崔曉美 朱晶 陳曉棟
光動力治療病理性瘢痕的進(jìn)展
崔曉美 朱晶 陳曉棟
病理性瘢痕是皮膚受損傷后的異常愈合,以成纖維細(xì)胞增殖和膠原蛋白沉積為特征。臨床多采用綜合療法治療瘢痕,取得了一定的療效。由于某些治療手段不良反應(yīng)較大,患者已存在排斥心理。光動力療法廣泛應(yīng)用于治療體表的病變,同時其對體內(nèi)腫瘤的干預(yù)療效也被進(jìn)行了較多研究。由于光動力療法低毒性,國內(nèi)外學(xué)者們對其治療瘢痕的療效已進(jìn)行了大量研究。研究表明,光動力療法能夠抑制成纖維細(xì)胞的增殖和遷移,誘導(dǎo)凋亡,抑制胞外基質(zhì)的形成,改善瘢痕外觀,對治療瘢痕有確切療效。
瘢痕;病理過程;光化學(xué)療法;光敏感藥;成纖維細(xì)胞;膠原
治療瘢痕一直是困擾皮膚科和整形科醫(yī)生的難題之一,無確切有效的治療手段。由于近年來光動力的迅速發(fā)展,學(xué)者們對其治療瘢痕的療效進(jìn)行了大量的研究?,F(xiàn)從細(xì)胞水平、動物模型及臨床試驗3個方面,概述光敏劑聯(lián)合光動力治療病理性瘢痕的研究進(jìn)展。
作者單位:226001江蘇,南通大學(xué)附屬醫(yī)院皮膚科
病理性瘢痕是以大量成纖維細(xì)胞增生和過多的膠原蛋白沉積為特征,其影響外觀,伴癢痛等不適感,甚至帶來心理上的壓力[1-2]。病理性瘢痕包括增生性瘢痕和瘢痕疙瘩。增生性瘢痕往往局限于創(chuàng)緣內(nèi),大部分會隨著時間推移慢慢消退;瘢痕疙瘩的生長通常會超出創(chuàng)緣,侵犯周圍正常皮膚,伴不斷生長趨勢和遺傳傾向[3]。目前,臨床多采用綜合療法治療瘢痕,包括皮損內(nèi)糖皮質(zhì)激素注射、外科切除、淺表放射行局部壓力治療等。雖然,臨床應(yīng)用綜合治療方法取得一定療效,但仍存在不良反應(yīng)較大等缺點,療效不十分滿意[1,4-6]。有報道,瘢痕疙瘩也存在偶發(fā)的自然消退現(xiàn)象,但大部分呈緩慢、侵襲生長[7]。
光敏劑進(jìn)入人體后,隨即進(jìn)行光照,行光動力治療。隨著研究進(jìn)展,科學(xué)家提出“藥物-光照間隔”理念,靈活運用這一時間間隔,達(dá)到最佳療效[8]。正常情況下,氨基酮戊酸(ALA)在細(xì)胞內(nèi)的量很小,本身不產(chǎn)生光敏性。當(dāng)外源性ALA進(jìn)入體內(nèi)后,被增生活躍的細(xì)胞選擇性吸收并積累,在細(xì)胞內(nèi)轉(zhuǎn)化為原卟啉等卟啉類物質(zhì)。細(xì)胞內(nèi)的原卟啉是一種很強的光敏劑,經(jīng)過特定波長的光照射后,即發(fā)生光動力反應(yīng),產(chǎn)生活性氧如單線態(tài)氧等,從而使增生活躍的細(xì)胞發(fā)生凋亡等一系列變化[9]。
國內(nèi)外常用于研究或試驗的光敏劑有:ALA、甲基氨基酮戊酸酯和海姆泊芬等。激光波長600~800 nm[10]。
3.1 離體成纖維細(xì)胞:成纖維細(xì)胞主要參與該病的發(fā)生發(fā)展,因前者功能失調(diào),導(dǎo)致大量的細(xì)胞外基質(zhì)形成[11]。同時研究表明,3~6代以內(nèi)的離體成纖維細(xì)胞尚未改變其自身的特性,仍具備內(nèi)環(huán)境下的生物學(xué)特性,因此,學(xué)者們將成纖維細(xì)胞作為實驗對象進(jìn)行干預(yù)研究。
Li等[12]通過共聚焦顯微鏡,測得原卟啉在胞內(nèi)聚集峰值對應(yīng)的最小ALA濃度1 mmol/L,選擇該濃度進(jìn)行實驗,激光波長為635 nm,能量密度為0.5 J/cm2~4 J/cm2,功率密度為10 mW/cm2。結(jié)果顯示,ALA-PDT能誘導(dǎo)成纖維細(xì)胞的凋亡,產(chǎn)生細(xì)胞毒性作用,并且與能量密度呈正相關(guān)。Cai等[13]將630 nm波長激光照射于6.53 μmol/L海姆泊芬孵育的增生性瘢痕成纖維細(xì)胞,功率密度為10 mW/cm2,觀察到海姆泊芬聯(lián)合光動力能夠使細(xì)胞凋亡增加,并且能夠促進(jìn)半胱天冬蛋白酶3的活性增加。
Chiu等[9]將成纖維細(xì)胞置于膠原基質(zhì),上覆以角質(zhì)形成細(xì)胞,制成生物模型模擬人體瘢痕的組織構(gòu)成。瘢痕模型構(gòu)建4 d后,ALA聯(lián)合635 nm激光干預(yù),設(shè)能量密度5、10及20 J/cm2。5 J/cm2組細(xì)胞活力與對照組相比差異無統(tǒng)計學(xué)意義,而10 J/cm2組和20 J/cm2組較對照組顯著降低;瘢痕模型的回縮率降低,并較對照組更早趨于穩(wěn)定狀態(tài);膠原的分布較前稀少,密度較前降低。
3.2 動物模型:在細(xì)胞水平研究瘢痕尚存在不足,因當(dāng)細(xì)胞離體后,在形態(tài)和生物學(xué)特性等方面會發(fā)生改變,處于瘢痕中間和邊緣的成纖維細(xì)胞活力也有所差異[13]。動物模型的建造包括將人的瘢痕組織移植于動物(如裸鼠模型);在動物體表形成創(chuàng)傷,形成瘢痕(如兔耳瘢痕模型)。
Momtazi等[14]通過將人的皮膚移植于裸鼠,制作裸鼠瘢痕模型。從形態(tài)學(xué)觀察、組織病理檢查、免疫組化技術(shù)3個方面比較,得出裸鼠人皮膚移植形成的瘢痕和人增生性瘢痕相似,Wang等[15]和Seo等[16]得出相近結(jié)果,進(jìn)而為研究奠定基礎(chǔ)。
Wang等[17]利用兔耳制作增生性瘢痕動物模型,ALA濃度設(shè)10%和20%兩個梯度,激光波長為635 nm,照射20 min,光斑大小為1.0 cm,能量密度為114.6 J/cm2。治療共4次,每周1次。結(jié)果顯示,ALA-PDT能通過調(diào)節(jié)基質(zhì)金屬蛋白酶和金屬蛋白酶組織抑制物的比例,加速成纖維細(xì)胞的老化,促進(jìn)膠原和胞外基質(zhì)的降解,從而抑制瘢痕形成,干預(yù)效果可維持60 d。
3.3 臨床研究:光動力治療因其并發(fā)癥和風(fēng)險較低,現(xiàn)已用于瘢痕疙瘩行臨床試驗性研究。Nie等[18]將其用于治療一左頦下復(fù)發(fā)的瘢痕疙瘩?;颊邽橐?6歲白種伊朗女性,無家族史,經(jīng)過5次甲基氨基酮戊酸酯聯(lián)合光動力治療,敷藥時間為3 h,激光波長為633 nm,能量密度為37 J/cm2,瘢痕疙瘩從原來的1.8 cm×0.6 cm縮小到1.4 cm×0.4 cm,變平坦,整體顏色得到很大改善。隨訪1年,未見復(fù)發(fā)。Bruscino等[19]對右下頦一外傷瘢痕行甲基氨基酮戊酸酯聯(lián)合光動力治療,藥物濃度為16%,敷藥3 h后予632 nm波長激光照射,能量密度為37 J/cm2,功率密度為70~100 mW/cm2。經(jīng)過3次治療,瘢痕外觀得到較大改善。隨訪1年,未見復(fù)發(fā)。Campbell等[20]對2例患者進(jìn)行甲基氨基酮戊酸酯聯(lián)合光動力治療,藥物濃度為16.8%,敷藥4 h后予(635±2)nm波長激光照射,能量密度為37 J/cm2,經(jīng)過3個療程,每個療程2次治療后,取得較好的療效。
Sakamoto等[21]選取6例成人,共21處病理性瘢痕進(jìn)行臨床回顧性研究,該研究采取雙盲試驗。針對這21處瘢痕進(jìn)行2~3次的20%ALA-PDT或16.8%甲基氨基酮戊酸酯治療,敷藥3 h后,采用波長為635 nm激光照射,能量密度為200 J/cm2。治療1~3次,治療間隔為1個月。治療前后的圖像資料被整理成92對,由3名皮膚科醫(yī)生對其療效進(jìn)行判斷。結(jié)果表明,2~3次的ALA-PDT或者甲基氨基酮戊酸酯聯(lián)合光動力治療對瘢痕的外觀改善有確切的效果。
光動力療法是一種安全的治療手段,其對瘢痕的干預(yù)效果也得到了許多國內(nèi)外學(xué)者的研究及肯定。行光動力治療時,光敏劑和激光波長的選擇很重要,前者直接關(guān)系到光敏劑的藥理原理,從而決定光動力的靶向效應(yīng);后者決定了光穿透組織的深度,從而決定光動力作用的深度。靜脈注射級光敏劑海姆泊芬的研制,解決了光敏劑到達(dá)組織的深度這一問題,目前仍需改進(jìn)的是如何增加激光穿透組織的深度。Kearney等[22]提出通過微針注射來改良給藥途徑,從而增加光動力的療效,縮短系統(tǒng)給藥導(dǎo)致的皮膚光敏時間。隨著光動力的不斷發(fā)展,其不但運用于皮膚良惡性病變的治療,還被使用于腦部腫瘤、視網(wǎng)膜病變、膀胱癌及食管癌的試驗治療,并具有一定的療效[23-24]。
[1]Kerwin LY,El Tal AK,Stiff MA,et al.Scar prevention and remodeling:a review of the medical,surgical,topical and light treatment approaches[J].Int J Dermatol,2014,53(8):922-936.
[2]Bran GM,Goessler UR,Hormann K,et al.Keloids:current concepts of pathogenesis (review)[J].Int J Mol Med,2009,24(3):283-293.
[3]Wolfram D,Tzankov A,Pülzl P,et al.Hypertrophic scars and keloids--a review of their pathophysiology,risk factors,and therapeutic management[J].Dermatol Surg,2009,35(2):171-181.
[4]Rabello FB,Souza CD,Farina Júnior JA.Update on hypertrophic scar treatment[J].Clinics (Sao Paulo),2014,69(8):565-573.
[5]Meaume S,Le Pillouer-Prost A,Richert B,et al.Management of scars:updated practical guidelines and use of silicones[J].Eur J Dermatol,2014,24(4):435-443.
[6]Monstrey S,Middelkoop E,Vranckx JJ,et al.Updated scar managementpracticalguidelines:non-invasiveand invasive measures[J].J Plast Reconstr Aesthet Surg,2014,67(8):1017-1025.
[7]Smith OJ,McGrouther DA.The natural history and spontaneous resolution of keloid scars [J].J Plast Reconstr Aesthet Surg,2014,67(1):87-92.
[8]Celli JP,Spring BQ,Rizvi I,et al.Imaging and photodynamic therapy:mechanisms,monitoring,and optimization [J].Chem Rev,2010,110(5):2795-2838.
[9]Chiu LL,Sun CH,Yeh AT,et al.Photodynamic therapy on keloid fibroblasts in tissue-engineered keratinocyte-fibroblast coculture[J].Lasers Surg Med,2005,37(3):231-244.
[10]Kloeters O,Tandara A,Mustoe TA.Hypertrophic scar model in the rabbit ear:a reproducible model for studying scar tissue behavior with new observations on silicone gel sheeting for scar reduction[J].Wound Repair Regen,2007,15(Suppl 1):S40-45.
[11]Sebastian A,Allan E,Allan D,et al.Addition of novel degenerate electrical waveform stimulation with photodynamic therapy significantly enhances its cytotoxic effect in keloid fibroblasts:first report of a potential combination therapy [J].J Dermatol Sci,2011,64(3):174-184.
[12]Li X,Zhou ZP,Hu L,et al.Apoptotic cell death induced by 5-aminolaevulinic acid-mediated photodynamic therapy of hypertrophic scar-derived fibroblasts [J].J Dermatolog Treat,2014,25(5):428-433.
[13]Cai H,Gu Y,Sun Q,et al.Effect of hematoporphyrin monomethyl ether-mediated photodynamic therapy on hypertrophic scar fibroblasts [J].Photodermatol Photoimmunol Photomed,2011,27(2):90-96.
[14]Momtazi M,Kwan P,Ding J,et al.A nude mouse model of hypertrophic scar shows morphologic and histologic characteristics of human hypertrophic scar [J].Wound Repair Regen,2013,21(1):77-87.
[15]Wang J,Ding J,Jiao H,et al.Human hypertrophic scar-like nude mouse model:characterization of the molecular and cellular biology of the scar process [J].Wound Repair Regen,2011,19(2):274-285.
[16]Seo BF,Lee JY,Jung SN.Models of abnormal scarring [J].Biomed Res Int,2013,2013:423147.
[17]Wang Q,Dong Y,Geng S,et al.Photodynamic therapy inhibits the formation of hypertrophic scars in rabbit ears by regulating metalloproteinases and tissue inhibitor of metalloproteinase-1[J].Clin Exp Dermatol,2014,39(2):196-201.
[18]Nie Z,Bayat A,Behzad F,et al.Positive response of a recurrent keloid scarto topicalmethylaminolevulinate-photodynamic therapy [J].Photodermatol Photoimmunol Photomed,2010,26(6):330-332.
[19]Bruscino N,Lotti T,Rossi R.Photodynamic therapy for a hypertrophic scarring:a promising choice [J].Photodermatol Photoimmunol Photomed,2011,27(6):334-335.
[20]Campbell SM,Tyrrell J,Marshall R,et al.Effect of MAL-photodynamic therapy on hypertrophic scarring [J].Photodiagnosis Photodyn Ther,2010,7(3):183-188.
[21]Sakamoto FH,Izikson L,Tannous Z,et al.Surgical scar remodelling after photodynamic therapy using aminolaevulinic acid or its methylester:a retrospective,blinded study of patients with field cancerization[J].Br J Dermatol,2012,166(2):413-416.
[22]Kearney MC,Brown S,McCrudden MT,et al.Potential of microneedles in enhancing delivery of photosensitising agents for photodynamic therapy [J].Photodiagnosis Photodyn Ther,2014,11(4):459-466.
[23]Lei TC,Glazner GF,Duffy M,et al.Optical properties of hematoporphyrin monomethyl ether (HMME), a PDT photosensitizer [J].Photodiagnosis Photodyn Ther,2012,9(3):232-242.
[24]Hopper C.Photodynamic therapy:a clinical reality in the treatment of cancer[J].Lancet Oncol,2000,1:212-219.
Photodynamic therapy for the treatment of pathological scars
Cui Xiaomei,Zhu Jing,Chen Xiaodong.
Department of Dermatology,Affiliated Hospital of Nantong University,Nantong 226001,Jiangsu,China
Pathological scars are caused by abnormal healing after skin damage,and are characterized by fibroblast proliferation and collagen deposition.At clinics,comprehensive therapy is usually applied for treating scars,and has exerted some therapeutic effects.However,the severe adverse effects of some therapies have caused treatment refusal by patients.Photodynamic therapy has been widely used to treat superficial lesions,and has also been well studied for therapeutic intervention in visceral tumors.Because of the hypotoxicity of photodynamic therapy,its therapeutic effect on scars has been widely studied by domestic and foreign scholars.These researches have shown that photodynamic therapy can inhibit the proliferation and migration of fibroblasts,induce apoptosis,inhibit the formation of extracellular matrix,improve the appearance of scars,and exert definite therapeutic effects on scars.
Cicatrix;Pathologic processes;Photochemotherapy;Photosensitizing agents;Fibroblasts;Collagen
Chen Xiaodong,Email:dermatochen@163.com
10.3760/cma.j.issn.1673-4173.2015.06.008
陳曉棟,Email:dermatochen@163.com
2014-12-05)