脫氣作用下不能實(shí)現(xiàn)(Shmulovich et al.,1999),但是開放系統(tǒng)下可以實(shí)現(xiàn),后者能導(dǎo)致殘余巖漿水中δDV-SMOW值較原生巖漿水降低50‰ ~80‰(Taylor,1986),因此,礦床成礦流體是來自開放系統(tǒng)下脫氣的巖漿水。

在δ13CV-PDB-δ18OV-SMOW圖解中,茅草坪礦床C-O 同位素組成與蘭坪盆地西緣的其他脈狀Cu 礦床的C-O 同位素組成基本一致,均位于巖漿、地幔與海相碳酸鹽C-O 同位素組成之間偏下方的區(qū)域(圖9)。δ18OV-SMOW值相對(duì)均一,δ13CV-PDB值變化較大。其中,除了一個(gè)方解石樣品的C 同位素組成較高外,多數(shù)樣品的C 同位素組成相對(duì)較低。指示盆地西緣脈狀Cu 礦床碳和氧可能來源于巖漿、地幔以及海相碳酸鹽。但是,比較盆地內(nèi)脈狀Pb-Zn 礦床C-O 同位素組成,兩者數(shù)據(jù)趨勢(shì)顯示出明顯差異。后者C-O 同位素?cái)?shù)據(jù)基本沿近平行的δ18OV-SMOW軸分布,主要落在了海相碳酸鹽溶解作用形成的范圍內(nèi)(圖9),表明成礦過程中流體溶解了圍巖中的碳酸鹽(陳開旭等,2000;劉家軍等,2004;薛偉等,2012;鄒志超等,2013),其中,部分樣品δ18OV-SMOW值偏低,可能指示大氣降水對(duì)成礦的影響。因此,茅草坪等脈狀Cu 礦床與脈狀Pb-Zn 礦床的流體來源明顯不同,成礦流體中碳和氧主要來源于巖漿、地幔等深源流體(δ13CV-PDB值為-7‰ ~-2‰,Deines et al.,1991;Cartigny et al.,1998;Goldfarb et al.,2005),巖漿流體與碳酸鹽反應(yīng)釋放CO2。數(shù)據(jù)偏向巖漿巖,指示巖漿提供了主要的CO2。而少數(shù)偏高的δ13CV-PDB值表明個(gè)別礦床碳酸鹽巖圍巖可能提供了部分碳和氧。

在δ34SV-CDT同位素分布圖中顯示(圖10),茅草坪礦床硫化物的δ34SV-CDT值在-6.4‰~-3.9‰之間,分布比較集中,在脈狀Cu 礦床的δ34SV-CDT同位素組成(-11‰ ~+5‰)范圍內(nèi)。從數(shù)據(jù)分布上看,硫的來源可以有多種解釋:(1)海相硫酸鹽提供。假設(shè)硫酸鹽的δ34SV-CDT值在+15‰ ~+25‰(不同地質(zhì)歷史時(shí)期海水值,Claypool et al.,1980;高廣立,1991),即使經(jīng)過硫酸鹽熱化學(xué)反應(yīng)(TSR)也難以產(chǎn)生茅草坪Cu 礦床的δ34SV-CDT值和多數(shù)脈狀Cu 礦床的δ34SV-CDT值,故排除TSR 成因。同樣,理論上,茅草坪等脈狀Cu 礦床的δ34SV-CDT值可以由硫酸鹽的生物還原作用(BSR)產(chǎn)生(Detmers et al.,2001),然而,與蘭坪盆地內(nèi)砂巖型礦床Cu礦床相比,脈狀Cu 礦床的δ34SV-CDT值分布相對(duì)集中,呈塔式分布,而砂巖型Cu 礦床的δ34SV-CDT值分布分散,總體偏負(fù),而后者為典型的BSR 成因(李峰和甫為民,2000),故盡管茅草坪等脈狀Cu 礦床的值δ34SV-CDT理論上可以用于BSR 成因解釋,但其與典型的BSR 形成的δ34SV-CDT值分布特點(diǎn)相差較大。因此,用BSR 解釋茅草坪等脈狀Cu 礦床的δ34SV-CDT值不理想。(2)巖漿硫。巖漿成因硫化物的δ34SV-CDT值在-3.0‰ ~+2.5‰之間(Taylor,1986),若還原性的巖漿經(jīng)歷開放系統(tǒng)下的巖漿脫氣作用,可以導(dǎo)致巖石中硫化物顯著虧損34S,其δ34SV-CDT值向負(fù)值偏移(0‰ ~ - 8‰,Zheng,1990;鄭永飛等,1996)。因此,巖漿脫氣后殘余巖漿中的硫可產(chǎn)生茅草坪等脈狀Cu 礦床的S 同位素值。

上述分析表明,成礦流體是來自開放系統(tǒng)下脫氣的巖漿水,并且,茅草坪礦區(qū)西南側(cè)發(fā)育花崗巖體的成巖年齡為22Ma(薛傳東等,未發(fā)表資料)與成礦年齡20Ma(程楊等,2015)一致,進(jìn)一步指示了成礦流體來源于巖漿水。滇西其他脈狀Cu 礦床如金滿、連城礦床,雖然礦區(qū)內(nèi)未見出露的巖漿巖,但可能存在著隱伏巖體,成礦流體可能與隱伏巖漿的活動(dòng)有關(guān)。

6 結(jié)論

(1)礦床流體包裹體主要有富液相(水溶液相)包裹體、富氣相包裹體和含石鹽子晶包裹體3 種類型。成礦流體體系為一套H2O-CO2-NaCl 體系,流體始終為不均一態(tài)。流體包裹體組合第I 組與第Ⅱ組流體溫度相近,為280 ~320℃,其中第I 組鹽度較高,有11.10% ~13.94% NaCleqv 和30.06% ~39.76% NaCleqv 兩個(gè)峰區(qū),;Ⅱ組鹽度降低至0.02% ~18.63% NaCleqv;Ⅲ組流體溫度降至260 ~280℃,但鹽度變化不大,為0.02% ~11.34% NaCleqv。

(2)茅草坪礦床與盆地內(nèi)其他脈狀Cu 礦床計(jì)算的δ18OV-SMOW值和流體中的δDV-SMOW值都落在原生巖漿水區(qū)域的下方,表明流體來源于巖漿水,但經(jīng)歷了開放系統(tǒng)下的脫氣作用,沒有盆地流體或大氣降水的參與;熱液碳酸鹽方解石的C-O 同位素組成與盆地內(nèi)其他脈狀Cu 礦床碳酸鹽的C-O 同位素組成相似,黃銅礦δ34SV-CDT值也處于區(qū)域其他脈狀Cu 礦床的S 同位素組成范圍內(nèi),推測(cè)CO2和硫可能也來自脫氣的巖漿水。因此,茅草坪礦床等脈狀Cu 礦床成礦流體可能來自開放系統(tǒng)下經(jīng)歷脫氣的巖漿水,沒有大氣降水和盆地鹵水的參與。

致謝 感謝中國地質(zhì)科學(xué)院陳偉十老師在流體包裹體測(cè)溫工作中提供的幫助,徐文藝?yán)蠋熢诹黧w包裹體激光拉曼光譜分析中給予的指導(dǎo)。感謝昆明理工大學(xué)成祥同學(xué)在滇西野外工作中的熱情相助,中國地質(zhì)大學(xué)(北京)趙曉燕、裴英茹同學(xué)在成文過程中的有益探討。感謝審稿專家的建設(shè)性意見!

Bodnar RJ. 1993. Reviced equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim. Cosmochim.Acta,57(3):683 -684

Cao SY,Liu JL,Leiss B,Neubauer F,Genser J and Zhao CQ. 2011.Oligo-Miocene shearing along the Ailao Shan-Red River shear zone:Constraints from structural analysis and zircon U/Pb geochronology of magmatic rocks in the Diancang Shan massif,SE Tibet,China.Gondwana Research,19(4):975 -993

Cartigny P,Harris JW and Javoy M. 1998. Eclogitic diamond formation at Jwaneng:No room for a recycled component. Science,280(5368):1421 -1424

Chen J and Wang HN. 2004. Geochemistry. Beijing:Science Press,116-117 (in Chinese)

Chen KX,He LQ,Yang ZQ,Wei JQ and Yang AP. 2000. Oxygen and carbon isotope geochemlstry in Sanshan-Baiyangping copper-sliver polymetallogenic enrichment district,Langping,Yunnan. Geology Mineral Resources of South China,(4):1 -8 (in Chinese with English abstract)

Cheng X. 2014. Geoligical-geochemical characteristics and genesis of Maocaoping vein Cu-Pb-Zn (-Ag)deposit,northwest Yunnan.Master Degree Thesis. Kunming:Kunming University of Science and Technology,20 -22 (in Chinese)

Cheng Y,Song YC,Xue CD and Huang SQ. 2015. A synthetic study of veins structure and mineralogenetic epoch of Maocaoping vein-type Cu deposit,western Yunnan. Acta Geologica Sinica,89(3):583 -598 (in Chinese with English abstract)

Chi GX and Xue CJ. 2011. Abundance of CO2-rich fluid inclusions in a sedimentary basin-hosted Cu deposit at Jinman,Yunnan,China:Implications for mineralization environment and classification of the deposit. Minerium Deposita,46:365 -380

Claypool GE,Holser WT,Kaplan LR,Sakai H and Zak L. 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology,28:199 -260

Clayton RN,F(xiàn)riedman I,Graf DL,Mayeda TK,Meents WF and Shimp NF. 1966. The origin of saline formation waters:1. Isotopic composition. Journal of Geophysical Research,71 (16):3869-3882

Collins PLF. 1979. Gas hydrates in CO2-bearing fluid inclusion and the use of freezing data for estimation of salinity. Econ. Geol.,74(6):1435 -1444

Deines P,Harris JW and Gurney JJ. 1991. The carbon isotopic composition and nitrogen content of lithospheric and asthenospheric diamonds from the Jagersfontein and Koffiefontein kimberlite,South Africa. Geochimica et Cosmochimica Acta,55(9):2615 -2625

Deng J,Wang QF,Li GJ and Santosh M. 2014a. Cenozoic tectonomagmatic and metallogenic processes in the Sanjiang region,southwestern China. Earth-Science Reviews,138:268 -299

Deng J,Wang QF,Li GJ,Li CS and Wang CM. 2014b. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region,SW China. Gondwana Research,26(2):419 -437

Deng J and Wang QF. 2015. Gold mineralization in China:Metallogenic provinces, deposit types and tectonic framework. Gondwana Research,doi:10.1016/j.gr.2015.10.003

Detmers J,Brüchert V,Habicht KS and Kuever J. 2001. Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes. Applied and Environmental Microbiology,67(2):888 -894

Gao GL. 1991. Formation age and involved problems on anhydrite ore in Jinding lead-zinc ore area. Yunnan Geology,10(2):191 -205 (in Chinese with English abstract)

Ge LS,Deng J,Yang LQ,Wang ZH,Guo XD and Yuan SS. 2012.Characteristics of deep-seated structure and its controlaction for magmatic activity and mineralization in western Yunnan Province.Acta Petrologica Sinica,28(5):1387 - 1400 (in Chinese with English abstract)

Goldfarb R,Baker T,Dube B,Groves DI,Hart CJR and Gosselin P.2005. Distribution,character and genesis of gold deposits in metamorphic terranes. In: Hedenquist JW, Thompson JFH,Goldfarb RG and Richards JP (eds.). Economic Geology,100thAnniversary Volume:407 -450

He LQ,Song YC,Chen KX,Hou ZQ,Yu FM and Yang ZS. 2009.Thrust-controlled, sediment-hosted, Himalayan Zn-Pb-Cu-Ag deposits in the Lanping foreland fold belt,eastern margin of Tibetan Plateau. Ore Geology Reviews,36:106 -132

Hitchon B and Friedman I. 1969. Geochemistry and origin of formation waters in the western Canada sedimentary basin-I. Stable isotopes of hydrogen and oxygen. Geochimica et Cosmochimica Acta,33(11):1321 -1349

Hou ZQ,Mo XX,Yang ZM,Wang AJ,Pan GT,Qu XM and Nie FJ.2006. Metallogeneses in the collisional orogen of the Qinghai-Tibet Plateau:Tectonic setting,tempo-spatial distribution and ore deposit types. Geology in China,33(2):340 - 351 (in Chinese with English abstract)

Hou ZQ and Cook NJ. 2009. Metallogenesis of the Tibetan collisional orogen:A review and introduction to the special issue. Ore Geology Reviews,36(1 -3):2 -24

Ji HB and Li CY. 1998. Geochemical characteristics and source of oreforming fluid for Jinman copper deposit in western Yunnan Province,China. Acta Mineralogica Sinica,18(1):28 -37 (in Chinese with English abstract)

Li F,F(xiàn)u WM and Ran CY. 1992. On the source of the ore-forming materials in the Jinman copper deposits,Lanping. Journal of Kunming Institute of Technology,17(4):8 -15,23 (in Chinese with English abstract)

Li F,Huang DY and Fu WM. 1994. On the geological characteristics and genesis of Shuixie copper deposit in Yongping. Yunnan Geology,13(4):341 -349 (in Chinese with English abstract)

Li F,Huang DY and Fu WM. 1995. Metallogenic law of red-bed copper deposits of the Lanping-Simao basin,Yunnan,China. Geotectoniea et Metallogenia,19 (4):322 - 335 (in Chinese with English abstract)

Li F,F(xiàn)u WM and Li L. 1997. The material origin of the regional metallogenesis of Cu deposits in red beds of West Yunnan. Yunnan Geology,16(3):233 -244 (in Chinese with English abstract)

Li F and Fu WM. 2000. Geology of Red-bed Cu Deposits,Western Yunnan. Kunming:Yunnan University Press (in Chinese)

Liu JJ,Li CY,Pan JY,Hu RZ,Liu XF and Zhang Q. 2000. Isotopic geochemistry of copper deposits from sandstone and shale of Lanping-Simao basin,western Yunnan. Mineral Deposits,19(3):223 -234(in Chinese with English abstract)

Liu JJ,He MQ,Li ZM,Liu YP,Li CY,Zhang Q,Yang WG and Yang AP. 2004. Oxygen and carbon isotopic geochemistry of Baiyangping silver copper polymetallic ore concentration area in Lanping basin of Yunnan Province and its significance. Mineral Deposits,23(1):1-10 (in Chinese with English abstract)

Liu JL,Song ZJ,Cao SY,Zhai YF,Wang AJ,Gao L,Xiu QY and Cao DH. 2006. The dynamic setting and processes of tectonic and magmatic cvolution of the oblique collision zone between Indian and Eurasian plate:Exemplified by the tectonic evolution of the Three River region,eastern Tibet. Acta Petrologica Sinica,22(4):775 -786 (in Chinese with English abstract)

Liu JM and Liu JJ. 1997. Basin fluid genetic model of sediment-hosted micro-disseminated gold deposits in the gold-triangle area between Guizhou,Guangxi and Yunnan. Acta Mineralogica Sinica,17(4):448 -456 (in Chinese with English abstract)

Lu HZ,F(xiàn)an HR,Ni P,Ou GX,Shen K and Zhang WH. 2004. Fluid Inclusion. Beijing:Science Press,1 -487 (in Chinese)

Misra KC. 2000. Understanding Mineral Deposits. London:Kluwer Academic Publisher,574 -612

Peng TP,Wang YJ,Zhao GC,F(xiàn)an WM and Peng BX. 2008. Arc-like volcanic rocks from the southern Lancangjiang zone,SW China:Geochronological and geochemical constraints on their petrogenesis and tectonic implications. Lithos,102(1 -2):358 -373

Que MY,Cheng DM,Zhang LS,Xia WJ and Zhu CY. 1998. Copper Deposits in the Lanping-Simao Basin. Beijing:Geological Publishing House (in Chinese)

Shmulovich KI,Landwehr D,Simon K and Heinrich W. 1999. Stable isotope fractionation between liquid and vapour in water-salt systems up to 600℃. Chemical Geology,157(3 -4):343 -354

Song YC,Hou ZQ,Yang TN,Zhang HR,Yang ZS,Tian SH,Liu YC,Wang XH,Liu YX,Xue CD,Wang GH and Li Z. 2011. Sedimenthosted Himalayan base metal deposits in Sanjiang region:Characteristics and genetic types. Acta Petrologica et Mineralogiga,30(3):355 -380 (in Chinese with English abstract)

Tang Y,Yin FG,Wang LQ,Wang DB,Liao SY,Sun ZM and Sun J.2013. Structural characterization of and geochronological constraints on sinistral strike-slip shearing along the southern segment of Chongshan shear zone,western Yunnan. Acta Petrologica Sinica,29(4):1311 -1324 (in Chinese with English abstract)

Taylor BE. 1986. Magmatic volatiles:Isotopic variation of C,H,and S.Reviews in Mineralogy and Geochemistry,16(1):185 -225

Teng YG,Liu JD,Zhang CJ,Ni SJ and Peng XH. 2000. Geological and geochemical in formation of deep ore fluid in Lanping basin,Yunnan Province. Geological Prospecting Review,15(4):314 -319 (in Chinese with English abstract)

Wang CM,Deng J,Carranza EJM and Santosh M. 2014. Tin metallogenesis associated with granitoids in the southwestern Sanjiang Tethyan Domain:Nature,deposit types,and tectonic setting.Gondwana Research,26(2):576 -593

Wang EQ and Burchfiel BC. 1997. Interpretation of Cenozic tectonics in the right-lateral accommodation zone between the Ailao Shan shear zone and the eastern Himalayan syntaxis. Int. Geol. Rev.,39(3):191 -219

Wang G,Chen L,Zhang FS,Zhang DH and Duan SJ. 1991. Sandstonetype and hydrothermal-type copper deposits in Lanping-Simao basin,western Yunnan. Southwest Mineral Geology,5(4):6 - 35 (in Chinese)

Wang GH. 2010. A study of genesis in Jinman-Liancheng vein Cu deposit in Lanping basin, western Yunnan. Master Degree Thesis.Kunming:Kunming University of Science and Technology,43 -56(in Chinese)

Wang JH,Yin A,Harrison TM,Grove M,Zhang YQ and Xie GH.2001. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone. Earth and Planetary Science Letters,188(1 -2):123 -133

Wang XH,Song YC,Hou ZQ,Zhang HR,Wang Z,Zhuang TM,Zhang C and Zhang TF. 2011. Geological characteristics of the Baiyangping Pb-Zn-Cu-Ag polymetallic deposit in northern Lanping basin. Acta Petrologica et Mineralogica,30(3):507 -518 (in Chinese with English abstract)

Warren JK. 2000. Evaporites,brines and base metals:Low-temperature ore emplacement controlled by evaporite diagenesis. Australian Journal of Earth Sciences,47(2):179 -208

Wu NP,Jiang SY,Liao QL,Pan JY and Dai BZ. 2003. Lead and sulfur isotope geochemistry and the ore sources of the vein-type copper deposits in Lanping-Simao Basin,Yunan Province. Acta Petrologica Sinica,19(4):799 -807 (in Chinese with English abstract)

Xiao RG. 1989. Reservation of thermal brine with ore-forming materials and abrupt mineralization. Post-Doctor Research Report. Guiyang:Institute of Geochemistry,Chinese Academy of Sciences (in Chinese)

Xiao RG and Li CY. 1993. The discovery of a mineralized body in spurting fluid deposits of the Lajing hot spring,Lanping,Yunnan,and its geological implication. Geological Review,39(1):73 -78(in Chinese with English abstract)

Xiao RG,Chen HQ,Shuai KY and Yang ZF. 1994. Mineralization of Jinman copper deposit in Mesozoic sedimentary rocks in Lanping,Yunnan Province. Geoscience,8(4):490 -496 (in Chinese with English abstract)

Xu QD and Li JW. 2003. Migration of ore-forming fluids and its relation to zoning of mineralization in northern Lanping Cu-polymetallic area,Yunnan Province: Evidence from fluid inclusions and stable isotopes. Mineral Deposits,22(4):365 - 376 (in Chinese with English abstract)

Xu SH,Gu XX,Tang JX,Chen JP and Dong SY. 2005. Stable isotopic geochemistry of three major types of Cu-Ag polymetallic deposits in the Lanping basin,Yunnan. Bulletin of Mineralogy,Petrology and Geochemistry,24 (4):309 - 316 (in Chinese with English abstract)

Xu XC,Xie QQ,Lu SM,Chen TH,Huang Z and Yue SC. 2005. Fluid inclusion characteristics of copper deposits on the western border of Lanping Basin,Yunnan Province. Acta Mineralogica Sinica,25(2):170 -176 (in Chinese with English abstract)

Xue W,Xue CJ,Li HJ,Chi GX and Zeng R. 2012. Sources of the oreforming material of the Baiyangping poly-metallic deposit in Lanping basin,northwestern Yunnan:Constraints from C,H,O,S and Pb isotope geochemistry. Geoscience,26(4):663 -672 (in Chinese with English abstract)

Yan W. 1993. Geochemical study of a new type of copper deposit. Ph.D. Dissertation. Guiyang:Institute of Geochemistry,Chinese Academy of Sciences (in Chinese with English summary)

Yan W and Li CY. 1995. The material source of a new type of copper deposits:Evidence from stable isotopes. Chinese Journal of Geochemistry,14 (2):168 - 178Yan W and Li CY. 1997.Geochemical characteristics and their hydrothermal sedmentaray genesis of a new type of copper deposit. Geochimica,26(1):54 -63 (in Chinese with English abstract)

Zhang B,Zhuang JJ,Zhong DL,Wang XX,Qu JF and Guo L. 2011.Structural feature and its significance of the northernmost segment of the Tertiary Biluoxueshan-Chongshan shear zone,east of the Eastern Himalayan Syntaxis. Science China (Earth Sciences),54(7):959-974

Zhang J,Deng J,Chen HY,Yang LQ,Cooke D,Danyushevsky L and Gong QJ. 2014. LA-ICP-MS trace element analysis of pyrite from the Chang’an gold deposit,Sanjiang region,China:Implication for oreforming process. Gondwana Research,26(2):557 -575

Zhang JR,Wen HJ,Qin CJ and Wang JS. 2012. Fluid inclusion and stable isotopes study of Liancheng Cu-Mo polymetallic deposit in Lanping Basin,Yunnan Province. Acta Petrologica Sinica,28(5):1373 -1386 (in Chinese with English abstract)

Zhang L,Zheng Y and Chen YJ. 2012. Ore geology and fluid inclusion geochemistry of the Tiemurt Pb-Zn-Cu deposit,Altay,Xinjiang,China:A case study of oeogenic-type Pb-Zn systems. Journal of Asian Earth Sciences,49:69 -79

Zhang LG,Liu JX,Zhou HB and Chen ZS. 1990. Oxygen isotope fraction in the quartz water-salt system. Mineral Deposits,9(2):158 -166 (in Chinese with English abstract)

Zhang LS. 2000. Stable isotope compositions and their implications for ore genesis of vein tetrahedrite-type copper deposits. Sedimentary Geology and Tethyan Geology,20(2):74 -82 (in Chinese with English abstract)

Zhao DK. 2004. Broomlike structural zone and its ore-controlling in Baiyangping silver multimetallic ore field, Yunlong. Yunnan Geology,23(3):370 -377 (in Chinese with English abstract)

Zhao HB. 2006. Study on the characteristics and metallogenic condition of copper-polymetallic deposits in middle-northern Lanping Basin,western Yunnan. Ph. D. Dissertation. Beijing:China University of Geosciences,77 -81 (in Chinese with English summary)

Zheng YF. 1990. Sulfur isotope fractionation in magmatic systems:Models of Rayleigh distillation and selective flux. Chinese Journal of Geochemistry,9(1):27 -45

Zheng YF,F(xiàn)u B and Zhang XH. 1996. Effects of magma degassing on the carbon and sulfur isotope compositions of igneous rocks. Scientia Geologica Sinica,31 (1):43 - 53 (in Chinese with English abstract)

Zhu JJ,Hu RZ,Bi XW,Zhong H and Chen H. 2011. Zircon U-Pb ages,Hf-O isotopes and whole-rock Sr-Nd-Pb isotopic geochemistry of granitoids in the Jinshajiang suture zone,SW China:Constraints on petrogenesis and tectonic evolution of the Paleo-Tethys Ocean.Lithos,126(3 -4):248 -264

Zou ZC,Hu RZ,Bi XW,Wu LY,F(xiàn)eng CX and Tang YY. 2012. Study on isotope geochemistry compositions of the Baiyangping silver-copper polymetallic ore deposit area,Yunnan Province. Geochimica,41(6):515 -529 (in Chinese with English abstract)

附中文參考文獻(xiàn)

陳駿,王鶴年. 2004. 地球化學(xué). 北京:科學(xué)出版社,116 -117

陳開旭,何龍清,楊振強(qiáng),魏君奇,楊愛平. 2000. 云南蘭坪三山-白秧坪銅銀多金屬成礦富集區(qū)的碳氧同位素地球化學(xué). 華南地質(zhì)與礦產(chǎn),(4):1 -8

成祥. 2014. 滇西北云龍茅草坪脈狀Cu-Pb-Zn(-Ag)礦床地質(zhì)-地球化學(xué)特征及成因. 碩士學(xué)位論文. 昆明:昆明理工大學(xué),20 -22

程楊,宋玉財(cái),薛傳東,黃世強(qiáng). 2015. 滇西蘭坪盆地茅草坪脈狀銅礦床脈體構(gòu)造與成礦時(shí)代研究. 地質(zhì)學(xué)報(bào),89(3):583 -598

高廣立. 1991. 金頂鉛鋅礦區(qū)硬石膏礦的形成時(shí)代及其所涉及的問題. 云南地質(zhì),10(2):191 -205

葛良勝,鄧軍,楊立強(qiáng),王治華,郭曉東,袁士松. 2012. 滇西地區(qū)深部構(gòu)造特征及其對(duì)成巖-成礦的控制作用. 巖石學(xué)報(bào),28(5):1387 -1400

侯增謙,莫宣學(xué),楊志明,王安建,潘桂棠,曲曉明,聶鳳軍. 2006.青藏高原碰撞造山帶成礦作用:構(gòu)造背景,時(shí)空分布和主要類型. 中國地質(zhì),33(2):340 -351

季宏兵,李朝陽. 1998. 滇西金滿銅礦床成礦流體地球化學(xué)特征及來源. 礦物學(xué)報(bào),18(1):28 -37

李峰,甫為民,冉崇英. 1992. 蘭坪金滿銅礦床成礦物質(zhì)來源研究.昆明工學(xué)院學(xué)報(bào),17(4):8 -15,23

李峰,黃敦義,甫為民. 1994. 永平水泄銅礦床地質(zhì)特征及其成因.云南地質(zhì),13(4):341 -349

李峰,黃敦義,甫為民. 1995. 蘭坪-思茅盆地紅層銅礦成礦規(guī)律. 大地構(gòu)造與成礦學(xué),19(4):322 -335

李峰,甫為民,李雷. 1997. 滇西紅層銅礦區(qū)域成礦物質(zhì)來源. 云南地質(zhì),16(3):233 -244

李峰,甫為民. 2000. 滇西紅層銅礦地質(zhì). 昆明:云南大學(xué)出版社

劉家軍,李朝陽,潘家永,胡瑞忠,劉顯凡,張乾. 2000. 蘭坪-思茅盆地砂頁巖中銅礦床同位素地球化學(xué). 礦床地質(zhì),19(3):223-234

劉家軍,何明勤,李志明,劉玉平,李朝陽,張乾,楊偉光,楊愛平.2004. 云南白秧坪銀銅多金屬礦集區(qū)碳氧同位素組成及其意義. 礦床地質(zhì),23(1):1 -10

劉俊來,宋志杰,曹淑云,翟云峰,王安建,高蘭,修群業(yè),曹殿華.2006. 印度-歐亞側(cè)向碰撞帶構(gòu)造-巖漿演化的動(dòng)力學(xué)背景與過程——以藏東三江地區(qū)構(gòu)造演化為例. 巖石學(xué)報(bào),22(4):775-786

劉建明,劉家軍. 1997. 滇黔桂金三角區(qū)微細(xì)浸染型金礦床的盆地流體成因模式. 礦物學(xué)報(bào),17(4):448 -456

盧煥章,范宏瑞,倪培,歐光習(xí),沈昆,張文淮. 2004. 流體包裹體.北京:科學(xué)出版社,1 -487

闕梅英,程敦模,張立生,夏文杰,朱創(chuàng)業(yè). 1998. 蘭坪-思茅盆地銅礦床. 北京:地質(zhì)出版社

宋玉財(cái),侯增謙,楊天南,張洪瑞,楊竹森,田世洪,劉英超,王曉虎,劉燕學(xué),薛傳東,王光輝,李政. 2011.“三江”喜馬拉雅期沉積巖容礦賤金屬礦床基本特征與成因類型. 巖石礦物學(xué)雜志,30(3):355 -380

唐淵,尹福光,王立全,王冬兵,廖世勇,孫志明,孫潔. 2013. 滇西崇山剪切帶南段左行走滑作用的構(gòu)造特征及時(shí)代約束. 巖石學(xué)報(bào),29(4):1311 -1324

滕彥國,劉家鐸,張成江,倪師軍,彭秀紅. 2000. 蘭坪盆地深源流體成礦的地質(zhì)-地球化學(xué)信息. 地質(zhì)找礦論叢,15(4):314-319

王根,陳玲,張佛生,張道紅,段生杰. 1991. 云南蘭坪-思茅盆地砂巖型和熱液型銅礦成因探討. 西南礦產(chǎn)地質(zhì),5(4):6 -35

王光輝. 2010. 滇西蘭坪盆地金滿-連城脈狀銅礦床成因研究. 碩士學(xué)位論文. 昆明:昆明理工大學(xué),43 -56

王曉虎,宋玉財(cái),侯增謙,張洪瑞,王哲,莊天明,張翀,張?zhí)旄?2011. 蘭坪盆地北部白秧坪鉛鋅銅銀多金屬礦床地質(zhì)特征. 巖石礦物學(xué)雜志,30(3):507 -518

吳南平,蔣少涌,廖啟林,潘家永,戴寶章. 2003. 云南蘭坪-思茅盆地脈狀銅礦床鉛、硫同位素地球化學(xué)與成礦物質(zhì)來源研究. 巖石學(xué)報(bào),19(4):799 -807

肖榮閣. 1989. 含礦熱鹵水儲(chǔ)備與突發(fā)成礦作用. 博士后科研報(bào)告.貴陽:中國科學(xué)院地球化學(xué)研究所

肖榮閣,李朝陽. 1993. 云南蘭坪啦井溫泉噴流沉積礦化體的發(fā)現(xiàn)及其地質(zhì)意義. 地質(zhì)論評(píng),39(1):73 -78

肖榮閣,陳卉泉,帥開業(yè),楊忠芳. 1994. 云南蘭坪金滿中生代沉積巖中的銅礦成礦作用. 現(xiàn)代地質(zhì),8(4):490 -496

徐啟東,李建威. 2003. 云南蘭坪北部銅多金屬礦化區(qū)成礦流體流動(dòng)與礦化分帶——流體包裹體和穩(wěn)定同位素證據(jù). 礦床地質(zhì),22(4):365 -376

徐仕海,顧雪祥,唐菊興,陳建平,董樹義. 2005. 蘭坪盆地三類主要銅銀多金屬礦床的穩(wěn)定同位素地球化學(xué). 礦物巖石地球化學(xué)通報(bào),24(4):309 -316

徐曉春,謝巧勤,陸三明,陳天虎,黃震,岳書倉. 2005. 滇西蘭坪盆地西緣銅礦床礦物流體包裹體研究. 礦物學(xué)報(bào),25(2):170-176

薛偉,薛春紀(jì),李洪軍,池國祥,曾榮. 2012. 滇西北蘭坪盆地白秧坪多金屬礦床成礦物質(zhì)來源:C,H,O,S 和Pb 同位素制約. 現(xiàn)代地質(zhì),26(4):663 -672

顏文. 1993. 一種新類型銅礦床的地球化學(xué)研究. 博士學(xué)位論文. 貴陽:中國科學(xué)院地球化學(xué)研究所

顏文,李朝陽. 1997. 一種新類型銅礦床的地球化學(xué)特征及其熱水沉積成因. 地球化學(xué),26(1):54 -63

張錦讓,溫漢捷,秦朝建,王加昇. 2012. 蘭坪盆地連城Cu-Mo 多金屬礦床流體包裹體和穩(wěn)定同位素地球化學(xué)研究. 巖石學(xué)報(bào),28(5):1373 -1386

張理剛,劉敬秀,周環(huán)波,陳振勝. 1990. 石英-水-鹽體系氧同位素分餾作用. 礦床地質(zhì),9(2):158 -166

張立生. 2000. 脈狀黝銅礦型銅礦床的穩(wěn)定同位素組成及其成因意義. 沉積與特提斯地質(zhì),20(2):74 -82

趙大康. 2004. 云龍白洋廠銀多金屬礦區(qū)帚狀構(gòu)造帶及其控礦作用.云南地質(zhì),23(3):370 -377 、

趙海濱. 2006. 滇西蘭坪盆地中北部銅多金屬礦床成礦地質(zhì)特征及地質(zhì)條件. 博士學(xué)位論文. 北京:中國地質(zhì)大學(xué),77 -81

鄭永飛,傅斌,張學(xué)華. 1996. 巖漿去氣作用的碳硫同位素效應(yīng). 地質(zhì)科學(xué),31(1):43 -53

鄒志超,胡瑞忠,畢獻(xiàn)武,武麗艷,馮彩霞,唐永永. 2013. 云南白秧坪銀銅多金屬礦集區(qū)成礦流體的穩(wěn)定同位素地球化學(xué)研究.地球化學(xué),41(6):515 -529

猜你喜歡
氣相巖漿同位素
氣相色譜法測(cè)定飲用水中甲草胺和乙草胺
微波處理-氣相色譜法測(cè)定洋蔥中氟蟲腈殘留
巖漿里可以開采出礦物質(zhì)嗎?
火山冬天——巖漿帶來的寒冷
《同位素》變更為雙月刊暨創(chuàng)刊30周年征文通知
新型釩基催化劑催化降解氣相二噁英
猙獰的地球
氣相防銹技術(shù)在電器設(shè)備防腐中的應(yīng)用
《同位素》(季刊)2015年征訂通知
硼同位素分離工藝與生產(chǎn)技術(shù)
淮北市| 湟源县| 吉水县| 黎川县| 江都市| 马公市| 巴青县| 邳州市| 曲水县| 阜南县| 沐川县| 互助| 敦化市| 安丘市| 若尔盖县| 柳河县| 长治市| 麦盖提县| 且末县| 吴桥县| 新河县| 延安市| 武穴市| 黑河市| 龙胜| 册亨县| 亳州市| 淳化县| 永兴县| 固阳县| 聂荣县| 拜泉县| 蓝山县| 宝兴县| 陵川县| 邵东县| 石嘴山市| 兴国县| 嘉兴市| 古田县| 黄浦区|