張 霞,蘇本利
(大連醫(yī)科大學(xué)附屬第二醫(yī)院 內(nèi)分泌科,遼寧 大連 116027)
基于腸促胰素的治療對(duì)糖尿病腎病的保護(hù)作用
張霞,蘇本利
(大連醫(yī)科大學(xué)附屬第二醫(yī)院 內(nèi)分泌科,遼寧 大連 116027)
基于腸促胰素的治療包括胰高血糖素樣肽(GLP-1)受體激動(dòng)劑和二肽基肽酶4(DPP-4)抑制劑,這類(lèi)藥物能夠改善機(jī)體高血糖狀態(tài),保護(hù)β細(xì)胞功能,無(wú)體重增加,從而延緩糖尿病腎病病程的進(jìn)展。此外,這類(lèi)藥物的胰腺外作用及GLP-1的依賴性和非依賴效應(yīng)在糖尿病腎病中起著獨(dú)特的作用,并引起廣泛關(guān)注。本文綜述了相關(guān)方面的前期臨床和臨床研究數(shù)據(jù),提示這類(lèi)藥物對(duì)腎臟存在保護(hù)作用以及對(duì)血壓及尿蛋白有改善作用,可能在糖尿病腎病中有著廣泛的應(yīng)用前景。
腸促胰素;糖尿病腎??;GLP-1;GLP-1受體激動(dòng)劑;DPP-4;DPP-4抑制劑
[引用本文]張霞,蘇本利. 基于腸促胰素的治療對(duì)糖尿病腎病的保護(hù)作用[J].大連醫(yī)科大學(xué)學(xué)報(bào),2015,37(2):105-108.
胰高血糖素樣肽(GLP-1)是一種腸促胰素,主要在腸道食物吸收過(guò)程中由腸黏膜內(nèi)分泌細(xì)胞(L細(xì)胞)釋放,與胰腺組織中胰高血糖素肽-1受體(GLP-1R)結(jié)合,GLP-1可刺激β細(xì)胞釋放胰島素,并抑制胰腺α細(xì)胞胰高血糖素的釋放,從而降低血糖水平。然而GLP-1的半衰期不足2 min,其氨基末端可迅速被二肽基肽酶4(DPP-4)酶切,使GLP-1失去活性,因此DPP-4是GLP-1生物活性的決定因素。DPP-4是一種絲氨酸蛋白酶家族的Ⅱ型跨膜糖基化蛋白,又稱T細(xì)胞表面抗原CD26,以膜結(jié)合型和可溶型兩種形式存在,目前認(rèn)為循環(huán)中的DPP-4與DPP-4抑制劑的降糖作用有關(guān),而在多種細(xì)胞表面表達(dá)的膜結(jié)合型DPP-4則參與細(xì)胞的信號(hào)傳導(dǎo)和其他非降糖的作用[1]?;谀c促胰素的治療包括GLP-1受體激動(dòng)劑和DPP-4抑制劑,均可增加循環(huán)中GLP-1的水平,改善機(jī)體的高血糖狀態(tài),是目前備受關(guān)注的一類(lèi)降糖藥物。由于GLP-1R和DPP-4在體內(nèi)多種組織器官均有表達(dá),愈來(lái)愈多的研究發(fā)現(xiàn)這類(lèi)藥物有胰腺外超越降糖的作用,如心血管的保護(hù)作用,神經(jīng)保護(hù)等[2-3]。特別是GLP-1R和DPP-4在腎臟多種細(xì)胞的表達(dá),前期臨床和臨床試驗(yàn)數(shù)據(jù)提示這類(lèi)藥物對(duì)腎臟存在保護(hù)作用以及對(duì)血壓及尿蛋白有改善作用,本文針對(duì)已經(jīng)發(fā)現(xiàn)的研究結(jié)果進(jìn)行綜述,幫助進(jìn)一步理解基于腸促胰素的治療對(duì)糖尿病腎病的作用。
GLP-1R mRNA在大鼠的腎小管上皮細(xì)胞被發(fā)現(xiàn)[4],人類(lèi)腎臟皮質(zhì)的免疫組化也顯示腎小管上皮細(xì)胞的GLP-1R信號(hào)[5]。GLP-1R在腎小球內(nèi)皮細(xì)胞,系膜細(xì)胞,足細(xì)胞,近曲小管細(xì)胞都有表達(dá),已發(fā)現(xiàn)GLP-1R在糖尿病大鼠的腎小球表達(dá)減少[6-7]。越來(lái)越多證據(jù)顯示GLP-1R激動(dòng)劑可能通過(guò)增加腎小球GLP-1R表達(dá)的途徑,進(jìn)而修復(fù)GLP-1對(duì)腎血管內(nèi)皮的保護(hù)功能,抑制炎癥反應(yīng)和纖維化,抗氧化應(yīng)激和減少白蛋白尿。應(yīng)用GLP-1R激動(dòng)劑(exendin-4,liraglutid)的研究主要集中在糖尿病或高血壓的動(dòng)物模型上。
在1型糖尿病的大鼠模型中,應(yīng)用exendin-4治療可以使腎小球中GLP-1R陽(yáng)性的細(xì)胞增加,抑制腎小球內(nèi)皮細(xì)胞TNF-α和VCAM-1的表達(dá),減少氧化應(yīng)激和炎癥細(xì)胞因子,抑制巨噬細(xì)胞致炎因子的釋放來(lái)阻止腎小球肥厚和巨噬細(xì)胞浸潤(rùn),減少腎小球和腎小管間質(zhì)纖維化,并減少白蛋白尿[8]。
在db/db糖尿病大鼠模型,exendin-4治療增加GLP-1R陽(yáng)性細(xì)胞的免疫活性,抑制腎小球肥厚,基質(zhì)擴(kuò)張,炎癥細(xì)胞浸潤(rùn)和TGF-β1表達(dá),減少膠原蛋白和脂質(zhì)在腎小球沉積,減少腎小球凋亡細(xì)胞的數(shù)目[6],同樣減少尿白蛋白排泄。體外也觀察到exendin-4可抑制高糖處理的人類(lèi)系膜細(xì)胞的過(guò)度增生,抑制TGF-β的mRNA和蛋白的表達(dá),這提示GLP-1R激動(dòng)劑治療可改善糖尿病腎病的間質(zhì)纖維化[9]。
由于炎癥反應(yīng)是糖尿病腎病的發(fā)病機(jī)制之一,在體外觀察到exendin-4通過(guò)GLP-1R和cAMP/PKA途徑的隨后激活而產(chǎn)生抗炎特性[10]。GLP-1可能通過(guò)對(duì)cAMP/PKA信號(hào)通路的活化來(lái)介導(dǎo)抑制腎NAD(P)H氧化酶而產(chǎn)生抗炎作用[11]和抑制糖基化終末產(chǎn)物(AGEs)受體的表達(dá)而減少AGEs的產(chǎn)生來(lái)抵抗糖基化終末產(chǎn)物效應(yīng)[12]。
近期Mima A等[7]發(fā)現(xiàn)高糖致腎臟PKC途徑的激活可以減弱GLP-1的信號(hào)通路、增加血管緊張素Ⅱ(AngⅡ)和NF-κB的信號(hào)途徑進(jìn)而造成腎小球內(nèi)皮功能損傷。在腎小球內(nèi)皮細(xì)胞增加GLP-1通過(guò)cAMP/PKA途徑可抑制AngⅡ信號(hào)途徑和其促炎癥反應(yīng) (上調(diào)Ser259磷酸化抑制Ser338和Erk1/2l磷酸化,使PAI-1下降)。
另外,研究也發(fā)現(xiàn)GLP-1和GLP-1R激動(dòng)劑有降壓作用。在Dahl 鹽敏感大鼠模型中,GLP-1的緩慢輸注可以增加腎小球?yàn)V過(guò)率(GFR),抑制近曲小管重吸收,增加尿鈉排泄,同樣exendin-4治療也可降低血壓,減少心臟病發(fā)病率,改善胰島素抵抗及減少蛋白尿[13]。在AngⅡ誘導(dǎo)的鹽敏感高血壓大鼠模型中,exendin-4治療也可以使血壓下降[14]。機(jī)制除干擾AngⅡ信號(hào)途徑外,可能還與GLP-1調(diào)節(jié)近曲小管Na+/H+交換的作用有關(guān)。輸注GLP-1明顯減少Na+/H+同種交換體3(NHE3)介導(dǎo)的碳酸氫鹽的重吸收,從而增加腎血流和GFR[15-16]。
目前在2型糖尿病腎病患者中的相關(guān)研究還很少。在一個(gè)小樣本16周的臨床研究中,艾塞納肽治療使24 h尿蛋白的排泄下降40%,尿TGF-β1和膠原蛋白Ⅳ明顯下降[17]。
膜結(jié)合型的DPP-4也在腎的多種細(xì)胞表面表達(dá),包括腎上皮、內(nèi)皮和T細(xì)胞[18]。Jackson等[19]發(fā)現(xiàn)在大鼠的入球微小血管平滑肌細(xì)胞和腎小球系膜細(xì)胞DPP-4 mRNA和蛋白的表達(dá),在炎癥狀態(tài)下培養(yǎng)的人類(lèi)腎小球上皮細(xì)胞[20]和在高脂飼養(yǎng)的糖尿病大鼠腎臟,DPP-4的表達(dá)是增加的[21]。炎癥時(shí)DPP-4表達(dá)的增加提示DPP-4在糖尿病腎病的發(fā)展起一定作用,目前腎和尿中增加的DPP-4活性被認(rèn)為是腎小球疾病的標(biāo)志物[22-23]。研究數(shù)據(jù)顯示這種DPP-4的抑制對(duì)腎的保護(hù)作用分GLP-1依賴性和非依賴性。
在1型糖尿病大鼠中,vildagliptin治療使GLP-1R活化,增加GLP-1的水平,可抑制間質(zhì)擴(kuò)張,腎小球硬化和腎小球基底膜增厚,減少白蛋白尿和TGF-β的過(guò)度表達(dá),抑制DNA氧化應(yīng)激損傷和細(xì)胞凋亡,并呈劑量依賴性,再次證明了抗凋亡、抗炎、抗氧化的作用[24]。在2型糖尿病大鼠中(Zucker diabetic fatted rats),sitagliptin的治療可出現(xiàn)類(lèi)似的腎保護(hù)作用,改善腎小球,腎小管間質(zhì)和血管的病變,減少脂質(zhì)過(guò)氧化物丙二醛的下降[25]。在代謝綜合征的大鼠模型,sitagliptin可抵抗AngⅡ誘導(dǎo)的腎血管收縮[26],能夠加強(qiáng)ACEI的作用,降低血壓[27]。
有趣的是,在內(nèi)皮一氧化氮合成酶(eNOS)基因敲除的糖尿病大鼠的模型(糖尿病腎病的動(dòng)物模型),linagliptin聯(lián)合AngⅡ受體拮抗劑(ARB)替米沙坦(非降壓劑量)治療 12周后,發(fā)現(xiàn)尿白蛋白的排泄是明顯減少的,而且linagliptin無(wú)論單藥還是聯(lián)合治療均能減少古橋蛋白(血管鈣化和纖維化的標(biāo)志物)、丙二醛(氧化應(yīng)激的生物標(biāo)志物)和TNF-α(系統(tǒng)性炎癥的標(biāo)志物)的水平,改善腎小球硬化,單獨(dú)應(yīng)用ARB組并沒(méi)有產(chǎn)生這樣的結(jié)果[28],提示DPP-4抑制劑可能在對(duì)ARB存在抵抗時(shí)有效。
除了GLP-1外,DPP-4還可作用于多種底物,包括基質(zhì)細(xì)胞衍生因子-1α(SDF-1α),腦鈉尿肽(BNP),金屬內(nèi)肽酶(Meprinβ),NPY/PYY。目前已知,DPP-4抑制劑可上調(diào)SDF-1α、BNP及meprin β等分子的表達(dá),從而發(fā)揮非GLP-1 依賴性的腎保護(hù)作用[29]。
SDF-lα是一種調(diào)節(jié)細(xì)胞遷移及發(fā)育的多功能因子,而CXC趨化因子受體4(CXCR4)是SDF-1的特異性受體。最近有研究發(fā)現(xiàn),SDF-1α是系膜細(xì)胞纖維連接蛋白(FN)表達(dá)的抑制因子。而SDF-1α可與CXCR4結(jié)合而活化下游信號(hào)通路,從而抑制TGF-β1激活的Smad信號(hào)通路,最終抑制FN的表達(dá),對(duì)腎臟產(chǎn)生保護(hù)作用[30]。
BNP作為一種內(nèi)源性的腎素-血管緊張素系統(tǒng)抑制劑,可減輕全身及局部AngⅡ的作用。同時(shí),BNP的增加可通過(guò)抑制腎素-血管緊張素系統(tǒng)及TGF-β系統(tǒng)減輕腎小球高壓力狀態(tài)。有研究發(fā)現(xiàn),與野生型糖尿病小鼠相比,在BNP過(guò)表達(dá)的轉(zhuǎn)基因糖尿病小鼠中,僅有輕度的系膜基質(zhì)積聚,腎小球不發(fā)生肥大,同時(shí)尿白蛋白顯著減少,腎功能明顯改善[31]。
Meprin是一種位于腎近端小管刷狀緣膜上的金屬內(nèi)肽酶,可降解細(xì)胞外基質(zhì)蛋白并產(chǎn)生生物活性蛋白,研究表明meprin β具有激活促炎性反應(yīng)細(xì)胞因子的作用。與meprin β基因敲除小鼠相比,野生型小鼠更容易發(fā)生腎缺血再灌注后的腎臟損傷[32],另一項(xiàng)研究發(fā)現(xiàn)與DPP-4+/+小鼠相比,DPP-4-/-小鼠和給藥vildagliptin的小鼠腎組織中的meprin β降低[33]。因此,DPP-4抑制劑在糖尿病腎病中的腎臟保護(hù)作用可能與meprin β的減少有關(guān)。
提示DPP-4抑制劑有腎保護(hù)作用的第一個(gè)臨床研究是36個(gè)2型糖尿病患者應(yīng)用sitagliptin治療6個(gè)月,除血糖血壓明顯下降,CRP, VCAM-1和白蛋白肌酐比(UACR)均下降[34]。在另一項(xiàng)sitagliptin的臨床試驗(yàn)中,UACR作為一項(xiàng)次要終點(diǎn)被評(píng)價(jià),UACR 從(76.2±95.6)mg/g下降至(33.0±48.1)mg/g[35]。2012年公布了一項(xiàng)linagliptin的隨機(jī)雙盲安慰劑對(duì)照的臨床試驗(yàn):合并白蛋白尿(30 mg/g≤UACR≤3000 mg/g)的2型糖尿病患者入組時(shí)均有穩(wěn)定的ACEI和 ARB的治療,經(jīng)過(guò)24周的linagliptin治療,尿白蛋白排泄明顯減少33%,有趣的是這種白蛋白尿的改善與血糖下降無(wú)關(guān)[36]。為了針對(duì)和評(píng)價(jià)linagliptin在2型糖尿病合并腎損傷的患者中能夠減少尿白蛋白排泄的作用,一項(xiàng)名為MARLINA(Efficacy,Safety & Modification of Albuminuria in Type 2 Diabets Subjects With Renal Disease with Linagliptin)臨床試驗(yàn)已經(jīng)啟動(dòng),期待有更積極的結(jié)果。
目前發(fā)表的研究顯示,基于腸促胰素的治療對(duì)腎臟存在多種保護(hù)作用以及對(duì)血壓及尿蛋白有改善作用??赡艿臋C(jī)制包括改善內(nèi)皮功能,抗炎和抗氧化應(yīng)激,抵抗Ang Ⅱ,促進(jìn)尿鈉排泄等,以及存在非GLP-1依賴性的作用。研究提示似乎與ACEI或ARB類(lèi)藥物的聯(lián)合應(yīng)用獲益明顯。其中的機(jī)制復(fù)雜,尚不清楚,與其相關(guān)的研究仍是當(dāng)前的研究熱點(diǎn),也需要更大規(guī)模的長(zhǎng)期臨床試驗(yàn)和數(shù)據(jù)來(lái)評(píng)價(jià)這類(lèi)藥物在糖尿病腎病中的有效作用和應(yīng)用空間。
[1] Von Websky K,Richetzeder C,Hocher B. Physiology and pathophysiology of incretins in the kidney[J].Curr Opin Nephro Hypertens,2014,23(1):54-60.
[2] Abu-Hamdah R,Rabiee A,Meneilly GS,et al. Clinical review:The extrapancreatic effects of glucagon-like peptide-1 and related peptides[J].J Clin Endocrinol Metab,2009,94(6):1843-1852.
[3] Hocher B,Reichetzeder C,Alter ML. Renal and cardiac effects of DPP4 inhibitors-from preclinical development to clinical research[J].Kidney Blood Press Res,2012,36(1):65-84.
[4] Schlatter P,Beglinger C,Drewe J,et al. Glucagon-like peptide 1receptor expression in primary porcine proximal tubular cells[J].Regul Pept,2007,141(1-3):120-128.
[5] K?rner M,St?ckli M,Waser B,et al. GLP-1 receptor expression in humantumors and human normal tissues:potential for in vivo targeting[J].J Nucl Med,2007,48(5):736-743.
[6] Park CW,Kim HW,Ko SH,et al. Long-term treatment of glucagon-like peptide-1 analog exendin-4 ameliorates diabetic nephropathy through improving metabolic anomalies in db/db mice[J].J Am Soc Nephrol,2007,18(4):1227-1238.
[7] Mima A,Hiraoka-Yamomoto J,Li Q,et al. Protective effects of GLP-1 on glomerular endothelium and its inhibition by PKCβ activation in diabetes[J].Diabetes,2012,61(11):2967-2979.
[8] Kodera R,Shikata K,Kataoka HU,et al. Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes[J].Diabetologia,2011,54(4):965-978.
[9] Li W,Cui M,Wei Y,et al. Inhibition of the expression of TGF-β1 and CTGF in human mesangial cells by exendin-4,a glucagon-like peptide-1 receptor agonist[J].Cell Physiol Biochem,2012,30(3):749-757.
[10] Ishibashi Y,Nishino Y,Matsui T,et al. Glucagon-like peptide-1 suppresses advanced glycation end product-induced monocyte chemoattractant protein-1 expression in mesangial cells by reducing advanced glycation end product receptor level[J].Metabolism,2011,60(9):1271-1277.
[11] Hendarto H,Inoguchi T,Maeda Y,et al. GLP-1 analog liraglutide protects against oxidative stress and albuminuria in treptozotocin-induced diabetic rats via protein kinase A-mediated inhibition of renal NAD(P)H oxidases[J].Metabolism,2012,61(10):1422-1434.
[12] Ojima A,Ishibashi Y,Matsui T,et al. Glucagon-like peptide-1 receptor agonist inhibits asymmetric dimethylarginine generation in the kidney of streptozotocin-induced diabetic rats by blocking advanced glycation end productinduced protein arginine methyltranferase-1 expression[J].Am J Pathol,2013,182(1):132-141.
[13] Yu M,Moreno C,Hoagland KM,et al. Antihypertensive effect of glucagonlike peptide 1 in Dahl salt-sensitive rats[J].J Hypertens,2003,21(6):1125-1135.
[14] Hirata K,Kume S,Araki S,et al. Exendin-4 has an antihypertensive effect in salt-sensitive mice model[J].Biochem Biophys Res Commun,2009,380(1):44-49.
[15] Carraro-Lacroix LR,Malnic G,Girardi ACC. Regulation of Nat/Htexchanger NHE3 by glucagon-like peptide 1 receptor agonist exendin-4 in renal proximal tubule cells[J].Am J Physiol Renal Physiol,2009,297(6):F1647-F1655.
[16] Crajoinas RO,Oricchio FT,Pessoa TD,et al. Mechanisms mediating the diuretic and natriuretic actions of the incretin hormone glucagon-like peptide-1[J].Am J Physiol Renal Physiol,2011,301(2):F355-F363.
[17] Zhang H,Zhang X,Hu C,et al. Exenatide reduces urinary transforming growth factor-β1 and type IV collagen excretion in patients with type 2 diabetes and microalbuminuria[J].Kidney Blood Press Res,2012,35(6):483-488.
[18] Lone AM,Nolte WM,Tinoco AD,et al. Peptidomics of the prolyl peptidases[J].AAPS J,2010,12(4):483-491.
[19] Jackson EK,Kochanek SJ,Gillespie DG. Dipeptidyl peptidase IV regulates proliferation of preglomerular vascular smooth muscle and mesangial cells[J].Hypertension,2012,60(3):757-764.
[20] Stefanovic V,Ardaillou N,Vlahovic P,et al. Interferon-gamma induces dipeptidyl peptidase IV expression in human glomerular epithelial cells[J].Immunology,1993,80(3):465-470.
[21] Yang J,Campitelli J,Hu G,et al. Increase in DPP-IV in the intestine,liver and kidney of the rat treated with high fat diet and streptozotocin[J].Life Sci,2007,81(4):272-279.
[22] Kanwar YS,Wada J,Sun L,et al. Diabetic nephropathy:mechanisms of renal disease progression[J].Exp Biol Med (Maywood),2008,233(1):4-11.
[23] Mitic B,Lazarevic G,Vlahovic P,et al. Diagnostic value of the aminopeptidase N,N-acetyl-beta-D-glucosaminidase and dipeptidyl peptidase IV in evaluating tubular dysfunction in patients with glomerulopathies[J].Ren Fail,2008,30(9):896-903.
[24] Liu WJ,Xie SH,Liu YN,et al. Dipeptidyl peptidase IV inhibitor attenuates kidney injury in streptozotocin-induced diabetic rats[J].J Pharmacol Exp Ther,2012,340(2):248-255.
[25] Mega C,de Lemos ET,Vala H,et al. Diabetic nephropathy amelioration by a low-dose sitagliptin in an animal model of type 2 diabetes (Zucker diabetic fatty rat) [J].Exp Diabetes Res,2011,2011:162092.
[26] Tofovic DS,Bilan VP,Jackson EK. Sitagliptin augments angiotensin II-induced renal vasoconstriction in kidneys from rats with metabolic syndrome[J].Clin Exp Pharmacol Physiol,2010,37(7):689-691.
[27] Marney A,Kunchakarra S,Byrne L,et al. Interactive hemodynamic effects of dipeptidyl peptidase-IV inhibition and angiotensin-converting enzyme inhibition in humans[J].Hypertension,2010,56(4):728-733.
[28] Alter ML,Ott IM,von Websky K,et al. DPP-4 Inhibition on top of angiotensin receptor blockade offers a new therapeutic approach for diabetic nephropathy[J].Kidney Blood Press Res,2012,36(1):119-130.
[29] Panchapakesan U,Mather A,Pollock C. Role of GLP-1 and DPP-4 in diabetic nephropathy and cardiovascular disease[J].Clin Sci (Lond),2013,124(1):17-26.
[30] Zhang D,Shao S,Shuai H,et al. SDF-lα reduces fibronectin expression in rat mesangial cells induced by TGF-β1 and high glucose through PI3K/Akt pathway[J].Exp Cell Res,2013,319(12):1796-1803.
[31] He JG,Chen YL,Chen BL,et al. B-type natriuretic peptide attenuates cardiac hypertrophy via the transforming growth factorβ1/smad7 pathway in vivo and in vitro[J].Clin Exp Pharmacol Physiol,2010,37(3):283-289.
[32] Bylander J,Li Q,Ramesh G,et al. Targeted disruption of the meprin metalloproteinase beta gene protects against renal ischemia-reperfusion iniury in mice[J].Am J Physiol Renal Physiol,2008,294(3):F480-F490.
[33] Tagore DM,Nolte WM,Neveu JM,et al. Peptidase substrates via global peptide profiling[J].Nat Chem Biol,2009,5(1):23-25.
[34] Hattori S. Sitagliptin reduces albuminuria in patients with type 2 diabetes[J].Endocr J,2011,58(1):69-73.
[35] Harashima SI,Ogura M,Tanaka D,et al. Sitagliptin add-on to low dosage sulphonylureas:efficacy and safety of combination therapy on glycaemic control and insulin secretion capacity in type 2 diabetes[J].Int J Clini Pract,2012,66(5):465-476.
[36] Groop PH,Cooper ME,Perkovic V,et al. Linagliptin lowers albuminuria on top of recommended standard treatment in patients with type 2 diabetes and renal dysfunction[J].Diabetes Care,2013,36(11):3460-3468.
Effects of incretin-based therapies on diabetic nephropathy
ZHANG Xia,SU Ben-li
(DepartmentofEndocrinologyandMetabolism,theSecondAffiliatedHospitalofDalianMedicalUniversity,Dalian116027,China)
Incretin-based therapies in the treatment of patients with type 2 diabetes include Glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors. This class of compounds can improve hyperglycemia,protect β-cell function without weight gain,which may partly prevent progression of diabetic nephropathy. Moreover,cumulative data suggest that incretin-based treatments interrupt the pathogenesis of diabetic nephropathy by their pleiotropic positive effects on kidney apart from decreasing glucose. This review focuses on these experimental and clinical studies to highlight the renoprotection effects of incretin-based therapies. Ongoing prospective studies are needed to clarify their possible role in the attenuation of diabetic nephropathy.
Incretin; diabetic nephropathy; GLP-1; GLP-1 receptor agonists; DPP-4; DPP-4 inhibitors
專家述評(píng)10.11724/jdmu.2015.02.01
科技部“十一五”支撐計(jì)劃項(xiàng)目(2008BAI02B08);遼寧省自然科學(xué)基金項(xiàng)目(20062160)
張 霞(1976 -) 女,遼寧大連人,副主任醫(yī)師。研究方向:糖尿病及相關(guān)并發(fā)癥。E-mail:zhxia_dl@hotmail.com
蘇本利,教授。 E-mail:dlbenlisu@163.com
R587.1
A
1671-7295(2015)02-0105-04
2015-01-27;
2015-03-01)
大連醫(yī)科大學(xué)學(xué)報(bào)2015年2期