·特約專論·
信號(hào)轉(zhuǎn)導(dǎo)與轉(zhuǎn)錄激活因子3在腫瘤發(fā)生發(fā)展中的研究進(jìn)展*
網(wǎng)絡(luò)出版時(shí)間:2015-10-13網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/52.5012.R.20151013.1229.020.html
張啟芳
(貴州醫(yī)科大學(xué) 分子生物學(xué)重點(diǎn)實(shí)驗(yàn)室, 貴州 貴陽550004)
[關(guān)鍵詞]信號(hào)轉(zhuǎn)導(dǎo)與轉(zhuǎn)錄激活因子3; 腫瘤; 免疫抑制;腫瘤微環(huán)境
[基金項(xiàng)目]*國家自然科學(xué)
[中圖分類號(hào)]R730[文獻(xiàn)標(biāo)識(shí)碼] A
信號(hào)轉(zhuǎn)導(dǎo)與轉(zhuǎn)錄激活因子3(signal transducer and activator of transcription 3, STAT3)最早在白介素-6(interleukin- 6,IL-6)誘導(dǎo)的肝細(xì)胞急性時(shí)相反應(yīng)(acute phase response)中被發(fā)現(xiàn)[1-2], 隨后發(fā)現(xiàn)STAT3被干擾素調(diào)節(jié)發(fā)揮效應(yīng)[3]。STAT3蛋白在許多小鼠和人腫瘤細(xì)胞呈持續(xù)性激活狀態(tài)(被磷酸化),持續(xù)性激活的STAT3蛋白不僅能刺激癌細(xì)胞增殖、抗凋亡、侵襲遷移及免疫抑制等[4-7],而且還調(diào)控腫瘤微環(huán)境和腫瘤干細(xì)胞自我更新和分化[8]。 此外,髓性細(xì)胞中STAT3的持續(xù)性激活在構(gòu)建腫瘤細(xì)胞轉(zhuǎn)移灶微環(huán)境起著重要作用[9]。STAT3除了被磷酸化STAT3 C-末端絡(luò)氨酸后作為轉(zhuǎn)錄因子到細(xì)胞核轉(zhuǎn)錄其靶基因外,還以非磷酸化形式調(diào)控細(xì)胞生命活動(dòng),即以非轉(zhuǎn)錄因子形式調(diào)節(jié)細(xì)胞生物過程。STAT3蛋白是腫瘤治療最理想的靶點(diǎn)之一。全面了解STAT3基因和蛋白的生物學(xué)功能對(duì)開發(fā)有效的治療癌癥途徑具有十分重要的意義。本文就STAT3在腫瘤發(fā)生發(fā)展中的作用研究進(jìn)展予以綜述。
1癌細(xì)胞中調(diào)控STAT3的信號(hào)通路
STAT3屬于STAT家族, 廣泛存在于機(jī)體各種細(xì)胞中,大量研究發(fā)現(xiàn)在癌細(xì)胞中STAT3蛋白是多個(gè)信號(hào)通路的交匯點(diǎn),包括IL-6家族,V-Src癌基因、G蛋白偶聯(lián)受體(GPCRs)、 微小核糖核酸(miRNA)和Toll-樣受體(Toll-like receptor,TLRs)[10-15]。IL-6及其家族的其他成員包括白介素-10(interleukin-10,IL-10)、白介素-11(interleukin- 11,IL-11)、白血病抑制因子(leukemia inhibitory factor,LIF)等通過JAK激活STAT3[16-17]。當(dāng)機(jī)體受到細(xì)胞因子或生長因子等刺激,這些因子的受體激活相鄰的JAK激酶,JAK激酶磷酸化STAT3的C-末端絡(luò)氨酸使STAT3蛋白激活,磷酸化的STAT3蛋白與自身或其家族另一成員STAT1蛋白形成二聚體,進(jìn)入細(xì)胞核,作為轉(zhuǎn)錄因子調(diào)節(jié)STAT3靶基因的表達(dá)。 這些靶基因參與細(xì)胞增殖、轉(zhuǎn)移、凋亡、分化、炎癥、血管發(fā)生及免疫抑制等生物過程。有研究報(bào)道,癌基因v-Src誘導(dǎo)的細(xì)胞癌變需要激活狀態(tài)的STAT3蛋白[12]。
最新研究發(fā)現(xiàn)G蛋白-偶聯(lián)受體(GPCRs)參與調(diào)控STAT3蛋白活性,促進(jìn)腫瘤進(jìn)展。例如,GPCRs家族中的脂類代謝產(chǎn)物鞘氨醇-1-磷酸(Sphingosine1phosphate,S1P)受體(S1PR1)在腫瘤細(xì)胞、與腫瘤有關(guān)的免疫細(xì)胞中高表達(dá),S1P與其受體的結(jié)合激活STAT3蛋白,導(dǎo)致上調(diào)S1PR1的表達(dá),上調(diào)的S1PR1又激活STAT3蛋白表達(dá)[18-19],形成一個(gè)激活STAT3信號(hào)放大循環(huán),促進(jìn)腫瘤發(fā)生發(fā)展。 此外,最近也有報(bào)道m(xù)iRNAs參與調(diào)控STAT3蛋白活性。過表達(dá)miR337-3p通過抑制STAT3增強(qiáng)了腫瘤細(xì)胞對(duì)化療敏感性[20]。相反地,miR24在腫瘤細(xì)胞激活STAT3蛋白[21]。除此之外,TLRs信號(hào)通路也參與了STAT3的活化。在炎癥相關(guān)的結(jié)腸癌里,腸上皮細(xì)胞TLR4表達(dá)增加誘導(dǎo)了STAT3的活化,從而促進(jìn)結(jié)腸癌在體內(nèi)生長[6]。重要的是,TLR4-STAT3信號(hào)與結(jié)腸癌臨床分期相關(guān)。此外,在胰腺癌里TLR7與其配體結(jié)合,通活化STAT3誘導(dǎo)腫瘤抑制基因的失表達(dá),促進(jìn)胰腺癌的進(jìn)展[15]。除了TLR4和TLR7,TLR9信號(hào)激活STAT3蛋白, 共建一個(gè)有效的免疫關(guān)下促進(jìn)抵制腫瘤發(fā)展[16]。
2STAT3 在腫瘤發(fā)生發(fā)展中的作用
人類20多種人原發(fā)性癌病灶(如頭頸部癌、乳腺癌、前列腺癌、肺癌、白血病、多發(fā)性骨髓瘤及其它血液系統(tǒng)惡性腫瘤)和腫瘤來源細(xì)胞株中均普遍存在STAT3蛋白持續(xù)性酪氨酸磷酸化,STAT3蛋白處于持續(xù)性激活狀態(tài)。許多腫瘤來源細(xì)胞株都需要持續(xù)性激活的STAT3來保持腫瘤表型。腫瘤細(xì)胞內(nèi)的STAT3持續(xù)性激活,使腫瘤細(xì)胞異常增殖、抵抗凋亡、腫瘤血管生成和侵襲轉(zhuǎn)移等過程的基因過度表達(dá),從而促進(jìn)腫瘤細(xì)胞增殖、發(fā)展和轉(zhuǎn)移[22-23]。此外,腫瘤細(xì)胞的STAT3持續(xù)性激活還刺激了腫瘤細(xì)胞分泌轉(zhuǎn)化生長因子-β(transforming growth factor-β,TGF-β)、血管內(nèi)皮生長因子 (vascular endothelial growth factor ,VEGF)、IL-10、IL-11及IL-6等細(xì)胞因子過度表達(dá),而這些細(xì)胞因子又是STAT3蛋白的激活劑,再次激活腫瘤細(xì)胞中的STAT3過度表達(dá),從而形成放大的循環(huán)信號(hào)促進(jìn)腫瘤的發(fā)展及轉(zhuǎn)移[24]。抑制STAT3活性能顯著的阻礙腫瘤發(fā)展[25]。因此,STAT3是最理想的治療腫瘤的靶點(diǎn)之一。
腫瘤細(xì)胞分泌TGF-β、VEGF、IL-10、IL-6等細(xì)胞因子能激活腫瘤侵潤免疫細(xì)胞中的STAT3蛋白信號(hào)通路,主要通過以下方式免疫抑制環(huán)境:(1)抑制樹突狀細(xì)胞的成熟和功能,樹突狀細(xì)胞是最主要的抗原提呈細(xì)胞,激活初始T細(xì)胞。在造血祖細(xì)胞中表達(dá)持續(xù)性激活STAT3突變體,使造血祖細(xì)胞不能分化成樹突狀細(xì)胞;相反地,在有腫瘤細(xì)胞分泌細(xì)胞因子的情況下,造血祖細(xì)胞中表達(dá)STAT3失活突變體,使造血祖細(xì)胞能分化成樹突狀細(xì)胞[26]; 此外,腫瘤在髓性細(xì)胞STAT3表達(dá)缺失(STAT3-/-)的小鼠比在野生型小鼠腫瘤生長快[27];與野生型相比,從髓性細(xì)胞STAT3-/-帶瘤小鼠分離出的腫瘤侵潤樹突狀細(xì)胞表達(dá)MHCII、CD80和CD86水平高,抗原提呈能力強(qiáng),產(chǎn)生較強(qiáng)的免疫反應(yīng)[27];抑制STAT3蛋白能使樹突狀細(xì)胞分化成熟、恢復(fù)抗原呈遞和輔助混合淋巴細(xì)胞反應(yīng)的功能,激活細(xì)胞毒性T細(xì)胞的抗腫瘤能力[28]。(2)調(diào)控免疫抑制細(xì)胞的聚集和功能,包括髓性抑制細(xì)胞(myeloid-derived suppression cells, MDSCs)、調(diào)節(jié)T細(xì)胞(regulation T cells,Tregs)和Th17細(xì)胞[29-32];這3種細(xì)胞抑制免疫反應(yīng),促進(jìn)腫瘤細(xì)胞免疫逃逸;髓性細(xì)胞STAT3-/-的帶瘤小鼠腫瘤侵潤Tregs數(shù)目、MDSCs數(shù)目及Th17細(xì)胞數(shù)目顯著少于野生型[27]。(3)促進(jìn)巨噬細(xì)胞向促腫瘤M2表型的分化。相反地,在這些細(xì)胞中抑制STAT3活性或表達(dá)可導(dǎo)致Treg和Th17細(xì)胞的抑制、MDSCs分化,反轉(zhuǎn)免疫抑制微環(huán)境[33-34 ]。因此,STAT3 蛋白是一個(gè)重要的腫瘤免疫關(guān)卡(immune checkpoint),是免疫治療的一個(gè)重要靶點(diǎn)。
STAT3在腫瘤細(xì)胞轉(zhuǎn)移位點(diǎn)形成前形成轉(zhuǎn)移灶微環(huán)境起著重要作用,持續(xù)激活STAT3提供免疫細(xì)胞和腫瘤微環(huán)境中的髓性細(xì)胞增殖優(yōu)勢,從而促進(jìn)致癌炎癥[35]。同時(shí),在遠(yuǎn)處轉(zhuǎn)移位點(diǎn)髓性免疫細(xì)胞存活增多,髓性免疫細(xì)胞在這些微環(huán)境中富集,形成髓系細(xì)胞群落,為散播的腫瘤細(xì)胞提供了適宜生存的微環(huán)境,使腫瘤細(xì)胞在新環(huán)境中生存下來[36]。激活的STAT3在微環(huán)境的免疫細(xì)胞中促進(jìn)分泌支持腫瘤細(xì)胞生長的因子,抑制STAT3信號(hào)通路,廢除形成的微環(huán)境,有效降低腫瘤轉(zhuǎn)移[36]。
STAT3可以調(diào)控腫瘤干細(xì)胞的細(xì)胞(cancer stem-like cells, CSCs)。CSCs是一類具有腫瘤干細(xì)胞表型的腫瘤細(xì)胞,能夠維持自我更新,對(duì)抗腫瘤治療具有抵制性。IL-6/STAT3信號(hào)可促進(jìn)乳腺癌干細(xì)胞[37]生存和前列腺癌生長[38]。此外,LIF-STAT3信號(hào)可誘導(dǎo)GSCs的自我更新和分化[14]。因此,STAT3蛋白是腫瘤干細(xì)胞治療的重要靶點(diǎn)之一。
3STAT3 的非轉(zhuǎn)錄因子功能
除了磷酸化的STAT3蛋白可調(diào)節(jié)腫瘤細(xì)胞生物學(xué)功能, STAT3蛋白也以其它形式調(diào)節(jié)腫瘤細(xì)胞生物學(xué)能,主要有以下3種。
除了磷酸化STAT3以二聚體結(jié)合特異DNA轉(zhuǎn)錄基因表達(dá)驅(qū)動(dòng)腫瘤生成外,非磷酸化的STAT3被報(bào)道致癌,在維護(hù)異質(zhì)染色體中起作用[40]。細(xì)胞在受到IL-6刺激后, STAT3介導(dǎo)染色質(zhì)結(jié)構(gòu)的拓?fù)渥兓@著增加[39], 而非磷酸化的STAT3以單體或二聚體也能識(shí)別一些重要的染色質(zhì)DNA,調(diào)控基因表達(dá)[40]。非磷酸化STAT3的致癌作用值得進(jìn)一步調(diào)查,STAT3調(diào)節(jié)的染色質(zhì)拓?fù)浣Y(jié)構(gòu)的變化可能在炎癥介導(dǎo)的癌癥方面起一定的作用。
STAT3的乙?;c腫瘤發(fā)生發(fā)展有關(guān),STAT3乙?;苷{(diào)節(jié)成纖維細(xì)胞DNA甲基轉(zhuǎn)移酶1(DNMT1)結(jié)合多種腫瘤抑制基因啟動(dòng)子[如再生障礙性貧血的Ras同源的成員I(aplasia Ras homolog member I,ARHI)、蛋白酪氨酸磷酸酶非受體型- 6(protein tyrosine phosphatase non-receptor-type 6,PTPN6)],誘導(dǎo)這些基因啟動(dòng)子DNA甲基化[41-42], 導(dǎo)致這些腫瘤抑制基因不表達(dá)或低表達(dá),促進(jìn)腫瘤的發(fā)展。
STAT3蛋白除了在細(xì)胞核中起著重要的作用外,Wegrzyn J等[43]發(fā)現(xiàn)少量STAT3蛋白存在于線粒體中,通過調(diào)控線粒體電子傳送呼吸鏈復(fù)合體I和II來調(diào)節(jié)細(xì)胞呼吸功能。 此外,線粒體STAT3 可通過調(diào)控線粒體氧化應(yīng)激產(chǎn)物(Reactive Oxygen species,ROS)來保護(hù)小鼠心肌細(xì)胞免受缺血誘導(dǎo)的ROS導(dǎo)致的凋亡[44]。重要的是,癌基因Ras誘導(dǎo)的小鼠胚胎成纖維細(xì)胞惡性轉(zhuǎn)化需要線粒體STAT3的表達(dá)[45],另一研究發(fā)現(xiàn)STAT3在線粒體的表達(dá)可促進(jìn)乳腺癌的生長[46]。這些研究表明線粒體STAT3的功能對(duì)腫瘤的發(fā)生起著重要作用,線粒體STAT3可能通過逆向信號(hào)通路協(xié)同調(diào)控細(xì)胞核和線粒體來驅(qū)動(dòng)各種細(xì)胞過程,調(diào)控線粒體STAT3活性也可作為治療癌癥的一個(gè)新靶點(diǎn)。
4展望
研究表明,越來越多的上游信號(hào)轉(zhuǎn)導(dǎo)通路均可激活腫瘤細(xì)胞里的STAT3蛋白。最近發(fā)現(xiàn)的STAT3促進(jìn)癌癥的新功能, 包括通過對(duì)線粒體功能、DNA的表觀調(diào)控、腫瘤干細(xì)胞和腫瘤微環(huán)境的調(diào)節(jié),突顯了靶向STAT3的重要性。這些發(fā)現(xiàn)也為靶向STAT3治療癌癥提供了新的方向。例如,利用TLR9的配體CpG寡核苷酸靶向輸送小干擾RNA(siRNA)到TLR9陽性免疫細(xì)胞和惡性細(xì)胞,特別是血液癌癥。這種CpG-STAT3-siRNA能抑制多種免疫細(xì)胞和腫瘤細(xì)胞的STAT3活性,在誘導(dǎo)腫瘤細(xì)胞凋亡的同時(shí)又激活抗腫瘤免疫細(xì)胞的功能[47-48]。研發(fā)抑制STAT3蛋白活性的小分子藥物進(jìn)行了多年,但STAT3缺乏酶活性,到目前為止,仍未研發(fā)出直接有效抑制STAT3活性并在臨床抗癌有效的藥物。STAT3可被多個(gè)信號(hào)通路激活,所以抑制其中之一不足以抑制STAT3活性。如何最佳靶向抑制STAT3仍是治療癌癥面臨的挑戰(zhàn)。
5參考文獻(xiàn)
[1] Wegenka UM, Lütticken C, Buschmann J, et al. The interleukin-6-activated acute-phase response factor is antigenically and functionally related to members of the signal transducer and activator of transcription (STAT) family [J]. Mol Cell Biol, 1994(5):3186-3196.
[2] Zhong Z, Wen Z, Darnell JE. Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6 [J]. Science, 1994(5155): 95-98.
[3] Darnell JE, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins [J]. Science, 1994(5164): 1415-1421.
[4] Kujawski M, Kortylewski M, Lee H, et al.Stat3 mediates myeloid cell dependent tumor angiogenesis in mice [J]. J Clin Invest, 2008(10): 3367-3377.
[5] Devarajan E, Huang S. STAT3 as a central regulator of tumor metastases [J]. Curr Mol Med, 2009(5):626-633.
[6] Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3 [J]. Nature Rev Cancer, 2009(9):798-809.
[7] Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment [J]. Nature Rev Immunol, 2007(1): 41-51.
[9] Bournazou E, Bromberg J. Targeting the tumor microenvironment: JAK-STAT3 signaling [J].JAKSTAT,2013(2): 23828.
[10]Cao X, Tay A, Guy GR, et al. Activation and association of Stat3 with Src in v-Src-transformed cell lines [J]. Mol Cell Biol, 1996(4):1595-1603.
[11]Lee H, Zhang P, Herrmann A, et al. STAT3 induced S1PR1 expression is crucial for persistent STAT3 activation in tumors [J]. Nature Med, 2010(12): 1421-1428.
[12]Eyking A, Ey B, Rünzi M, et al.Toll-like receptor 4 variant D299G induces features of neoplastic progression in Caco-2 intestinal cells and is associated with advanced human colon cancer [J]. Gastroenterology , 2011(6): 2154-2165.
[13]Ochi A, Graffeo CS, Zambirinis CP, et al.Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans [J]. J Clin Invest, 2012(11): 4118-4129.
[14]Hossain DM, Dos SC, Zhang Q, et al.Leukemia cell-targeted STAT3 silencing and TLR9 triggering generate systemic antitumor immunity [J]. Blood, 2014(1):15-25.
[15]Du L, Subauste MC, DeSevo C, et al. miR3373p and its targets STAT3 and RAP1A modulate taxane sensitivity in non-small cell lung cancers [J]. PLoS ONE, 2012(7): 39167.
[16]Gupta M, Han JJ, Stenson M, et al.Elevated serum IL10 levels in diffuse large Bcell lymphoma: a mechanism of aberrant JAK2 activation [J]. Blood, 2012 (12): 2844-2853.
[17]Putoczki TL, Thiem S, Loving A, et al. Interleukin11 is the dominant IL6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically [J]. Cancer Cell, 2013 (2): 257-271.
[18]Xin H, Lu R, Lee H,et al.G protein-coupled receptor agonist BV8/ prokineticin2 and STAT3 protein form a feed-forward loop in both normal and malignant myeloid cells [J]. J Biol Chem, 2013(19):13842-13849.
[19]Liang J, Nagahashi M, Kim EY, et al.Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer [J]. Cancer Cell, 2013(1): 107-120.
[20]Du L, Subauste MC, DeSevo C, et al. miR3373p and its targets STAT3 and RAP1A modulate taxane sensitivity in non-small cell lung cancers [J]. PLoS ONE, 2012(7): 39167.
[21]Hatziapostolou M, Polytarchou C, Aggelidou E,et al.An HNF4αmiRNA inflammatory feedback circuit regulates hepatocellular oncogenesis [J]. Cell, 2011(6): 1233-1247.
[22]Grivennikov S, Karin E, Terzic J, et al.IL6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer [J]. Cancer Cell, 2009(2): 103-113.
[23]Niu G, Wright KL, Huang M, et al. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis [J]. Oncogene, 2002(13):2000-2008.
[24]Chang Q, Bournazou E, Sansone P, et al.The IL6/JAK/Stat3 feed-forward loop drives tumorigenesis and metastasis [J]. Neoplasia, 2013(7): 848-862.
[25]Zhang L, Alizadeh D, Van Handel M, et al.Stat3 inhibition activates tumor macrophages and abrogates glioma growth in mice [J].Glia, 2009(13):1458-1467.
[26]Nefedova Y, Huang M, Kusmartsev S, et al. Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer [J]. J Immunol, 2004(1):464-474.
[27]Kortylewski M, Kujawski M, Wang T, et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity [J]. Nat Med, 2005(12):1314-1321.
[28]Nefedova Y, Nagaraj S, Rosenbauer A, et al. Regulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription 3 pathway [J]. Cancer Res, 2005 (20):9525-9535.
[29]Zorn E, Nelson EA, Mohseni M, et al. (2006) IL-2 regulates FOXP3 expression in human CD4+/CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo [J]. Blood, 2006 (5):1571-1579.
[30]Huber M, Steinwald V, Guralnik A, et al. IL-27 inhibits the development of regulatory T cells via STAT3 [J]. Int Immunol, 2008(20):223-234.
[31]Chalmin F, Mignot G, Bruchard M, et al. Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression [J]. Immunity, 2012(3):362-373.
[32]Hossain DM, Pal SK, Moreira D, et al. TLR9-Targeted STAT3 Silencing Abrogates Immunosuppressive Activity of Myeloid-Derived Suppressor Cells from Prostate Cancer Patients [J]. Clin Cancer Res, 2015 (16):3771-3782.
[33]Fujiwara Y, Komohara Y, Kudo R, et al. Oleanolic acid inhibits macrophage differentiation into the M2 phenotype and glioblastoma cell proliferation by suppressing the activation of STAT3 [J]. Oncol Rep, 2011(6): 1533-1537.
[34]Shiraishi D, Fujiwara Y, Komohara Y, et al. Glucagon-like peptide-1 (GLP-1) induces M2 polarization of human macrophages via STAT3 activation [J]. Biochem Biophys Res Commun, 2012 (2):304-308.
[35]Kortylewski M, Xin H, Kujawski M, et al. Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment [J]. Cancer Cell, 2009(2):114-123.
[36]Deng J, Liu Y, Lee H, et al.S1PR1-STAT3 signaling is crucial for myeloid cell colonization at future metastatic sites [J]. Cancer Cell, 2012(5): 642-654.
[37]Marotta LL, Almendro V, Marusyk A, et al.The JAK2/STAT3 signaling pathway is required for growth of CD44+CD24- stem cell-like breast cancer cells in human tumors [J]. J Clin Invest, 2011(7): 2723-2735.
[38]Kroon P, Berry PA, Stower MJ, et al.JAK-STAT blockade inhibits tumor initiation and clonogenic recovery of prostate cancer stem-like cells [J]. Cancer Res, 2013(16): 5288-5298.
[39]Yang J, Chatterjee-Kishore M, Staugaitis SM, et al. Novel roles of unphosphorylated STAT3 in oncogenesis and transcriptional regulation [J]. Cancer Res, 2005 (3):939-947.
[40]Timofeeva O,Chasovkikh S,Lonskaya L,et al.Mechanisms of unphosphory lated STAT3 transcription factor binding to DNA[J].J Biol Chem, 2012(17):14192-14200.
[41]Lee H, Zhang P, Herrmann A, et al.Acetylated STAT3 is crucial for methylation of tumor-suppressor gene promoters and inhibition by resveratrol results in demethylation [J]. Proc Natl Acad Sci USA, 2012(20): 7765-7769.
[42]Li J, Cui G, Sun L, et al.STAT3 acetylation-induced promoter methylation is associated with downregulation of the ARHI tumor-suppressor gene in ovarian cancer [J]. Oncol Rep, 2013(1): 165-170.
[43]Wegrzyn J, Potla R, Chwae YJ, et al. Function of mitochondrial Stat3 in cellular respiration [J]. Science, 2009(5915): 793-797.
[44]Szczepanek K, Chen Q, Derecka M, et al. Mitochondrial targeted Signal transducer and activator of transcription 3 (STAT3) protects against ischemia-induced changes in the electron transport chain and the generation of reactive oxygen species [J]. J Biol Chem, 2011(34):29610-29620.
[45]Gough DJ, Corlett A, Schlessinger K, et al. Mitochondrial STAT3 supports Ras-dependent oncogenic transformation [J]. Science, 2009(5935): 1713-1716.
[46]Zhang Q, Raje V, Yakovlev VA, et al. Mitochondrial localized Stat3 promotes breast cancer growth via phosphorylation of serine 727 [J]. J Biol Chem, 2013(43): 31280-31288.
[47]Kortylewski M, Swiderski P, Herrmann A, et al.Invivodelivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses [J]. Nature Biotech, 2009(10): 925-932.
[48]Zhang Q,Hossain OMS,Nechaev S, et al.TLR9mediated siRNA delivery for targeting of normal and malignant human hematopoietic cellsinvivo[J].Blood, 2013(8): 1304-1315.
(2015-09-02收稿,2015-09-30修回)
編輯: 吳昌學(xué)
關(guān)于醫(yī)學(xué)符號(hào)的使用
統(tǒng)計(jì)學(xué)符號(hào)不論用哪種字母,也不論大寫或小寫一律都用斜體。要注意區(qū)分拉丁字母和希臘字母。例如均數(shù)的符號(hào)是字母x2,卡方的符號(hào)是希臘字母χ2,自由度的符號(hào)是希臘文“υ”,不是拉丁文“V”。樣本的相關(guān)系數(shù)是英文“r”,不能誤為希臘文“γ”。
化學(xué)元素及核素在醫(yī)學(xué)寫作時(shí)一般多采用符號(hào),都是拉丁字母正體大寫。離子態(tài)是在右上角用數(shù)字加“-”或“+”表示。例如Na+,Ca2+,P3-等等,不采用Ca++,P---,Al+3,O-2表示;核素的核子素(質(zhì)量數(shù))應(yīng)寫在元素符號(hào)的左上角,例如:131I,32P;表示激發(fā)狀態(tài)的m寫在右上角,例如:99Tcm,133Inm。在科技論文和專著中不應(yīng)寫核素的中文名稱,即不能寫成131碘、銦133m、P32、Tc99m。
近幾年分子生物學(xué)發(fā)展很快,并已滲透到許多學(xué)科,大多數(shù)分子生物學(xué)名詞術(shù)語的符號(hào)已有統(tǒng)一的確定形式,要對(duì)符號(hào)的來源及其內(nèi)涵有深刻的了解,才能在使用時(shí)不致發(fā)生錯(cuò)誤,例如:RNA有rRNA(ribosomal RNA)、tRNS(transfer RNA)、mRNA(messenger RNA)3類。r、t、m是表示類型的符號(hào)應(yīng)小寫,RNA應(yīng)大寫。
《貴陽醫(yī)學(xué)院學(xué)報(bào)》編輯部
貴州醫(yī)科大學(xué)學(xué)報(bào)2015年11期