国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

西秦嶺陽山金礦帶安壩礦床熱液蝕變作用*

2015-03-15 12:27張志超李楠戢興忠韓忠郭耀宇李在春
巖石學報 2015年11期
關鍵詞:陽山云母硅化

張志超 李楠 戢興忠 韓忠 郭耀宇 李在春

ZHANG ZhiChao1,LI Nan1,JI XingZhong1,HAN Zhong2,GUO YaoYu1 and LI ZaiChun1

1. 中國地質(zhì)大學地質(zhì)過程與礦產(chǎn)資源國家重點實驗室,北京 100083

2. 中國人民武裝警察部隊黃金第三總隊,成都 610000

1. State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Beijing 100083,China

2. No.3 Gold Geological General Party of Chinese Armed Police Force,Chengdu 610036,China

2015-02-10 收稿,2015-06-04 改回.

1 引言

在熱液蝕變作用過程中,流體與圍巖進行化學成分的置換導致礦物種類的變化(Putnis,2002)。其中主量元素的變化可以體現(xiàn)出巖石礦物組合的變化,微量元素的變化則可以反映熱液交代過程中的微觀作用(Whitbread and Moore,2004)。因此,蝕變巖石的元素含量異常值可用于識別肉眼通常無法觀察到的礦物成分的變化,并用于進一步分析熱液蝕變機制、以及厘定蝕變與礦化的關系(Christie and Brathwaite,2003;Chinnasamy and Mishra,2013)。目前,許多學者運用巖石地球化學手段厘定熱液礦床蝕變過程中礦物組合特征,研究熱液蝕變強度和元素遷移規(guī)律,以揭示各種蝕變過程與成礦作用的關系(Klemm and Kr?utner,2000;Craw,2002;Dugdale et al.,2006;Putnis,2009;袁峰等,2012;王翠云等,2012;張炳林等,2014)。

西秦嶺造山帶位于揚子與華北板塊之間,記錄了大規(guī)模的構造-巖漿活動和成礦事件,是理解構造演化和復合造山過程中成礦作用的理想選區(qū)(鄧軍等,2010,2011,2013;Deng et al.,2013b,2014b,c;邱昆峰等,2014;Yang et al.,2015d,e,f)。陽山金礦帶位于西秦嶺造山帶南緣,從西到東主要有泥山、葛條灣、安壩、高樓山、觀音壩和張家山6 個金礦床,目前已發(fā)現(xiàn)含金礦脈100 余條,金總資源量超過300t(圖1b)。金礦帶內(nèi)各礦床發(fā)育的蝕變類型主要有硅化、絹云母化、碳酸鹽化、綠泥石化、綠簾石化和粘土化等。金儲量最大的安壩金礦床(閻鳳增等,2010),蝕變非常發(fā)育,是該金礦帶內(nèi)研究熱液蝕變在成礦過程中作用的理想選區(qū)。李楠(2013)對陽山金礦帶熱液蝕變特征進行了研究,在系統(tǒng)地總結其野外地質(zhì)特征的基礎上,運用質(zhì)量平衡的方法對礦區(qū)千枚巖中三種不同蝕變過程中元素遷入和遷出情況進行了分析,認為硅化與成礦的關系最為密切,碳酸鹽化和粘土化與成礦關系不大。前人研究未考慮斷裂帶和巖漿巖對蝕變空間分帶的影響,也未厘清蝕變在成礦過程中的作用。

Yang and Badal(2013)、Yang et al. (2014b,2015c,2016a)和楊立強等(2014a,2015a)通過對成礦系統(tǒng)的研究,強調(diào)構造-流體耦合成礦作用機制在成礦系統(tǒng)中的重要性,并認為多期次復合造山作用、構造體制轉換與金成礦密切相關(楊立強等,2003,2010,2011a,b;邱昆峰和楊立強,2011;鄧軍等,2012;Wang et al.,2014;Deng et al.,2014a;Yang et al.,2016a)。流體在金成礦過程中起到非常重要的作用(鄧軍等,2001;Yang et al.,2008,2009),尤其在熱液礦床中,流體與金的成礦和熱液蝕變作用關系密切(邱昆峰等,2015;熊伊曲等,2015),然而,熱液蝕變作用尚缺乏系統(tǒng)的研究,這在一定程度上制約了安壩金礦床的成因研究的深入和進一步找礦勘探的工作部署。本文通過野外及手標本觀察,了解不同蝕變的野外特征,并結合野外斷裂帶及巖漿巖的出露情況,分析蝕變的空間分布規(guī)律;通過顯微鏡下的詳細觀察,理清了不同蝕變的礦物組合特征,并分析了不同蝕變礦物形成的先后順序;通過元素地球化學的方法和質(zhì)量平衡的計算,討論元素的遷移規(guī)律,理清了蝕變與金礦化的關系。

2 地質(zhì)背景

西秦嶺陽山金礦帶位于西秦嶺勉略斷裂帶內(nèi)的文縣弧形構造帶(杜子圖和吳淦國,1998;閻鳳增等,2010),它由一系列近東西向的逆沖斷裂構造(松柏-梨坪斷裂、馬家磨-魏家壩斷裂和白馬-臨江斷裂)及其相關褶皺構成(圖1a)。

陽山金礦帶地層主要有中晚元古界碧口群、上古生界的泥盆系、石炭系、二疊系和中生界的三疊系及侏羅系,新生界主要為第四系黃土和陸相沖積物。泥盆系是安壩金礦床的主要賦礦地層,出露的巖性為鈣泥質(zhì)千枚巖、炭質(zhì)千枚巖、灰?guī)r和砂巖。

陽山金礦帶內(nèi)巖漿巖的巖性主要為斜長花崗斑巖脈,且普遍發(fā)育硅化、絹云母化、碳酸鹽化、硫化、綠泥石化、綠簾石化和粘土化蝕變。巖漿巖在礦區(qū)范圍內(nèi)走向NEE 向,分布廣泛且零散,多沿區(qū)域性斷裂分布,與區(qū)域構造線平行,明顯受區(qū)域構造控制(Yang et al.,2015b;王宏偉,2012;華北,2013)。鋯石SHRIMP U-Pb 測年結果顯示陽山金礦帶巖漿巖侵位于晚三疊世(215Ma)(Yang et al.,2015b)。

圖1 文縣弧形構造(a,據(jù)杜子圖,1997)和陽山金礦帶地質(zhì)圖(b,據(jù)趙成海,2009 修改)Fig.1 Geological sketch map of the Wenxian arc structure (a,after Du,1997)and the Yangshan gold belt (b,modified after Zhao,2009)

圖2 安壩金礦床不同類型熱液蝕變顯微鏡下照片(a)石英脈中有黃鐵礦發(fā)育(-);(b)千枚巖發(fā)育絹云母化和黃鐵礦化(+);(c)絹云母被黃鐵礦包裹(+);(d)石英顆粒內(nèi)發(fā)育黃鐵礦顆粒;(e)方解石呈顆粒狀分布于巖石中(+);(f)斜長花崗斑巖中鱗片狀絹云母和粒狀石英(+);(g)蒙脫石脈切穿石英顆粒(+);(h)斜長石蝕變?yōu)榻佋颇?+);(i)石英-方解石脈(+). Py-黃鐵礦;Q-石英;Ser-絹云母;Mnt-蒙脫石;Cal-方解石;Pl-斜長石;Asp-毒砂Fig.2 Micrographs of the different altered rock samples from the Anba gold deposit(a)pyrite in the quartz vein (-);(b)sericitization and pyrite develop in the phyllite (+);(c)pyrite includes sericite (+);(d)quartz grain includes pyrite grain;(e)the calcite grains in the rock (+);(f)scaly sericite and granular quartz in the plagioclase granite porphyry (+);(g)montmorillonite vein cuts across silica grains (+);(h)plagioclase was altered to sericite (+);(i)quartz-calcite vein (+). Py-pyrite;Q-quartz;Ser-sericite;Mnt-montmorillonite;Cal-calcite;Pl-plagioclase;Asp-arsenopyrite

陽山金礦帶的控礦構造為安昌河-觀音壩斷裂帶,該斷裂帶是由多條次級斷裂分支復合而成的。這些次級斷裂發(fā)育于礦區(qū)內(nèi)的葛條灣-草坪梁復背斜兩翼中,礦體就產(chǎn)在復背斜兩翼的次級層間斷裂中。

安壩金礦床位于陽山金礦帶中部,為礦帶主要礦化集中區(qū)。礦床東至草坪梁,西至三角地,共發(fā)現(xiàn)31 條礦脈,礦脈長200 ~2200m,厚0.75 ~7.42m,延深>1000m,品位1.15 ~6.55g/t。礦脈由南向北分為305#、306#和311#3 個脈群。由314#、305#、360#和311#4 條主礦脈組成,呈NE-NEE 向平行展布,累計探獲(332 +333 +334)資源量281454kg,占金總資源量的91.36%(閻鳳增等,2010)。安壩金礦床的礦石為原生礦石,其Au 含量與原生礦石中硫化物含量有密切關系。金礦床圍巖巖性有砂巖、灰?guī)r、千枚巖和斜長花崗斑巖,礦石以蝕變千枚巖和蝕變斜長花崗斑巖礦石為主。礦石一般均較為松散破碎。礦石結構主要有自形粒狀結構、他形粒狀結構、環(huán)帶及環(huán)邊結構、放射狀結構、包含結構、交代殘余結構、草莓狀結構、壓碎結構等。礦石構造主要有稀疏浸染狀,稠密浸染狀,脈狀和團塊狀構造等。

3 蝕變巖相學特征

圖3 安壩金礦床4 號硐CM19 剖面不同蝕變礦物的體積百分含量變化Fig.3 Volume percentage change of different altered minerals in the CM19 profile of the 4th adit in the Anba deposit

安壩金礦床的地層和巖漿巖普遍發(fā)育多種蝕變作用(圖2),各種蝕變在空間上沒有明顯的分帶性,通過系統(tǒng)的觀察總結后發(fā)現(xiàn)蝕變與斷裂、巖漿巖在空間分布上具有一定關系(圖3)。硅化在礦區(qū)內(nèi)普遍發(fā)育,尤其在斷裂附近發(fā)育程度較強;絹云母化在斜長花崗斑巖及其附近的千枚巖中發(fā)育程度較強;粘土化發(fā)育于斷裂帶附近;綠泥石化-綠簾石化主要發(fā)育于斜長花崗斑巖和砂巖中;碳酸鹽化主要呈面狀發(fā)育于斜長花崗斑巖中,或在千枚巖和斜長花崗斑巖中以脈狀產(chǎn)出,并與石英礦物伴生。各種蝕變類型的特征如下:

硅化是發(fā)育最為廣泛的蝕變,見于不同巖性的巖石中。硅化在空間上未見到明顯的分帶,但一般靠近斷裂帶的地方發(fā)育程度強,主要形成于成礦前、成礦期和成礦后。硅化表現(xiàn)為脈狀和面狀硅化。脈狀硅化以石英脈的形式出現(xiàn),石英脈寬幾厘米到十幾厘米,脈體主要為中粗粒石英,呈乳白色,有時含少量金屬硫化物(圖2a),主要為成礦期和成礦后的產(chǎn)物。面狀硅化表現(xiàn)為斜長花崗斑巖或地層(千枚巖、灰?guī)r)中的石英呈極細粒的他形粒狀。蝕變斜長花崗斑巖中的石英通常呈他形粒狀與絹云母伴生,多以基質(zhì)的形式出現(xiàn),反映了較為快速的結晶過程(圖2f)。

絹云母化主要發(fā)育在斜長花崗斑巖及其附近的千枚巖中,主要形成于成礦前和成礦期。斜長花崗斑巖中的斜長石蝕變形成鱗片狀的絹云母和細粒石英(圖2f)。此外,千枚巖中的絹云母一般為鱗片狀,順千枚理定向排列,有些絹云母與黃鐵礦和毒砂共生(圖2b),可見其為成礦期的產(chǎn)物;此外,還有部分絹云母被黃鐵礦包裹(圖2c),該絹云母為成礦前的產(chǎn)物。

綠泥石-綠簾石化僅見于斜長花崗斑巖脈和部分砂巖中,且兩種蝕變經(jīng)常共生。常呈鱗片浸染狀、粒狀集合體或微細脈產(chǎn)出。

碳酸鹽化主要為成礦晚階段和成礦后的產(chǎn)物。一般有兩種表現(xiàn)形式,一種是面狀的碳酸鹽化,其中方解石礦物均勻地分布在巖石中(圖2e);另一種呈方解石-石英脈產(chǎn)出。后一種形式的碳酸鹽化出現(xiàn)在成礦后,切穿了早期的礦化(圖2i)。

粘土化主要表現(xiàn)為高嶺土化和蒙脫石化,常見于斷裂帶附近,主要形成于成礦后。粘土化蝕變有兩種形式,一種是粘土礦物以微細浸染狀存在于礦物表面,另一種是粘土礦物呈脈狀切穿石英脈(圖2g)。

通過對西秦嶺安壩金礦床蝕變礦物和金屬礦物的觀察,并結合李楠等(2012)、李楠(2013)和Li et al. (2014)對陽山金礦帶的成礦期次和階段的劃分,對西秦嶺安壩金礦床的蝕變礦物和金屬礦物生成順序進行了重新劃分(表1)。

4 樣品采集及分析方法

樣品主要采自陽山金礦帶安壩金礦床4 號平硐,共19件巖礦石樣品(圖3)。其中16 件采自平硐CM19 巷道的千枚巖,3 件采自CM19 巷道的斜長花崗斑巖。從千枚巖中選取了2 件新鮮的樣品作為原巖,2 件硅化樣品,以及3 件絹云母化樣品。在平硐內(nèi)對距離斷裂帶不同遠近、不同巖性及不同蝕變類型的樣品均進行了系統(tǒng)的采集。

全巖粉末樣處理工作在河北廊坊市地源礦物測試分選技術服務有限公司進行。首先選取一小塊巖石磨制探針片后,剩余巖石樣粉碎至200 目,用于主微量元素分析測試。

表1 安壩金礦床熱液礦物成順序與成礦期次劃分Table 1 The paragenetic sequences of hydrothermal minerals in the Anba deposit

主量和微量元素分析工作在中國核工業(yè)集團核工業(yè)北京地質(zhì)研究所完成。其中,主量元素采用X 射線熒光光譜儀(XRF)完成,稀土元素及微量元素采用等離子體質(zhì)譜儀(ICP-MS)測試完成。主元素的分析精度優(yōu)于1%,微量元素分析精度優(yōu)于5%。其主微量、稀土元素分析結果如表2。

5 元素質(zhì)量遷移及活動性

質(zhì)量平衡方法主要研究各種地質(zhì)體系中組分遷移和質(zhì)量變化,Gresens(1967)率先以實際巖石化學分析研究巖石質(zhì)量平衡,并導出了著名的Gresens 方程;Grant(1986)對該方程進行了有效的簡化,得到“等濃度方程”;Brimhall et al.(1988)和Brimhall and Dietrich(1987)等從簡單直觀的質(zhì)量平衡出發(fā),導出了以不活動元素為參考物種的質(zhì)量變化和體積變化表達式。鄧海琳等(1999)對前人關于質(zhì)量平衡法的主要研究成果進行分析比較,指出前人研究中存在的問題和不足,并提出了相應的改進方法,推導出新的質(zhì)量平衡方程。上述各種方法提出后被廣泛地應用于相關的研究中,對人們深入理解各種地質(zhì)作用過程中巖石體系元素活動及質(zhì)量遷移起到了至關重要的作用。

在熱液蝕變過程中,常量元素Al 和Ti 通常被認為是不活動的(Ague,1991;Condie and Sinha,1996;Klammer,1997),但Al 在變形變質(zhì)作用過程中仍有一定的活動性(Ague,1991,1997;唐紅峰等,2000),尤其是長石絹云母化過程中有部分析出(O’Hara,1988;O’Hara and Blavkburn,1989),硅化、絹云母化蝕變的發(fā)育導致Al 并不適合作為不活動組分來研究安壩金礦床熱液蝕變過程元素遷移情況。Ti 在巖石中活動性最小,在流體滲濾過程中是相對穩(wěn)定的,在巖石變形變質(zhì)過程中的活動性相當有限,是一個理想的參照元素(Ague,1991,1997;O’Hara,1988;郭順等,2013;劉德良等,1996;鐘增球和游振東,1995;張可清和楊勇,2002)。通過以上分析,本文選定TiO2作為不活動組分。通過ΔCi=CiA/k-Cio(Cio、CiA為原巖、蝕變巖中第i 種元素的含量;k =Mo/MA=CA/Co,Co、CA為原巖和蝕變巖中不活動元素的質(zhì)量;Mo、MA分別為原巖和蝕變巖的質(zhì)量)計算安壩金礦床蝕變過程中主量元素和部分微量元素的得失變化(表3、圖4)。由于碳酸鹽化、粘土化和綠泥石-綠簾石化樣品中蝕變疊加嚴重,沒有只發(fā)育其中一種蝕變的樣品,因此只對與成礦有關的硅化和絹云母蝕變進行了質(zhì)量平衡計算。

從表3 和圖4 中可知,在硅化蝕變過程中,明顯帶入的組分有SiO2、Fe2O3、FeO、MgO、CaO、C、S、Au、As、Hg、Pb、Zn;Rb 和Ba 元素被明顯帶出。在絹云母化蝕變過程中明顯帶入的組分為SiO2、Fe2O3、CaO、C、S、Au、As、Hg、Pb、Zn、Rb 和Ba;帶出組分為Na2O。

6 討論

6.1 元素遷移規(guī)律

圖4 安壩金礦床不同蝕變過程中的元素得失圖Fig.4 Gain-loss diagram for elements in the different alteration processes in the Anba deposit

表3 安壩金礦床蝕變過程中主微量元素平均得失量Table 3 Average gain or loss contents of major and trace elements during alteration processes of the Anba gold deposit

表4 安壩金礦床不同類型蝕變巖石稀土元素分析數(shù)據(jù)(×10 -6)及部分計算參數(shù)值Table 4 The date analysis (×10 -6)and related calculated parameters of rare earth elements of altered rocks in the Anba gold deposit

研究區(qū)內(nèi)可見硅化石英、絹云母和黃鐵礦共生,表明研究區(qū)普遍發(fā)育含硫量較高的酸性含礦流體(Parsapoor et al.,2009),此外,礦區(qū)內(nèi)硅質(zhì)巖發(fā)育,說明含礦流體中Si 的含量很高(戢興忠等,2014)。這些酸性的流體淋濾原巖時產(chǎn)生硅化(Stoffregen,1987)。硅化蝕變與礦化關系密切,隨著SiO2的帶入,中低溫成礦元素(Au、As、Hg、Pb 和Zn)也被帶入到系統(tǒng)中,成礦元素組成配合物與硅元素組成的配合物具有相似的穩(wěn)定性,它們在熱液中一同運移、析出(孟良義,1998)。蝕變過程中有C 元素的帶入,說明了含礦流體中含有CO2,該結果與李晶等(2007)通過對石英脈中流體包裹體的研究結果一致。Fe2O3、FeO 和S 的帶入,與礦區(qū)內(nèi)黃鐵礦化有關。此外,含礦流體從圍巖帶走了大量的Rb、Ba 元素,這是由于Rb、Ba 的不相容性及其在含礦流體中的高遷移性所致(Helba et al.,2001)。

絹云母化蝕變過程中發(fā)生反應為:

3NaAlSi3O8(斜長石)+ 2H++ K+= KAl2[AlSi3O10](OH)2(絹云母)+6SiO2+3Na+

在該過程中,K+可能來自于外界流體,也可能來自于鉀長石的蝕變所釋放出的K+,反應后表現(xiàn)為K+的帶入和Na+的帶出。在斜長石蝕變?yōu)榻佋颇?圖2h)過程中,斜長石是很重要的Eu 來源,但此時的流體環(huán)境造成了一小部分的Eu進入云母中,大部分的Eu 則被流體帶走,而Eu 與Ca2+是替代關系(Budzinski and Tischendorf,1989),由此造成了CaO的帶入。雖然從上述反應中可以看出有SiO2的形成,但并未被流體帶走,而是與圍巖反應形成含硅礦物或是以石英脈的形式產(chǎn)出于千枚巖中,導致SiO2的富集,在絹母化蝕變的過程中,一定會伴隨著輕微硅化蝕變過程的發(fā)生。絹云母化蝕變與礦化關系密切。隨著蝕變過程的進行,中低溫成礦元素(Au、As、Hg、Pb 和Zn)也帶入到系統(tǒng)中。蝕變過程中有C元素的帶入,說明了含礦流體中含有CO2。Rb 主要賦存于含K 的礦物中,在千枚巖中含K 的礦物主要為絹云母,因此,在絹云母化蝕變的過程中有Rb 的明顯帶入(凌其聰和劉從強,2002)。此外,在絹云母化蝕變過程中有Ba 的大量帶入,李裕能(1986)對陽山金礦帶內(nèi)的重晶石進行了研究,Ba的大量帶入與本區(qū)出現(xiàn)的重晶石有關(凌其聰和劉從強,2002)。Fe2O3和S 的帶入,與礦區(qū)內(nèi)黃鐵礦化和毒砂化有關(盧煥章等,2013)。

圖5 蝕變圍巖與原巖的稀土元素配分模式圖Fig.5 Chondrite-normalized REE patterns of the altered rock and the original rock

對不同蝕變過程的稀土元素投蛛網(wǎng)圖(圖5),并對稀土元素的一些參數(shù)進行了計算(表4),從圖表中可以看出蝕變巖與原巖的REE 球粒隕石標準化配分模式曲線變化趨勢相似,曲線為右傾型,有明顯的Eu 負異常,并且δEu 值介于0.70 ~0.76 之間,原巖的Eu 負異常值要比蝕變巖值低,凌其聰和劉從強(2002)認為是熱液蝕變作用造成了Eu 活化遷出,從而導致了蝕變圍巖的Eu 含量的降低和Eu 負異常擴大的現(xiàn)象。δCe 的值在1 左右,未發(fā)現(xiàn)Ce 異常。千枚巖原巖與蝕變千枚巖均富集輕稀土,而不富集重稀土,說明在蝕變過程中有流體REE 的加入(凌其聰和劉從強,2002)。此外,千枚巖原巖的稀土含量要比硅化和絹云母化千枚巖中的稀土含量要高,說明了在蝕變過程中伴隨著稀土元素的流失。

在絹云母化蝕變過程中,可以看出LREE 的減少和K2O的增加,該現(xiàn)象表明了斜長石蝕變?yōu)榻佋颇傅倪^程伴隨著REE 加入到流體中(Genna et al.,2014)。此外,斜長石是Eu 的一個非常重要的來源(Budzinski and Tischendorf,1989),然而,斜長石蝕變?yōu)榻佋颇傅倪^程中只有很少一部分Eu 能夠進入到絹云母中(Alderton et al.,1980)。絹云母形成時流體的溫度<250℃,此時Eu 容易被流體帶走,進而造成該區(qū)域Eu 的負異常(Genna et al.,2014)。

6.2 斷裂對蝕變的控制作用

圖6 安壩金礦床4 號硐CM19 剖面元素含量變化Fig.6 Elements content variation in the CM19 profile of the 4th adit in the Anba deposit

對安壩金礦床4 號硐CM19 剖面上樣品的主微量數(shù)據(jù)進行了相應的投圖(圖6)。圖中CO2/(Fe+Mg+Ca)摩爾質(zhì)量比代表了碳酸鹽化程度(Chinnasamy and Mishra,2013;McCuaig and Kerrich,1998),從圖中可以看出,在靠近斷裂帶的地方碳酸鹽化程度較高,說明了碳酸鹽化在安壩金礦床內(nèi)受斷裂帶控制。(3K+Na)/Al 摩爾質(zhì)量比代表堿金屬濃度集中程度,即代表含有堿金屬的云母礦物含量(Chinnasamy and Mishra,2013;McCuaig and Kerrich,1998),在安壩金礦床主要以絹云母為主。在巖漿巖中或距離巖漿巖較近的千枚巖中往往絹云母化蝕變的程度較高,可見絹云母化蝕變的空間分布受巖漿巖的控制。在陽山金礦帶內(nèi),巖漿巖的空間分布在區(qū)域上明顯受斷裂帶的控制(王宏偉,2012;華北,2013),因此,絹云母化在空間分布上受斷裂帶的控制。SiO2含量在一定程度上代表硅化的程度,從圖中可知,在斷裂帶發(fā)育的地方硅化程度強。在野外常??梢娫跀嗔褞Ц浇⒚}較發(fā)育,含礦流體一般都是沿斷裂帶運移的,并在斷裂帶附近的圍巖中形成石英脈;此外,圍巖與含礦流體也更容易接觸發(fā)生交代反應而形成含SiO2的礦物。以上兩種原因致使斷裂帶附近的圍巖硅化程度較高。粘土化發(fā)育于斷裂帶附近,而且越靠近斷裂帶的地方蝕變程度越高。

6.3 蝕變與金礦化的關系

對安壩金礦床4 號硐CM19 剖面上Au、S、FeO、As 和Fe2O3的含量進行了投圖(圖6)。結合圖3 發(fā)現(xiàn),在剖面上(3K+Na)/Al 摩爾比曲線在樣品3B-6、3B-9、3B-13、3B-16、3B-17、3B-19、3B-26、3B-27 處出現(xiàn)峰值;金含量曲線顯示在樣品3B-6、3B-9、3B-11、3B-16、3B-18、3B-27 處出現(xiàn)峰值;而觀察SiO2含量曲線可以發(fā)現(xiàn)在樣品3B-7、3B-11、3B-15、3B-17、3B-18、3B-20、3B-27 處硅化程度較高。樣品3B-6 發(fā)育絹云母化、粘土化和輕微的硅化,鏡下可見該樣品的硅化、粘土化蝕變與礦化沒有關系,而絹云母化伴隨有黃鐵礦化發(fā)育(圖2b),表明樣品3B-6 金含量高與絹云母化蝕變有關。樣品3B-9 僅發(fā)育絹云母化蝕變,并且鏡下可見絹云母化伴隨黃鐵礦化,說明了該樣品中礦化與絹云母化關系密切。樣品3B-11 發(fā)育硅化,鏡下見硅化伴有黃鐵礦化(圖2d)。樣品3B-16、3B-27 發(fā)育硅化和絹云母化,樣品3B-18 發(fā)育硅化、絹云母化和碳酸鹽化,鏡下可見硅化和絹云母化伴隨黃鐵礦化,這三個樣品中礦化與硅化、絹云母化有關。樣品3B-7、3B-15、3B-17、3B-20 鏡下可見硅化,且硅化與礦化無關。樣品3B-13、3B-17、3B-19、3B-26 鏡下可見絹云母化,且絹云母化與礦化無關,該絹云母應該為成礦前的產(chǎn)物。

此外,在剖面上還發(fā)現(xiàn)S 百分含量呈現(xiàn)出6 個峰,這6個峰與Au 的含量呈現(xiàn)出的6 個峰位置相同,并且二者有相同的變化趨勢,主要是因為在安壩金礦床內(nèi)金主要賦存于金屬硫化物(黃鐵礦和毒砂)中。FeO 在剖面上的變化與Au 的變化趨勢僅局部變化一致,這是因為Fe2+主要賦存于黃鐵礦中(FeS),金不僅賦存于黃鐵礦中,還有部分金賦存于毒砂中。而在毒砂中Fe 以二價和三價的形式存在,并與As 和S結合。在剖面上25m 處的Au 含量特別高,此時Fe2+、Fe3+、As、S 的含量也很高,主要是因為這四種元素形成了大量的毒砂和黃鐵礦,Au 同時也發(fā)生了沉淀,并賦存于黃鐵礦和毒砂中(Fleet et al.,1993;Reich et al.,2005;Deditius et al.,2008;Zhang et al.,2013)。

硅化蝕變過程,含礦流體沿斷裂帶向上運移,在運移時溫度、壓力逐漸下降,氧逸度升高。當氧逸度升高時,含礦流體呈弱酸性,而弱酸性、溫度壓力降低、氧逸度升高的條件促使SiO2沉淀,產(chǎn)生硅化(申婉妮,2010),并且硅化蝕變過程伴隨著黃鐵礦和毒砂的形成。安壩金礦床內(nèi)Au 以配離子[AuS]-的形式存在(謝廣東,1994;李楠,2013;朱光儒等,2014;Wang et al.,2015)。硅化蝕變過程中黃鐵礦和毒砂的沉淀,引起含礦流體中還原硫活度降低,從而導致金沉淀(李楠,2013)。

在絹云母化蝕變過程中能夠改變含礦流體的pH 值,而含礦流體的pH 值反過來影響金屬礦物的溶解度(Guilbert and Park,1986)。流體與圍巖反應過程中消耗H+,并使溶液pH 值增大顯弱堿性(Helba et al.,2001;李晶等,2007)。含礦流體中含有豐富的Fe 和S 元素。

從上述反應可以看出,絹云母化蝕變過程中有大量硫化物的形成。此外,K+和H+的減少和CO2的增加,可以降低Au 的溶解度(Kishida and Kerrich,1987;Gao and Kwak,1997)。所以,隨著Fe 含量的增加,含Au 的硫化物開始沉淀(Helba et al.,2001)。

7 結論

(1)安壩金礦床發(fā)育的蝕變有硅化、絹云母化、碳酸鹽化、綠泥石化、綠簾石化和粘土化,其中與成礦有關系的蝕變?yōu)楣杌徒佋颇富T跁r間上,硅化蝕變貫穿發(fā)育于成礦前、成礦期和成礦后,絹云母化蝕變?yōu)槌傻V前和成礦期的產(chǎn)物,碳酸鹽化蝕變主要發(fā)育于成礦晚階段和成礦后,而粘土化蝕變?yōu)槌傻V后的產(chǎn)物。在空間上,不同類型的蝕變均受礦區(qū)內(nèi)斷裂帶的控制。

(2)在硅化蝕變過程中,明顯帶入的組分有SiO2、Fe2O3、FeO、MgO、CaO、C、S、Au、As、Hg、Pb、Zn;Rb 和Ba 元素被明顯帶出。在絹云母化蝕變過程中明顯帶入的組分為SiO2、Fe2O3、CaO、C、S、Au、As、Hg、Pb、Zn、Rb 和Ba;帶出組分為Na2O。絹云母化過程中絹云母是由斜長石蝕變而形成的。

(3)在稀土元素方面,表現(xiàn)為明顯的Eu 負異常、無Ce 異常。原巖的δEu=0.70,δCe =0.95;硅化巖石的δEu =0.72,δCe=1.00;絹云母化巖石的δEu=0.76,δCe=0.95。稀土元素的配分模式曲線變化趨勢相似,為右傾型曲線,并且富集輕稀土,而不富集重稀土。稀土元素的變化揭示了蝕變過程中有流體REE 的加入和稀土元素的流失。

(4)在硅化過程中,由于含礦流體溫度、壓力和氧逸度的變化,并伴隨著黃鐵礦和毒砂的形成,引起含礦流體中還原硫活度降低而導致金沉淀。在絹云母化過程中,含礦流體的pH 增大及K+和H+的減少和CO2的增加導致了Au 溶解度的降低,最終致使黃鐵礦和Au 沉淀。

致謝 野外工作得到了中國黃金集團陽山金礦有限公司工作人員、武警黃金部隊十二支隊官兵的幫助與支持;巖石主微量元素測試工作得到了核工業(yè)北京地質(zhì)研究院地質(zhì)分析測試研究中心相關人員的協(xié)助;論文成文過程中得到了中國地質(zhì)大學(北京)楊立強教授的悉心指導,同時也得到了邱昆峰博士、李瑞紅博士和劉向東碩士的幫助;審稿人對本文提出了寶貴修改意見;在此對他們表示最誠摯的謝意。

Ague JJ. 1991. Evidence for major mass transfer and volume strain during regional metamorphism of pelites. Geology,19(8):855 -858

Ague JJ. 1997. Compositional variations in metamorphosed sediments of the Littleton Formation,New Hamp shire. American Journal of Science,297(4):440 -449

Alderton DHM,Pearce JA and Potts PJ. 1980. Rare earth element mobility during granite alteration:Evidence from southwest England.Earth and Planetary Science Letters,49(1):149 -165

Brimhall GH and Dietrich WE. 1987. Constitutive mass balance relations between chemical composition,volume,density,porosity,and strain in metasomatic hydrochemical systems:Results on weathering and pedogenesis. Geochimica et Cosmochimica Acta,51(3):567 -587 Brimhall GH,Lewis CJ,Ague JJ,Dietrich WE,Hampel J,Teague T and Rix P. 1988. Metal enrichment in bauxites by deposition of chemically mature aeolian dust. Nature,333(6176):819 -824

Budzinski H and Tischendorf G. 1989. Distribution of REE among minerals in the Hercynian postkinematic granites of Westerzgebirge-Vogtland,GDR. Zeitschrift für Geologische Wissenschaften,17(11):1019 -1031

Chinnasamy SS and Mishra B. 2013. Greenstone metamorphism,hydrothermal alteration,and gold mineralization in the genetic context of the granodiorite-hosted gold deposit at Jonnagiri,Eastern Dharwar Craton,India. Economic Geology,108(5):1015 -1038

Christie AB and Brathwaite RL. 2003. Hydrothermal alteration in metasedimentary rock-hosted orogenic gold deposits, Reefton goldfield,South Island,New Zealand. Mineralium Deposita,38(1):87 -107

Condie KC and Sinha AK. 1996. Rare earth and other trace element mobility during mylonitization:A comparison of the Brevasrd and Hope Valley shear zones in the Appalachian Mountains,USA.Journal of Metamorphic Geology,14(2):213 -226

Craw D. 2002. Geochemistry of late metamorphic hydrothermal alteration and graphitisation of host rock,Macraes gold mine,Otago Schist,New Zealand. Chemical Geology,191(4):257 -275

Deditius AP,Utsunomiya S,Renock D,Ewing RC,Ramana CV,Becker U and Kesler SE. 2008. A proposed new type of arsenian pyrite:Composition,nanostructure and geological significance. Geochimica et Cosmochimica Acta,72(12):2919 -2933

Deng HL,Tu GZ,Li CY and Liu CQ. 1999. Mass balance of open geochemical systems:1. Theory. Acta Mineralogica Sinica,19(2):121 -131 (in Chinese with English abstract)

Deng J,Yang LQ,Liu W,Sun ZS,Li XJ and Wang QF. 2001. Gold origin and fluid ore-forming effect of Zhao-Ye ore deposits concentrating area in Jiaodong,Shandong,China. Chinese Journal of Geology,36(3):257 -268 (in Chinese with English abstract)

Deng J,Hou ZQ,Mo XX,Yang LQ,Wang QF and Wang CM. 2010.Superimposed orogenesis and metallogenesis in Sanjiang Tethys.Mineral Deposit,29 (1):37 - 42 (in Chinese with English abstract)

Deng J,Yang LQ and Wang CM. 2011. Research advances of superimposed orogenesis and metallogenesis in the Sanjiang Tethys.Acta Petrologica Sinica,27(9):2501 - 2509 (in Chinese with English abstract)

Deng J,Wang CM and Li GJ. 2012. Style and process of the superimposed mineralization in the Sanjiang Tethys. Acta Petrologica Sinica,28(5):1349 -1361 (in Chinese with English abstract)

Deng J,Ge LS and Yang LQ. 2013. Tectonic dynamic system and compound orogeny:Additionally discussing the temporal-spatial evolution of Sanjiang orogeny,Southwest China. Acta Petrologica Sinica,29(4):1099 -1114 (in Chinese with English abstract)

Deng J,Yuan WM,Carranza EJM,Yang LQ,Wang CM,Yang LY and Hao NN. 2014a. Geochronology and Thermochrononometry of the Jiapigou Gold Belt,northeastern China:New evidence for multiple episodes of mineralization. Journal of Asian Earth Sciences,89:10-27

Deng J,Wang QF,Li GJ and Santosh M. 2014b. Cenozoic tectonomagmatic and metallogenic processes in the Sanjiang region,southwestern China. Earth-Science Reviews,138:268 -299

Deng J,Wang QF,Li GJ,Li CS and Wang CM. 2014c. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region,SW China. Gondwana Research,26(2):419 -437

Deng J and Wang QF. 2015. Gold mineralization in China:Metallogenic provinces, deposit types and tectonic framework. Gondwana Research,doi:10.1016/j.gr.2015.10.003

Du ZT. 1997. Study on tectonic systems and their controlling to the gold deposits distribution in the region of West Qinling. Ph. D.Dissertation. Beijing:Chinese Academy of Geological Science,1 -159 (in Chinese)

Du ZT and Wu GG. 1998. Study on the compound juxtaposed arcuate structure system in Wudu region and it's controlling to the gold mineralization. Geoscience,12(4):532 -536 (in Chinese with English abstract)

Dugdale AL,Wilson CJL and Squire RJ. 2006. Hydrothermal alteration at the Magdala gold deposit,Stawell,western Victoria. Australian Journal of Earth Sciences,53(5):733 -757

Fleet ME,Chryssoulis SL,MacLean PJ,Davidson R and Weisener CG.1993. Arsenian pyrite from gold deposits:Au and As distribution investigated by SIMS and EMP,and color staining and surface oxidation by XPS and LIMS. Canadian Mineralogist,31(1):1 -17

Gao ZL and Kwak TAP. 1997. The geochemistry of wall rock alteration in turbidite-hosted gold vein deposits,central Victoria,Australia.Journal of Geochemical Exploration,59(3):259 -274

Genna D,Gaboury D and Roy G. 2014. Evolution of a volcanogenic hydrothermal system recorded by the behavior of LREE and Eu:Case study of the Key Tuffite at Bracemac-McLeod deposits,Matagami,Canada. Ore Geology Reviews,63:160 -177

Grant JA. 1986. The isocon diagram:A simple solution to Gresens equation for metasomatic alteration. Economic Geology,81(8):1976 -1982

Gresens RL. 1967. Composition-volume relationships of metasomatism.Chemical Geology,2:47 -65

Guilbert JM and Park CF. 1986. The Geology of Ore Deposits. New York:W. H. Freeman and Co.,1 -985

Guo S,Ye K,Chen Y,Liu JB and Zhang LM. 2013. Introduction of mass-balance calculation method for component transfer during the opening of a geological system. Acta Petrologica Sinica,29(5):1486 -1498 (in Chinese with English abstract)

Helba HA,Khalil KI and Abou NMF. 2001. Alteration patterns related to hydrothermal gold mineralizaition in meta-andesites at Dungash Area,Eastern Desert,Egypt. Resource Geology,51(1):19 -30

Hua B. 2013. Ore-controlling structural system in the Yangshan Gold Belt,Western Qinling Orogen,Central China. Master Degree Thesis. Beijing:China University of Geosciences,1 - 104 (in Chinese)

Ji XZ,Li N,Zhang C,Qiu KF,Hua B,Yu JY,Wu CJ and Han R.2014. Theelemental geochemistry characteristics and forming environment of cherts in the Mianlue tectonic zone. Acta Petrologica Sinica,30(9):2619 -2630 (in Chinese with English abstract)

Kishida A and Kerrich R. 1987. Hydrothermal alteration zoning and gold concentration at the Kerr-Addison Archean lode gold deposit,Kirkland Lake,Ontario. Economic Geology,82(3):649 -690

Klammer D. 1997. Mass change during extreme acid-sulphate hydrothermal alteration of a Tertiary latite,Styria,Austria. Chemical Geology,141(1 -2):33 -48

Klemm DD and Kr?utner HG. 2000. Hydrothermal alteration and associated mineralization in the Freda-Rebecca gold deposit,Bindura District,Zimbabwe. Mineralium Deposita,35(2 -3):90 -108

Li J,Chen YJ,Li QZ,Lai Y,Yang RS and Mao SD. 2007. Fluid inclusion geochemistry and genetic type of the Yangshan gold deposit,Gansu,China. Acta Petrologica Sinica,23(9):2144 -2154 (in Chinese with English abstract)

Li N,Yang LQ,Zhang C,Zhang J,Lei SB,Wang HT,Wang HW and Gao X. 2012. Sulfur isotope characteristics of the Yangshan gold belt,West Qinling:Constraints on ore-forming environment and material source. Acta Petrologica Sinica,28(5):1577 -1587 (in Chinese with English Abstract)

Li N. 2013. Geochemistry of ore-forming processes in the Yangshan gold belt,West Qinling,central China. Ph. D. Dissertation. Beijing:China University of Geosciences,1 -147 (in Chinese)

Li N,Deng J,Yang LQ,Goldfarb RJ,Zhang C and Marsh EE. 2014.Paragenesis and geochemistry of ore minerals in the epizonal gold deposits of the Yangshan gold belt, West Qinling, China.Mineralium Deposita,49(4):427 -449

Li YN. 1986. Barite deposit geological characteristics and vision analysis,Gansu Province. Chemical Geology,(1):22 - 29 (in Chinese with English abstract)

Ling QC and Liu CQ. 2002. Geochemical behavior of trace element during hydrothermal alteration in low-metamorphic rock:A case study for Shuangqiaoshan Group in Yinshan area,Northwest Jiangxi Province,China. Acta Petrologica Sinica,18(1):100 -108 (in Chinese with English abstract)

Liu DL,Yang XY,Yang HT and Yu QN. 1996. The deformational condition and component migration of mylonites in Fuchashan ductile shear zones in the southern Tanchen-Lujiang fault belt. Acta Petrologica Sinica,12(4):573 - 588 (in Chinese with English abstract)

Lu HZ,Zhu XQ,Shan Q and Wang ZG. 2013. Hydrothermal evolution of gold-bearing pyrite and arsenopyrite from different types of gold deposits. Mineral Deposits,32(4):823 -842 (in Chinese with English abstract)

McCuaig TC and Kerrich R. 1998. P-T-t-deformation-fluid characteristics of lode gold deposits:Evidence from alteration systematics. Ore Geology Reviews,12(6):381 -453

Meng LY. 1998. The silicide and metallogenetic in the hydrothermal deposit. Chinese Science Bulletin,43(6):575 -579 (in Chinese)

O’Hara K. 1988. Fluid flow and volume loss during mylonitization:An origin for phyllonite in an overthrust setting,North Carolina,U. S.A. Tectonophysics,156(1 -2):21 -36

O’Hara K and Blavkburn WH. 1989. Volume-loss model for trace element enrichments in mylonite. Geology,17(6):524 -527

Parsapoor A,Khalili M and Mackizadeh MA. 2009. The behaviour of trace and rare earth elements (REE)during hydrothermal alteration in the Rangan area (Central Iran). Journal of Asian Earth Sciences,34(2):123 -134

Putnis A. 2002. Mineral replacement reactions:From macroscopic observations to microscopic mechanisms. Mineralogical Magazine,66(5):689 -708

Putnis A. 2009. Mineral replacement reactions. Reviews in Mineralogy &Geochemistry,70(1):87 -124

Qiu KF and Yang LQ. 2011. Genetic feature of monazite and its U-Th-Pb dating:Critical considerations on the tectonic evolution of Sanjiang Tethys. Acta Petrologica Sinica,27(9):2721 -2732 (in Chinese with English abstract)

Qiu KF,Li N,Taylor RD,Song YH,Song KR and Han WZ. 2014.Timing and duration of metallogeny of the Wenquan deposit in the West Qinling,and its constrain on a proposed classification for porphyry molybdenum deposits. Acta Petrologica Sinica,30(9):2631 -2643 (in Chinese with English abstract)

Qiu KF,Song KR and Song YH. 2015. Magmatic-hydrothermal fluid evolution of the Wenquan porphyry molybdenum deposit in the north margin of the western Qinling,China. Acta Petrologica Sinica,31(11):3391 -3404 (in Chinese with English abstract)

Reich M,Kesler SE,Utsunomiya S,Palenik CS,Chryssoulis SL and Ewing RC. 2005. Solubility of gold in arsenian pyrite. Geochimica et Cosmochimica Acta,69(11):2781 -2796

Shen WN. 2010. Wallrock alteration and mineralization of the Bilihe porphyry gold-deposit in Inner Mongolia China. Master Degree Thesis. Tangshan:Hebei Polytechnic University,1 - 75 (in Chinese)

Stoffregen RE. 1987. Genesis of acid-sulphate alteration and Au-Cu-Ag mineralization at Summitville,Colourado. Economic Geology,82(6):1575 -1591

Tang HF,Liu CQ and Xie GG. 2000. Mass transfer and element mobility of rocks during regional metamorphism: A case study of metamorphosed pelites from the Shuangqiaoshan Group in Lushan.Geological Review,46(3):245 - 254 (in Chinese with English abstract)

Wang CY,Li XF,Xiao R,Bai YP,Yang F,Mao W and Jiang SK.2012. Elements mobilization of mineralized porphyry rocks during hydrothermal alteration at Zhushahong porphyry copper deposit,Dexing district,South China. Acta Petrologica Sinica,28(12):3869 -3886 (in Chinese with English abstract)

Wang HW. 2012. Relationship between gold minerlization and acid dike of the Yangshan Gold Deposit in the Western Qinling Belt,Central China. Master Degree Thesis. Beijing: China University of Geosciences,1 -117 (in Chinese)

Wang ZL,Yang LQ,Deng J,Santosh M,Zhang HF,Liu Y,Li RH,Huang T,Zheng XL and Zhao H. 2014. Gold-hosting high Ba-Sr granitoids in the Xincheng gold deposit,Jiaodong Peninsula,East China:Petrogenesis and tectonic setting. Journal of Asian Earth Sciences,95:274 -299

Wang ZL,Yang LQ,Guo LN,Marsh E,Wang JP,Liu Y,Zhang C,Li RH,Zhang L,Zheng XL and Zhao RX. 2015. Fluid immiscibility and gold deposition in the Xincheng deposit,Jiaodong Peninsula,China:A fluid inclusion study. Ore Geology Reviews,65:701-717

Whitbread MA and Moore CL. 2004. Two lithogeochemical approachest to the identification of alteration patterns at the Elura Zn-Pb-Ag deposit,Cobar,New South Wales,Australia:Use of Pearce Element Ratio analysis. Geochemistry:Exploration,Environment,Analysis,4(2):129 -141

Xie GD. 1994. Research progresses on the transport forms and depositional mechanisms of gold. Geoscience,8(3):357 -363 (in Chinese with English abstract)

Xiong YQ,Yang LQ,Shao YJ,Zhao K,Li P,Lu YG and Du DY.2015. Metallogenic process in Jinchang gold-nickel deposit,Mojiang County,SW Yunnan,China:Constraints from occurrence of gold and nickel. Acta Petrologica Sinica,31(11):3309 - 3330 (in Chinese with English abstract)

Yan FZ,Qi JZ and Guo JH. 2010. The Geology and Exploration in Yangshan Gold Deposit, Gansu Province. Beijing: Geological Publishing House,1 -232 (in Chinese)

Yang LQ,Xiong ZQ,Deng J,Zhang ZJ,Wang JP and Li XJ. 2003.Transition of tectonic stress fields and its effects of metallogenic geochemistry on multi-scales. Geotectonica et Metallogenia,27(3):243 -249 (in Chinese with English abstract)

Yang LQ,Deng J,Zhang J,Guo CY,Gao BF,Gong QJ,Wang QF,Jiang SQ and Yu HJ. 2008. Decrepitation thermometry and compositions of fluid inclusions of the Damoqujia gold deposit,Jiaodong Gold Province,China:Implications for metallogeny and exploration. Journal of China University of Geosciences,19(4):378 -390

Yang LQ,Deng J,Guo CY,Zhang J,Jiang SQ,Gao BF,Gong QJ and Wang QF. 2009. Ore-forming fluid characteristics of the Dayingezhuang gold deposit, Jiaodong gold province, China.Resource Geology,59(2):182 -195

Yang LQ,Liu JT,Zhang C,Wang QF,Ge LS,Wang ZL,Zhang J and Gong QJ. 2010. Superimposed orogenesis and metallogenesis:An example from the orogenic gold deposits in Ailaoshan gold belt,Southwest China. Acta Petrologica Sinica,26(6):1723 -1739 (in Chinese with English abstract)

Yang LQ,Deng J,Zhao K and Liu JT. 2011a. Tectono-thermochronology and gold mineralization events of orogenic gold deposits in Ailaoshan orogenic belt,Southwest China:Geochronological constraints. Acta Petrologica Sinica,27(9):2519 -2532 (in Chinese with English abstract)

Yang LQ,Deng J,Zhao K,Liu JT,Ge LS,Zhou DQ,Li SH and Cao BB. 2011b. Geological characteristics and genetic type of Daping gold deposit in the Ailaoshan orogenic belt,SW China. Acta Petrologica Sinica,27(12):3800 -3810 (in Chinese with English abstract)

Yang LQ and Badal J. 2013. Mirror symmetry of the crust in the oil/gas region of Shengli,China. Journal of Asian Earth Sciences,78:327-344

Yang LQ,Deng J,Goldfarb RJ,Zhang J,Gao BF and Wang ZL. 2014.40Ar/39Ar geochronological constraints on the formation of the Dayingezhuang gold deposit:New implications for timing and duration of hydrothermal activity in the Jiaodong gold province,China. Gondwana Research,25(4):1469 -1483

Yang LQ,Deng J,Wang ZL,Zhang L,Guo LN,Song MC and Zheng XL. 2014. Mesozoic gold metallogenic system of the Jiaodong gold province,eastern China. Acta Petrologica Sinica,30(9):2447 -2467 (in Chinese with English abstract)

Yang LQ,Deng J,Dilek Y,Qiu KF,Ji XZ,Li N,Taylor RD and Yu JY. 2015a. Structure,geochronology,and petrogenesis of the Late Triassic Puziba granitoid dikes in the Mianlue suture zone,Qinling orogen,China. Geological Society of America Bulletin,127(11 -12):1831 -1854

Yang LQ,Deng J,Guo RP,Guo LN,Wang ZL,Chen BH and Wang XD. 2015b. World-class Xincheng gold deposit:An example from the giant Jiaodong gold province. Geoscience Frontiers,doi:10.1016/j.gsf.2015.08.006

Yang LQ,Deng J,Gao X and He WY. 2015c. Late Cretaceous porphyry metallogenic system of the Yidun arc,SW China. Acta Petrologica Sinica,31(11):3155 -3170 (in Chinese with English abstract)

Yang LQ,Ji XZ,Santosh M,Li N,Zhang ZC and Yu JY. 2015d.Detrital zircon U-Pb ages,Hf isotope,and geochemistry of Devonian chert from the Mianlue suture:Implications for tectonic evolution of the Qinling orogen. Journal of Asian Earth Sciences,doi. org/10.1016/j.jseaes.2015.04.013

Yang LQ,Deng J,Dilek Y,Meng JY,Gao X,Santosh M,Wang D and Yan H. 2015e. Melt source and evolution of I-type granitoids in the SE Tibatan Plateau:Late Cretaceous magmatism and mineralization driven by collision-induce transtensional tectonics. Lithos,doi:10.1016/j.lithos.2015.10.005

Yang LQ,Deng J,Qiu KF,Ji XZ,Santosh M,Song KR,Song YH,Geng JZ,Zhang C and Hua B. 2015f. Magma mixing and crustmantle interaction in the Triassic monzogranites of Bikou Terrane,central China:Constraints from petrology,geochemistry,and zircon U-Pb-Hf isotopic systematic. Journal of Asian Earth Sciences,98:320 -341

Yang LQ,Deng J,Guo LN,Wang ZL,Li XZ and Li JL. 2016a. Origin and evolution of ore fluid,and gold deposition processes at the giant Taishang gold deposit,Jiaodong Peninsula,eastern China. Ore Geology Reviews,72:585 -602

Yang LQ,Deng J,Wang ZL,Zhang L,Goldfarb RJ,Yuan WM,Weinberg RF and Zhang RZ. 2016b. Thermochronologic constraints on evolution of the Linglong Metamorphic Core Complex and implications for gold mineralization:A case study from the Xiadian gold deposit,Jiaodong Peninsula,eastern China. Ore Geology Reviews,72:165 -178

Yuan F,Zhou TF,Wang SW,F(xiàn)an Y,Tang C,Zhang QM,Yu CH and Shi C. 2012. Characteristic of alteration and mineralization of the Shaxi porphyry copper deposits,Luzong area,Anhui Province. Acta Petrologica Sinica,28(10):3099 -3112 (in Chinese with English abstract)

Zhang BL,Yang LQ,Huang SY,Huang SY,Liu Y,Liu WL,Zhao RX,Xu YB and Liu SG. 2014. Hydrothermal alteration in the Jiaojia gold deposit,Jiaodong,China. Acta Petrologica Sinica,30(9):2533 -2545 (in Chinese with English abstract)

Zhang J,Deng J,Chen HY,Yang LQ,Cookeb D,Danyushevsky L and Gong QJ. 2013. LA-ICP-MS trace element analysis of pyrite from the Chang’an gold deposit,Sanjiang region,China:Implication for oreforming process. Gondwana Research,26(2):557 -575

Zhang KQ and Yang Y. 2014. Introduction of the method for mass balance calculation in altered rocks. Geological Science and Technology Information,21 (3):104 - 107 (in Chinese with English abstract)

Zhao CH. 2009. Discussion of the genesis of super-large gold deposit in Yangshan, Gansu. Bulletin of Mineralogy, Petrology and Geochemistry,28 (3):286 - 293 (in Chinese with English abstract)

Zhong ZQ and You ZD. 1995. The composition variation and the loss of volume in the shear zone-take the shear zone in Hetai as an example.Chinese Science Bulletin,40(10):913 -916 (in Chinese)

Zhu GR,Wang ZH,Zhi SY and Meng FM. 2014. Migration forms and deposition mechanisms of gold in Dashui gold deposit. Gansu Geology,23(2):41 -45 (in Chinese with English abstract)

附中文參考文獻

鄧海琳,涂光熾,李朝陽,劉叢強. 1999. 地球化學開放系統(tǒng)的質(zhì)量平衡:1. 理論. 礦物學報,19(2):121 -131

鄧軍,楊立強,劉偉,孫忠實,李新俊,王慶飛. 2001. 膠東招掖礦集區(qū)巨量金質(zhì)來源和流體成礦效應. 地質(zhì)科學,36(3):257-268

鄧軍,侯增謙,莫宣學,楊立強,王慶飛,王長明. 2010. 三江特提斯復合造山與成礦作用. 礦床地質(zhì),29(1):37 -42

鄧軍,楊立強,王長明. 2011. 三江特提斯復合造山與成礦作用研究進展. 巖石學報,27(9):2501 -2509

鄧軍,王長明,李龔建. 2012. 三江特提斯疊加成礦作用樣式及過程. 巖石學報,28(5):1349 -1361

鄧軍,葛良勝,楊立強. 2013. 構造動力體制與復合造山作用:兼論三江復合造山帶時空演化. 巖石學報,29(4):1099 -1114

杜子圖. 1997. 西秦嶺地區(qū)構造體系對金礦分布規(guī)律的控制作用.博士學位論文. 北京:中國地質(zhì)科學院,1 -159

杜子圖,吳淦國. 1998. 論武都復合型斜疊弧形構造及其控礦作用.現(xiàn)代地質(zhì),12(4):532 -536

郭順,葉凱,陳意,劉景波,張靈敏. 2013. 開放地質(zhì)體系中物質(zhì)遷移質(zhì)量平衡計算方法介紹. 巖石學報,29(5):1486 -1498

華北. 2013. 陽山金礦帶控礦構造系統(tǒng). 碩士學位論文. 北京:中國地質(zhì)大學,1 -104

戢興忠,李楠,張闖,邱昆峰,華北,于金元,吳春俊,韓日. 2014.勉略構造帶硅質(zhì)巖元素地球化學特征及其形成環(huán)境. 巖石學報,30(9):2619 -2630

李晶,陳衍景,李強之,賴勇,楊榮生,毛世東. 2007. 甘肅陽山金礦流體包裹體地球化學和礦床成因類型. 巖石學報,23(9):2144 -2154

李楠,楊立強,張闖,張靜,雷時斌,王恒濤,王宏偉,高雪. 2012.西秦嶺陽山金礦帶硫同位素特征:成礦環(huán)境與物質(zhì)來源約束.巖石學報,28(5):1577 -1587

李楠. 2013. 陽山金礦帶成礦作用地球化學. 博士學位論文. 北京:中國地質(zhì)大學,1 -147

李裕能. 1986. 甘肅重晶石礦床地質(zhì)特征及遠景分析. 化工地質(zhì),(1):22 -29

凌其聰,劉叢強. 2002. 低級變質(zhì)巖在熱液蝕變過程中的微量元素地球化學行為——以贛東北銀山地區(qū)雙橋山群為例. 巖石學報,18(1):100 -108

劉德良,楊曉勇,楊海濤,余青霓. 1996. 郯廬斷裂帶南段桴槎山韌性剪切帶糜棱巖的變形條件和組分遷移系. 巖石學報,12(4):573 -588

盧煥章,朱笑青,單強,王中剛. 2013. 金礦床中金與黃鐵礦和毒砂的關系. 礦床地質(zhì),32(4):823 -842

孟良義. 1998. 熱液礦床中的硅化與成礦. 科學通報,43(6):575 -579

邱昆峰,楊立強. 2011. 獨居石成因特征與U-Th-Pb 定年及三江特提斯構造演化研究例析. 巖石學報,27(9):2721 -2732

邱昆峰,李楠,Ryan DT,宋耀輝,宋開瑞,韓旺珍,張東旭. 2014. 西秦嶺溫泉鉬礦床成礦作用時限及其對斑巖型鉬礦床系統(tǒng)分類制約. 巖石學報,30(9):2631 -2643

邱昆峰,宋開瑞,宋耀輝. 2015. 西秦嶺溫泉斑巖鉬礦床巖漿-熱夜演化. 巖石學報,31(11):3391 -3404

申婉妮. 2010. 內(nèi)蒙古畢力赫斑巖型金礦床圍巖蝕變特征與成礦.碩士學位論文. 唐山:河北理工大學,1 -75

唐紅峰,劉叢強,謝國剛. 2000. 區(qū)域變質(zhì)作用中巖石的質(zhì)量遷移和元素活動——以廬山雙橋山群變泥質(zhì)巖系為例. 地質(zhì)論評,46(3):245 -254

王翠云,李曉峰,肖榮,白艷萍,楊鋒,毛偉,蔣松坤. 2012. 德興朱砂紅斑巖銅礦熱液蝕變作用及元素地球化學遷移規(guī)律. 巖石學報,28(12):3869 -3886

王宏偉. 2012. 西秦嶺陽山金礦帶酸性脈巖與金成礦關系. 碩士學位論文. 北京:中國地質(zhì)大學,1 -117

謝廣東. 1994. Au 的遷移形式及沉淀機制研究的某些進展. 現(xiàn)代地質(zhì),8(3):357 -363

熊伊曲,楊立強,邵擁軍,趙凱,李坡,盧宜冠,杜達洋. 2015. 滇西南墨江金廠金鎳礦床金、鎳賦存狀態(tài)及成礦過程探討. 巖石學報,31(11):3309 -3330

閻鳳增,齊金忠,郭俊華. 2010. 甘肅省陽山金礦地質(zhì)與勘查. 北京:地質(zhì)出版社,1 -232

楊立強,熊章強,鄧軍,張中杰,王建平,李新俊. 2003. 構造應力場轉換的成礦地球化學響應. 大地構造與成礦學,27(3):243-249

楊立強,劉江濤,張闖,王慶飛,葛良勝,王中亮,張靜,龔慶杰.2010. 哀牢山造山型金成礦系統(tǒng):符合造山構造演化與成礦作用初探. 巖石學報,26(6):1723 -1739

楊立強,鄧軍,趙凱,劉江濤. 2011a. 哀牢山造山帶金礦成礦時序及其動力學背景探討. 巖石學報,27(9):2519 -2532

楊立強,鄧軍,趙凱,劉江濤,葛良勝,周道卿,李士輝,曹寶寶.2011b. 滇西大坪金礦床地質(zhì)特征及成因初探. 巖石學報,27(12):3800 -3810

楊立強,鄧軍,王中亮,張良,郭林楠,宋明春,鄭小禮. 2014. 膠東中生代金成礦系統(tǒng). 巖石學報,30(9):2447 -2467

楊立強,鄧軍,高雪,和文言. 2015. 義敦島弧晚白堊世斑巖成礦系統(tǒng). 巖石學報,31(11):3155 -3170

袁峰,周濤發(fā),王世偉,范裕,湯誠,張千明,俞滄海,石誠. 2012.安徽廬樅沙溪斑巖銅礦蝕變及礦化特征研究. 巖石學報,28(10):3099 -3112

張炳林,楊立強,黃鎖英,劉躍,劉文龍,趙榮新,徐詠彬,劉勝光.2014. 膠東焦家金礦床熱液蝕變作用. 巖石學報,30(9):2533-2545

張可清,楊勇. 2002. 蝕變巖質(zhì)量平衡計算方法介紹. 地質(zhì)科技情報,21(3):104 -107

趙成海. 2009. 甘肅陽山超大型金礦成因研究評述. 礦物巖石地球化學通報,28(3):286 -293

鐘增球,游振東. 1995. 剪切帶的成分變異及體積虧損——以河臺剪切帶為例. 科學通報,40(10):913 -916

朱光儒,王志虎,芝世玉,孟凡敏. 2014. 大水金礦床金的遷移形式和沉淀機制探討. 甘肅地質(zhì),23(2):41 -45

猜你喜歡
陽山云母硅化
The First Lesson of School
Spring Outing
安徽省宣城市溪口—鮑坑金多金屬礦地質(zhì)特征及控礦因素
小刺猬的煩惱
河北省豐寧滿族自治縣東山灣地區(qū)金礦成礦地質(zhì)特征及潛力綜合評價
東寧暖泉金礦床地質(zhì)特征與成礦關系探討
WS2/TiO2/絹云母復合物的制備及性能表征
“氟晶云母特性及應用進展”
超級偵探
鋰云母浮選藥劑研究現(xiàn)狀與思考