李素芬 韓穎 石節(jié)麗 田秀標(biāo) 徐福娟 高鵬飛 劉艷
MicroRNAs對(duì)胰島β細(xì)胞功能的影響
李素芬 韓穎 石節(jié)麗 田秀標(biāo) 徐福娟 高鵬飛 劉艷
近年已有大量研究證實(shí),在β細(xì)胞功能調(diào)節(jié)中,microRNA起重要作用。MicroRNA是基因表達(dá)的負(fù)調(diào)控因子,在β細(xì)胞的增殖、生存方面起關(guān)鍵作用。特定microRNA水平的改變與β細(xì)胞代償功能相關(guān),促進(jìn)β細(xì)胞存活和發(fā)揮作用的激素或生物活性肽可調(diào)節(jié)microRNA水平。相反,細(xì)胞因子、高脂血癥、高血糖和氧化型低密度脂蛋白引起的microRNA的表達(dá)修飾,可以促進(jìn)β細(xì)胞功能衰竭和凋亡。
糖尿??;胰島β細(xì)胞;microRNA
改善β細(xì)胞功能和數(shù)量的可塑性是近年來開創(chuàng)糖尿病新療法的熱點(diǎn)。β細(xì)胞數(shù)量和功能的自適應(yīng)能力依賴于轉(zhuǎn)錄和翻譯的調(diào)節(jié)過程。非編碼小RNA(miRNA)是基因表達(dá)過程中轉(zhuǎn)錄和翻譯的重要調(diào)控因子,可及時(shí)調(diào)節(jié)基因表達(dá)以使β細(xì)胞適應(yīng)環(huán)境的變化[1-2]。大量研究證實(shí),miRNAs在胰島素合成與分泌、胰島β細(xì)胞發(fā)育和存活、糖、脂代謝過程中發(fā)揮重要作用[2]。本文闡述了在糖尿病患者β細(xì)胞代償和功能衰竭中miRNAs所起的關(guān)鍵性作用。
成人β細(xì)胞數(shù)量在增殖、發(fā)育、凋亡之間存在動(dòng)態(tài)平衡[3]。胰腺起源于內(nèi)胚層細(xì)胞,在初始階段,生長因子和周圍間充質(zhì)細(xì)胞產(chǎn)生的信號(hào)分子可刺激祖細(xì)胞增殖。該過程由一個(gè)包括神經(jīng)生長因子3(Neurog3)的級(jí)聯(lián)反應(yīng)控制。表達(dá)Neurog3的細(xì)胞在胚胎時(shí)期明顯增加并達(dá)到高峰,之后該轉(zhuǎn)錄因子水平逐漸下降[4]。Neurog3的短暫表達(dá)對(duì)內(nèi)分泌祖細(xì)胞分化至關(guān)重要,將引起胰島內(nèi)分泌細(xì)胞亞型的出現(xiàn)。在小鼠,敲除Neurog3基因?qū)⒆柚顾幸认賰?nèi)分泌細(xì)胞的生成。在50%~70%胰腺切除的個(gè)體中,β細(xì)胞再生與祖細(xì)胞中Neurog3蛋白的誘導(dǎo)表達(dá)無關(guān)。因此,學(xué)者們提出miRNA可能參與Neurog3的翻譯后調(diào)控[5]。胰腺部分切除后再生胰腺的miRNA表達(dá)譜研究顯示,4 個(gè) miRNAs表達(dá)上調(diào):miRNA-15a、miRNA-15b、miRNA-16及miRNA-195。推測這4個(gè)miRNA對(duì)Neurog3mRNA的調(diào)節(jié)有靶向性,可能有助于翻譯后轉(zhuǎn)錄因子的調(diào)控[5]。這些miRNA是否分別有助于胰腺發(fā)育,尚不明確。
研究顯示,當(dāng)祖細(xì)胞開始表達(dá)胰島素時(shí),即停止分化。而β細(xì)胞數(shù)量在胎兒期或出生后繼續(xù)增加[6]。在敲除胰島β細(xì)胞Dicer1基因(RNaseⅢ的一個(gè)結(jié)構(gòu)域)的鼠模型中證實(shí)miRNA發(fā)揮重要作用。在人和小鼠β細(xì)胞中富含miRNA-375,其在胰腺發(fā)育過程中起主要作用[7]。MiRNA-375不僅影響β細(xì)胞數(shù)量,而且影響α細(xì)胞數(shù)量[8]。MiRNA-375通過調(diào)節(jié)重組胰島素樣生長因子和磷脂酰肌醇依賴激酶1基因表達(dá),影響葡萄糖依賴的胰島素分泌[8]。MiRNA-375基因敲除小鼠的胰島β細(xì)胞數(shù)量下降30%~40%,α細(xì)胞增加1.7倍,胰高血糖素升高和胰島素降低,從而導(dǎo)致糖尿病的發(fā)生,表明miRNA-375在β細(xì)胞增殖及葡萄糖依賴的胰島素分泌過程中具有重要作用[7]。另外,miRNA-7a在胰腺發(fā)育期間可增加β細(xì)胞數(shù)量。MiRNA-7a屬于保守的miRNA-7a/b家族,在嚙齒類動(dòng)物和人胰島β細(xì)胞中表達(dá)豐富[9]。MiRNA-7a缺失可導(dǎo)致其下游控制目標(biāo)mTORC1、p70S6K的表達(dá)上調(diào),從而促進(jìn)β細(xì)胞的增殖。研究顯示,miRNA-7a水平下降后人β細(xì)胞增殖可增加近 30 倍[10]。
β細(xì)胞在腸促胰素如胰高血糖素樣肽-1(GLP-1)及其類似物的刺激下釋放胰島素[11]。其他營養(yǎng)物質(zhì)如游離脂肪酸、氨基酸等也可增加葡萄糖誘導(dǎo)的胰島素分泌[12]。GLP-1通過與GLP-1受體結(jié)合,升高cAMP水平,反過來又通過蛋白激酶A依賴和非依賴的機(jī)制促進(jìn)胰島素分泌[11]。MiRNA-375表達(dá)降低可增加MIN6細(xì)胞對(duì)胰島素的分泌,而其過度表達(dá)可抑制葡萄糖依賴的胰島素分泌能力[13]。
另外,miRNA-9在人胚胎干細(xì)胞分化及神經(jīng)細(xì)胞、胰腺細(xì)胞系形成過程中表達(dá)[14]。其適當(dāng)表達(dá)是成熟β細(xì)胞發(fā)揮作用所必需的。MiRNA-9過表達(dá)或不足對(duì)β細(xì)胞的分泌能力都有不利影響,其水平可影響轉(zhuǎn)錄因子Onecut2的表達(dá),反過來又阻礙了內(nèi)分泌因子Slp4的表達(dá)。Slp4水平升高,將使β細(xì)胞的胰島素分泌能力受損[15]。
MiRNA-96也在β細(xì)胞中表達(dá),可以控制Slp4、Noc2的表達(dá)[16]。其過表達(dá)可使Slp4水平升高,而使Noc2水平下降。
妊娠作為最強(qiáng)的生理刺激,可誘發(fā)β細(xì)胞數(shù)量增加。嚙齒類動(dòng)物在分娩后10d內(nèi),β細(xì)胞數(shù)量和活性可恢復(fù)到妊娠前水平[17]。在妊娠大鼠中觀察到4種miRNAs,包括 miRNA-144、miRNA-218、miRNA-338-3p、miRNA-451水平升高,分娩后這些miRNA的表達(dá)恢復(fù)到基礎(chǔ)水平。妊娠期間,miRNA-338-3p水平下降,而miRNA-451水平增加[18]。妊娠時(shí),嚙齒類動(dòng)物和人β細(xì)胞的增加可能是細(xì)胞增殖加強(qiáng)而凋亡減少綜合作用的結(jié)果[17]。MiRNA-451的表達(dá)并不增加細(xì)胞的增殖率,但可以抵抗細(xì)胞因子所引起的細(xì)胞凋亡。MiRNA-338-3p的表達(dá)下降可促進(jìn)移植胰島細(xì)胞的增殖[18]。此外,miRNA-338-3p表達(dá)下降可以保護(hù)β細(xì)胞免于一些細(xì)胞因子誘發(fā)的凋亡。表明在妊娠期間β細(xì)胞增加過程中,miRNA-338-3p的下降起關(guān)鍵作用。β細(xì)胞的量不僅在妊娠期間增加而且在胰島素抵抗和肥胖人群中也會(huì)增加[19]。近年研究證實(shí),miRNA在肥胖中起關(guān)鍵的調(diào)控作用[20]。肥胖可加重胰島素抵抗,β細(xì)胞數(shù)量的增加可以代償外周組織對(duì)胰島素需求的增加,從而維持正常的血糖水平[19]。在孕鼠中可觀察到的miRNA-451增加和miRNA-338-3p下降,在高脂飲食所致的肥胖小鼠的胰島細(xì)胞中也同樣能觀察到。此外,在年輕、血糖正常但已經(jīng)肥胖的小鼠中miRNA-338-3p水平降低,表明在胰島生理性適應(yīng)方面,其發(fā)揮重要作用[18]。
MiRNA水平異常不但可以促進(jìn)肥胖糖尿病患者的慢性炎性反應(yīng)過程,而且加速胰島β細(xì)胞功能衰竭[21]。瘦素受體基因缺陷小鼠除miRNA-338-3p表達(dá)下降外,其他miRNA也發(fā)生變化,包括miRNA-132表達(dá)增加,miRNA-184、miRNA-203、miRNA-210 表達(dá)下降[18]。在體外,miRNA-203和miRNA-210表達(dá)下降可促進(jìn)大鼠β細(xì)胞凋亡[22]。在從糖尿病小鼠分離的胰島中,miRNA-210和miRNA-184的表達(dá)下降更加明顯。表明這些miRNA水平的失衡可導(dǎo)致β細(xì)胞從適應(yīng)到程序性死亡的轉(zhuǎn)變。此外,在小鼠體外實(shí)驗(yàn)中,miRNA-199a-3p表達(dá)增加和mRNA-383表達(dá)下降也可促使β細(xì)胞凋亡。在糖尿病人群中,只有miRNA-187的增加與β細(xì)胞功能衰竭相關(guān),miRNA-187表達(dá)增加可降低葡萄糖依賴的胰島素分泌[1,22]。結(jié)果表明,在糖尿病患者和嚙齒類動(dòng)物中,不同的miRNA水平表明了β細(xì)胞的適應(yīng)性改變和功能下降的程度。
循環(huán)中非酯化游離脂肪酸的緩慢升高與肥胖有關(guān)而且是糖尿病發(fā)生、發(fā)展的獨(dú)立危險(xiǎn)因素。大量研究表明,棕櫚酸是血液中最多的游離脂肪酸,其作為一個(gè)不利的因素可促進(jìn)胰島素抵抗和β細(xì)胞功能衰竭。在糖尿病小鼠的實(shí)驗(yàn)中顯示,血非酯化游離脂肪酸的濃度異常升高[23]。脂質(zhì)所引起的β細(xì)胞破壞包括胰島素合成減少和分泌能力下降,及細(xì)胞凋亡所致的β細(xì)胞數(shù)量減少[5]。在肥胖相關(guān)的糖尿病患者中,棕櫚酸水平升高和慢性高血糖共同促進(jìn)胰島β細(xì)胞功能衰竭[23]。使糖尿病小鼠的胰島β細(xì)胞暴露于高脂和高糖環(huán)境下,可導(dǎo)致miRNA-184、miRNA-203和miRNA-383水平下降[24]。在體外培養(yǎng)的胰島細(xì)胞中,miRNA-34A和miRNA-146水平升高可導(dǎo)致β細(xì)胞功能衰竭和細(xì)胞凋亡增加[25]。在分離的人胰島和胰島素分泌細(xì)胞中,促炎細(xì)胞因子引起了miRNA-34a和miRNA-146水平升高,表明由棕櫚酸和細(xì)胞因子引起的信號(hào)級(jí)聯(lián)反應(yīng)(其可導(dǎo)致β細(xì)胞功能衰竭)可使上述miRNA激活[26]。
MiRNA是β細(xì)胞功能的重要調(diào)控因子。多種miRNA分子在胰島素分泌細(xì)胞中發(fā)揮重要的調(diào)控作用。MiRNA除了可在細(xì)胞內(nèi)發(fā)揮作用,有些還可以穩(wěn)定的狀態(tài)被分泌到包括血液和尿液中發(fā)揮作用。血中不同種類的miRNA有望在一些疾?。òㄌ悄虿。┲衅鸬缴飿?biāo)志物的作用[27]。在糖尿病患者血液中,已經(jīng)發(fā)現(xiàn)了包括miRNA-103和miRNA-224在內(nèi)的一些miRNA[28]。在病理生理狀態(tài)下,有功能缺陷的β細(xì)胞會(huì)釋放miRNA到血液中。今后的研究應(yīng)著重探究血循環(huán)中miRNA的生理意義,以及確定是否不同功能狀態(tài)的β細(xì)胞會(huì)分泌不同的miRNA。通過檢測血中miRNA的種類及數(shù)量,可判斷β細(xì)胞是否處于代償狀態(tài)或功能衰竭狀態(tài)。
[1]Locke JM,da Silva Xavier G,Dawe HR,et al.Increased expression of miR-187 in human islets from individuals with type 2 diabetes is associated with reduced glucose-stimulated insulin secretion[J].Diabetologia,2014,57(1):122-128.
[2]Mao Y,Mohan R,Zhang S,et al.MicroRNAs as pharmacological targets in diabetes[J].Pharmacol Res,2013,75:37-47.
[3]Pagliuca FW,Melton DA.How to make a functional beta-cell[J].Development,2013,140(12):2472-2483.
[4]Rukstalis JM,Habener JF.Neurogenin3:a master regulator of pancreatic islet differentiation and regeneration[J].Islets,2009,1(3):177-184.
[5]Joglekar MV,Parekh VS,Mehta S,et al.MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3[J].Dev Biol,2007,311(2):603-612.
[6]Kaung HL.Growth dynamics of pancreatic islet cell populations during fetal and neonatal development of the rat[J].Dev Dyn,1994,200(2):163-175.
[7]Poy MN,Hausser J,Trajkovski M,et al.MiR-375 maintains normal pancreatic α -and β -cell mass[J].Proc Natl Acad Sci U S A,2009,106(14):5813-5818.
[8]Li X.MiR-375,a microRNA related to diabetes[J].Gene.2014,533(1):1-4.
[9]Wang Y,Liu J,Liu C,et al.MicroRNA-7 regulates the mTOR pathway and proliferation in adult pancreatic beta-cells[J].Diabetes,2013,62(3):887-895.
[10]Xie J,Herbert TP.The role of mammalian target of rapamycin(mTOR)in the regulation of pancreatic beta-cell mass:implications in the development of type-2 diabetes[J].Cell Mol Life Sci,2012,69(8):1289-1304.
[11]Drucker DJ.The biology of incretin hormones[J].Cell Metab,2006,3(3):153-165.
[12]Fu Z,Gilbert ER,Liu D.Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes[J].Curr Diabetes Rev,2013,9(1):25-53.
[13]Poy MN,Eliasson L,Krutzfeldt J,et al.A pancreatic isletspecific microRNA regulates insulin secretion[J].Nature,2004,432(7014):226-230.
[14]Krichevsky AM,Sonntag KC,Isacson O,et al.Specific microRNAs modulate embryonic stem cell-derived neurogenesis[J].Stem Cells,2006,24(4):857-864.
[15]Plaisance V,Abderrahmani A,Perret-Menoud V,et al.Micro-RNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells[J].J Biol Chem,2006,281(37):26932-26942.
[16]Lovis P,Gattesco S,Regazzi R.Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs[J].Biol Chem,2008,389(3):305-312.
[17]Parsons JA,Brelje TC,Sorenson RL.Adaptation of islets of Langerhans to pregnancy:increased islet cell proliferation and insulin secretion correlates with the onset of placental lactogen secretion[J].Endocrinology,1992,130(3):1459-1466.
[18]Jacovetti C,Abderrahmani A,Parnaud G,et al.MicroRNAs contribute to compensatory beta cell expansion during pregnancy and obesity[J].J Clin Invest,2012,122(10):3541-3551.
[19]Prentki M,Nolan CJ.Islet beta cell failure in type 2 diabetes[J].J Clin Invest,2006,116(7):1802-1812.
[20]PengY,Yu S,Li H,et al.MicroRNAs:emerging roles in adipogenesis and obesity[J].Cell Signal,2014,26(9):1888-1896.
[21]McClelland AD,Kantharidis P.MicroRNA in the development of diabetic complications[J].Clin Sci(Lond),2014,126(2):95-110.
[22]Nesca V,Guay C,Jacovetti C,et al.Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes[J].Diabetologia,2013,56(10):2203-2212.
[23]Kj?rholt C,Akerfeldt MC,Biden TJ,et al.Chronic hyperglycemia,independent of plasma lipid levels,is sufficient for the loss of beta-cell differentiation and secretory function in the db/db mouse model of diabetes[J].Diabetes,2005,54(9):2755-2763.
[24]Poitout V.Glucolipotoxicity of the pancreatic beta-cell:myth or reality?[J].Biochem Soc Trans,2008,36(Pt 5):901-904.
[25]Lovis P,Roggli E,Laybutt DR,et al.Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction[J].Diabetes,2008,57(10):2728-2736.
[26]Roggli E,Britan A,Gattesco S,et al.Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells[J].Diabetes,2010,59(4):978-986.
[27]Guay C,Jacovetti C,Nesca V,et al.Emerging roles of non-coding RNAs in pancreatic beta-cell function and dysfunction[J].Diabetes Obes Metab,2012,14(Suppl 3):12-21.
[28]Bonner C,Nyhan KC,Bacon S,et al.Identification of circulating microRNAs in HNF1A-MODY carriers[J].Diabetologia,2013,56(8):1743-1751.
Effects of microRNAs on islet β cell function
Li Sufen,Han Ying,Shi Jieli,Tian Xiubiao,Xu Fujuan,Gao Pengfei,Liu Yan.Department of Endocrinology,The Seaside People's Hospital of Tianjin,Tianjin 300280,China
Recent studies have emphasized the instrumental role ofmicroRNAs in the control of β cell function.MicroRNAs are negative regulators of gene expression,and are pivotal for the control of β cell proliferation,function,and survival.Changes in specific microRNA levels,which have been associated with β cell compensation,are triggered by hormones or bioactive peptides that promote β cell survival and function.Conversely,modifications of other specific microRNAs contribute to β cell dysfunction and death elicited by diabetogenic factors including cytokines,chronic hyperlipidemia,hyperglycemia,and oxidized low density lipoprotein.
Diabetes mellitus;Islet β cell;MicroRNA
(Int J Endocrinol Metab,2015,35:193-195)
10.3760/cma.j.issn.1673-4157.2015.03.014
300280 天津海濱人民醫(yī)院內(nèi)分泌科
2014-01-20)