徐 孟 陳小玲 陳代文 余 冰 羅鈞秋 何 軍 毛湘冰虞 潔 鄭 萍 黃志清(四川農(nóng)業(yè)大學動物營養(yǎng)研究所,動物抗病營養(yǎng)教育部重點實驗室,成都611130)
?
Six1對骨骼肌發(fā)育和肌纖維類型轉(zhuǎn)化的調(diào)控
徐 孟 陳小玲 陳代文 余 冰 羅鈞秋 何 軍 毛湘冰虞 潔 鄭 萍 黃志清?
(四川農(nóng)業(yè)大學動物營養(yǎng)研究所,動物抗病營養(yǎng)教育部重點實驗室,成都611130)
摘 要:Six1是近年來發(fā)現(xiàn)的骨骼肌發(fā)育和肌纖維類型轉(zhuǎn)化的關(guān)鍵調(diào)控因子。Six1基因廣泛表達于各動物不同組織中,尤其在骨骼肌中表達最豐富。Six1對骨骼肌的調(diào)控貫穿于動物胚胎期到出生后整個過程,調(diào)控著骨骼肌的發(fā)育、肌肉損傷修復和肌纖維類型轉(zhuǎn)化。本文概述了Six1基因的發(fā)現(xiàn)、Six1蛋白的結(jié)構(gòu)、Six1在不同動物中的表達譜以及Six1在骨骼肌發(fā)育、肌肉損傷修復、肌纖維類型轉(zhuǎn)化中的作用。
關(guān)鍵詞:Six1;骨骼肌發(fā)育;肌纖維類型轉(zhuǎn)化;表達譜
近年來,追求高產(chǎn)肉量和高瘦肉率使畜禽肉品質(zhì)大幅下降。肌纖維類型組成直接影響著肉品質(zhì)。動物出生后肌纖維數(shù)量不再改變,其類型卻可以轉(zhuǎn)化。因此,調(diào)控肌肉發(fā)育和肌纖維類型轉(zhuǎn)化的關(guān)鍵基因被作為影響肉品質(zhì)的重要因素來研究。Six1是果蠅屬SO(Sine oculis)基因在脊椎動物中的同源基因,是Six家族(Sine oculis ho?meobox family)成員之一,該家族是一類在進化上高度保守的轉(zhuǎn)錄因子家族。Six家族包含Six1~6 共6個家族成員,根據(jù)氨基酸保守序列相似性,分為Six1/2、Six3/6和Six4/5 3個亞家族[1]。Six1缺失的小鼠出生時出現(xiàn)胸骨缺損和嚴重的肌肉發(fā)育不全,膈肌甚至完全缺失,導致小鼠出生后呼吸受到抑制而很快死亡[2]。另有研究表明,Six1和其輔助因子Eya1過表達使小鼠比目魚肌中慢肌纖維向快肌纖維轉(zhuǎn)變[3]。這些研究表明,Six1在脊椎動物骨骼肌發(fā)育以及肌纖維類型轉(zhuǎn)化過程中起著重要作用。本文就Six1對骨骼肌發(fā)育和肌纖維類型轉(zhuǎn)化的調(diào)控作一綜述。
1.1 Six1基因的發(fā)現(xiàn)
Six1由SO基因進化而來,最早于1994年在研究果蠅視覺系統(tǒng)形成過程中被發(fā)現(xiàn)和克隆[4],隨后Six1在脊椎動物鼠、人、雞、蟾蜍、斑馬魚、豬、鴨和無脊椎動物水母中相繼被發(fā)現(xiàn)和克?。?],并發(fā)現(xiàn)Six1基因在生物感官系統(tǒng)[6]、骨骼?。?]、顱面器官[8-9]、腎臟[10]等組織器官發(fā)育過程中起著重要作用。
1.2 Six1蛋白的結(jié)構(gòu)
Six1蛋白同Six家族其他成員一樣,由2個保守的特征結(jié)構(gòu)域[同源異型結(jié)構(gòu)(homeodomain,HD)域和蛋白互作結(jié)構(gòu)(six domain,SD)域]、非保守的N端和C端組成。通常,HD域包含60個氨基酸,在這60個氨基酸殘基中包括1個DNA螺旋識別區(qū),能和下游靶基因的DNA序列特異性錨定結(jié)合,進而對下游受控基因進行激活或抑制[1]。SD域位于HD域的N端[11],通常包含110~115個氨基酸,其保守性僅次于HD域,主要功能是參與蛋白質(zhì)間的相互作用[1]。Six1蛋白N端只包含少數(shù)氨基酸殘基,這從側(cè)面預示N端對該蛋白質(zhì)功能影響不大[12]。Six1蛋白C端有幾個氨基酸殘基作為HD域的延伸,這些延伸的氨基酸可能與DNA綁定調(diào)節(jié)有關(guān),起到穩(wěn)定與目標DNA序列結(jié)合的作用[1];此外,C端還具有調(diào)節(jié)Six1蛋白降解的功能[13]。
1.3 Six1在不同動物中的表達譜
Six1具有特定時空表達模式,具有多組織表達特性,不同組織Six1的表達量存在明顯差異。Boucher等[14]等最初研究顯示Six1僅在人的成年骨骼肌中具有很高表達。Wang等[15]等采用實時熒光定量PCR技術(shù)對鴨不同組織Six1基因表達圖譜分析發(fā)現(xiàn),Six1在胸肌中表達水平最高,其次為腿肌,再次為脾臟、胰臟、肺。Wu等[16]利用半定量PCR研究豬不同組織Six1基因表達規(guī)律發(fā)現(xiàn),Six1基因在大多數(shù)組織中均有表達,其中骨骼肌中表達最高,其次為睪丸和骨髓。我們采用Western blot檢測了豬不同組織Six1蛋白表達規(guī)律發(fā)現(xiàn),Six1蛋白在豬骨骼肌組織中最為豐富,且快?。ㄈ缰洪L伸肌和背最長?。┒嘤诼。ㄈ绫饶眶~肌和腰大肌)[17]。這些研究結(jié)果顯示,Six1基因在骨骼肌中的表達量都明顯高于其他組織,提示其與骨骼肌的發(fā)育和肌肉特異性有密切的關(guān)系。
2.1 Six1與骨骼肌發(fā)育
脊椎動物骨骼肌發(fā)育是由一系列基因和調(diào)控因子共同協(xié)作下完成的復雜過程,Six1、Eya2、Dach、Pax3/7和MRFs等在這一過程中共同構(gòu)成了一個復雜精確的調(diào)控系統(tǒng)[5,18]。Six1在脊椎動物肌肉發(fā)育過程中具有至關(guān)重要的作用。敲除Six1a或Six1b都會增加斑馬魚胚胎肌細胞的凋亡;Six1a能促進斑馬魚胚胎快肌前體細胞增值和分化,其突變使胚胎肌纖維發(fā)生不規(guī)則排列,最終導致胚胎異常發(fā)育[19]。在雞的胚胎發(fā)育過程中,Six1在四肢遠端后區(qū)域的結(jié)締組織中表達豐富,其缺失使肌細胞的分化受到抑制[20-21]。在人胚胎發(fā)育第4周的體節(jié)中能檢測到Six1的表達[22],豬胚胎發(fā)育第65天的背最長肌Six1的mRNA水平顯著高于出生后21 d[16],說明Six1與人體節(jié)生成和豬肌肉發(fā)育有著密切關(guān)系。
小鼠胚胎原位雜交試驗發(fā)現(xiàn),Six1的表達基本限制在胚胎的生肌區(qū)域[23];在Six1和Six4雙突變的小鼠胚胎中,Pax3在軸下生皮肌節(jié)的表達不足,導致軸下生皮肌節(jié)生肌前體細胞不能向肢芽轉(zhuǎn)移[24]。Pax3是肌祖細胞形成必不可少的調(diào)控因子,Pax3調(diào)控著生皮肌節(jié)外側(cè)部分延伸,在Pax3缺失的小鼠胚胎中,軸下遷移的肌祖細胞嚴重缺少;在胚胎肢芽中,Six1和Six4可以通過調(diào)控Pax3的表達來控制體節(jié)肌細胞早期的分層和遷移[25]。這些研究表明,Six1和Six4不僅對肌肉的發(fā)生發(fā)育有著至關(guān)重要的作用,同時還是Pax3的上游基因。在Six1缺失的小鼠胚胎中,生肌前體細胞向肢芽轉(zhuǎn)移的能力減弱,分化的成肌細胞異常凋亡;Six1缺失的小鼠出生時出現(xiàn)廣泛的肌肉發(fā)育不全,胸骨缺損,膈肌甚至完全缺失,導致小鼠出生后呼吸受到抑制而很快死亡[2]。Six1/4基因雙敲除的小鼠胚胎比單獨Six1基因敲除的小鼠胚胎出現(xiàn)更為廣泛和嚴重的肌肉發(fā)育不全,并伴隨肋骨和顱面骨缺陷[26],而單獨缺失Six4的小鼠胚胎或成年小鼠都沒有出現(xiàn)骨骼肌發(fā)育畸形[27]。上述結(jié)果表明,Six4在胚胎發(fā)育中有重要的作用但其重要性不如Six1,Six4和Six1存在明顯的功能冗余。另有研究認為,Six5同樣參與了肌肉發(fā)育進程,Six5與肌肉萎縮有關(guān)[28],但缺失Six5的小鼠胚胎沒有出現(xiàn)肌肉發(fā)育不良或缺陷[29]。
2.2 Six1與生肌調(diào)節(jié)因子(MRFs)家族關(guān)系
MRFs是一類調(diào)控肌肉發(fā)生、發(fā)育及肌肉功能完善的調(diào)節(jié)因子家族,其作用貫穿于動物胚胎期到出生后骨骼肌發(fā)育整個過程,該家族包含4個成員:MyoD、myogenin(MyoG)、Myf5和MRF4。Myf5和MyoD決定成肌細胞前體生成不同類型的成肌細胞,Myf5和MyoD基因表達是胚胎肌肉發(fā)生起始的標志[30]。Six1對MRFs家族4個成員都有轉(zhuǎn)錄調(diào)控作用,Six1基因是MRFs家族的上游基因[2,22,26,31-32]。
Myf5在胚胎生肌決定、細胞增殖和肌纖維形成過程中有著重要作用,MyoD和MyoG位于肌分化基因的上游,調(diào)控著肌肉損傷修復進程和胚胎中胚層細胞分化到形成肌纖維整個過程[26,33-34]。小鼠胚胎Myf5基因存在1個長145 bp的調(diào)控元件區(qū),在這一區(qū)域中存在與Six1特異識別的MEF3位點,在MEF3位點附近還存在著Pax3的識別序列[35]。Six1通過與MEF3位點特異結(jié)合,在肢芽中活化啟動并調(diào)控Myf5的轉(zhuǎn)錄[31]。在MEF3位點突變的小鼠胚胎中,Six1對Myf5的轉(zhuǎn)錄調(diào)控被阻遏,而Pax3仍然能與Myf5中Pax3位點有效結(jié)合,但Myf5的轉(zhuǎn)錄水平顯著下降,Pax3 與Myf5中Pax3位點的結(jié)合可以部分補償MEF3位點突變造成的生肌發(fā)育障礙[2,31,35]。原位雜交試驗顯示,在Six1缺失的小鼠胚胎E10.5期,向四肢遷移的Pax3陽性肌祖細胞數(shù)量減少,在胚胎前肢中不能檢測到Myf5的表達;在Six1缺失的胚胎E11.5期中,胚胎前肢中無法檢測到Pax3、MyoD 和MyoG陽性細胞,后肢能檢測到少量的Pax3和Myf5的表達;Six1缺失的小鼠胚胎E12.5期前肢中可以檢測到Myf5的表達,后肢腹側(cè)區(qū)有少量的表達MyoD和MyoG陽性細胞,而表達MyoD的陽性細胞主要集中在后肢背側(cè)[2,26];在Six1/4都缺失的胚胎E10.5期,Myf5在前肢中不能檢測,MyoG在背側(cè)肌節(jié)有極少量表達;在Six1/4雙突變的小鼠胚胎中,軸下生肌節(jié)生肌前體細胞遷移異常,胚胎期早期肌節(jié)中不能檢測MyoD、Mrf4和MyoG的表達,Myf5雖然可以少量的表達但被限制在體節(jié)的末端,Mrf4的表達受到抑制可能導致Six1和Six4基因雙敲除小鼠在出生后出現(xiàn)肋骨缺陷的原因[2,26]。當Six1被敲除時,Six4可以部分補償Six1缺失個體中Myf5的轉(zhuǎn)錄激活作用[26,31]。
Wang等[15]發(fā)現(xiàn)鴨Six1基因過表達促進鴨成肌細胞增殖同時顯著提高Myf5和MyoD的mRNA水平。在小鼠C2C12細胞分化過程中,隨著分化時間越長,Six1的mRNA水平越低,同時Myf5、MyoD和MyoG的mRNA水平隨著Six1降低而下降[36]。Six1過表達抑制小鼠成肌細胞MyoG及myosin的表達,延遲細胞分化進程[37-39]。Liu等[40]等利用小干擾RNA降低Six1基因表達后,發(fā)現(xiàn)小鼠成肌細胞中MyoD水平和MyoG活力下降,Six1通過與MyoD增強子核心區(qū)域中MEF3位點結(jié)合調(diào)控MyoD的表達,這與Le Grand等[34]在對衛(wèi)星細胞體外研究的結(jié)果一致。在MyoG上184 bp增強子核心區(qū)域中同樣存在MEF3位點,Six1與MEF3位點結(jié)合調(diào)控MyoG的表達[41]。當阻斷Six1a表達時,超過一半的斑馬魚胚胎快肌前體細胞為MyoG陰性細胞[42],快肌的分化進程受到抑制[19]。過表達Six1上調(diào)MyoG的表達水平,Six4/5過表達則下調(diào)MyoG的表達水平[43]。有研究表明,Six1/4缺失時,Six2可以部分代替Six1/4激活MyoD,另外Myf5可能是MyoD的上游基因[44]。
2.3 Six1與肌肉損傷修復
骨骼肌衛(wèi)星細胞是位于肌膜和基底膜之間的組織干細胞,當肌肉受損時,靜止的衛(wèi)星細胞被激活,形成成肌細胞后開始表達Myf5、MyoD、MyoG,最后分化融合形成肌纖維,最終修復受損肌肉[45]。Six1在肌肉損傷后衛(wèi)星細胞的激活、分化、修復損傷肌肉的過程中起著重要作用。研究表明,Six1在靜止狀態(tài)和激活狀態(tài)的衛(wèi)星細胞中都有表達,Six1基因敲除后對靜止衛(wèi)星細胞的激活、增殖沒有影響,而Pax7陽性細胞增多,其增殖不受影響可能是由于Pax7大量表達抵消了Six1缺失的作用[34,46]。Six1過表達抑制衛(wèi)星細胞增殖促進其分化,Six1缺失后衛(wèi)星細胞分化能力顯著降低,分化進程延遲,形成的肌管減少,再生的肌肉中肌纖維含量減少[34,43]。沉默Six1的斑馬魚胚胎中,分化的成肌細胞中MyoD和MyoG的表達減少,而MyoD和MyoG在成肌細胞分化最終形成肌纖維過程中有至關(guān)重要作用[40,47]。對人股四頭肌進行延長或收縮刺激后發(fā)現(xiàn),在刺激后3~6 h內(nèi),Six1 的mRNA水平顯著降低,隨后逐漸恢復正常[48],說明Six1與肌肉收縮性能有著密切的關(guān)系。衛(wèi)星細胞通過一系列過程修復損傷肌肉后,其本身的自我更新過程同樣受到Six1調(diào)控,當Six1缺失時,衛(wèi)星細胞容量增大,其原有的微環(huán)境平衡被打破。另外,Six家族其他成員在骨骼肌損傷修復過程中有重要作用,如Six2/4/5在靜止衛(wèi)星細胞中有少量表達,但其表達量比Six1低。敲除Six5促進衛(wèi)星細胞增殖,而分別過表達Six4和Six5抑制MyoG的在衛(wèi)星細胞的表達導致其增殖和分化受到抑制[43]。
2.4 Six1與肌纖維類型轉(zhuǎn)化
最早在Grifone等[3]的研究中發(fā)現(xiàn),Six1/Eya1復合物可以使成年小鼠慢肌向快肌轉(zhuǎn)變,隨后越來越多關(guān)于Six1在骨骼肌纖維的形成和肌纖維類型轉(zhuǎn)化的作用相繼被報道。在骨骼肌醛縮酶A基因啟動子中存在著MEF3結(jié)合位點,此位點對骨骼肌快肌表型具有重要作用。研究表明,在快速型肌纖維中,MEF3位點的活性和Eya1的表達量明顯高于慢速型肌纖維,在ⅡB型肌纖維中,Six1 與MEF3位點結(jié)合能力明顯高于其他類型肌纖維。在比目魚肌中,單獨的Six1過表達不能使慢速型肌纖維向快速型肌纖維轉(zhuǎn)變,而當Six1和Eya1同時過表達時,比目魚肌中慢速氧化型肌纖維則向快速酵解型肌纖維轉(zhuǎn)變,說明即使在成年骨骼肌中Six1/Eya1復合物依然可以使慢速型肌纖維向快速型肌纖維轉(zhuǎn)化。Six1和Eya1協(xié)同作用于Six1基因的靶基因使骨骼肌的慢肌表型向快肌表型轉(zhuǎn)化。另外,Six4和Six5對骨骼肌中快肌基因的表達有一定的轉(zhuǎn)錄激活作用,當Six1缺失時,Six4和Six5可以部分代償性補償Six1缺失而轉(zhuǎn)錄激活下游快肌基因[3,49]。
Sakakibara等[32]等通過小干擾RNA技術(shù)降低成年小鼠脛骨前肌Six1基因表達后發(fā)現(xiàn),Ⅰ型和ⅡA型肌纖維所占比例顯著上升,而ⅡB型肌纖維所占比例顯著的下降,其肌肉抗疲勞性顯著增強,同時快肌基因mRNA水平顯著下降而慢肌基因mRNA水平顯著上升。Hetzler等[50]對小鼠脛骨前肌Six1基因敲除后發(fā)現(xiàn),缺失Six1的肌肉與正常肌肉相比存在明顯的損傷,并且MyoG的mRNA水平顯著下降;肌肉中MyHC?ⅡB蛋白和ⅡB型肌纖維比例顯著下降,MyHC?ⅡA蛋白含量顯著上升,ⅡA型肌纖維比例有上升趨勢。在對C2C12成肌細胞分別進行抑制Six1表達和過表達Six1處理,結(jié)果發(fā)現(xiàn),抑制Six1表達時,My?HC?ⅡB和MyHC?ⅡX啟動子活性顯著降低;Six1基因過表達時,MyHC?ⅡB和MyHC?ⅡX啟動子活性顯著上升[50]。這些研究提示,Six1可以調(diào)控成年骨骼肌肌纖維轉(zhuǎn)化從而改變骨骼肌中肌纖維類型比例。在Six1a基因敲除的斑馬魚胚胎中快肌基因和MyoG表達不足,快速型肌纖維的分化受到抑制,而慢速型肌纖維則不受影響[42]。此外,研究發(fā)現(xiàn)豬和鴨Six1在快肌中的表達明顯高于慢肌[15,17],側(cè)面提示Six1對骨骼肌快肌表型的維持具有重要作用。
Six1還可能通過其他途徑調(diào)控肌纖維類型之間的轉(zhuǎn)化。研究表明,Sox6在快速型肌纖維中大量存在而在慢速型肌纖維中較少,在Sox6突變的小鼠中,骨骼肌中大多數(shù)慢肌基因mRNA水平和Ⅰ型肌纖維比例顯著上升[51-52]。另外,linc?MYH在快肌中比慢肌有較多的表達,在linc?MYH缺失的骨骼肌中快肌基因的表達顯著降低,而慢肌基因的表達顯著上升[32]。上述結(jié)果表明,Sox6和linc?MYH抑制慢肌基因表達而對快肌基因表達及快速型肌纖維的維持有促進作用。另外,在Six1缺失的胚胎期的小鼠背肌中Sox6蛋白與對照組相比明顯減少[53];當Six1缺失時,小鼠骨骼肌中l(wèi)inc?MYH的mRNA水平顯著降低[32]。上述結(jié)果提示,Six1可能是Sox6和linc?MYH的上游基因,Six1可通過調(diào)控Sox6和linc?MYH的表達來調(diào)節(jié)肌肉發(fā)育和肌纖維類型的轉(zhuǎn)化。
影響畜禽肉品質(zhì)的因素有很多,如基因、營養(yǎng)、年齡及環(huán)境等,其中基因是影響肉質(zhì)性狀的內(nèi)因,包括RN-基因和氟烷敏感基因2個主效基因和多個微效基因。肉品質(zhì)性狀是由復雜的多基因網(wǎng)絡(luò)及信號轉(zhuǎn)導通路共同調(diào)控決定的,目前發(fā)現(xiàn)與肉質(zhì)性狀相關(guān)的候選基因主要有:1)參與脂肪形成及代謝的相關(guān)基因,如過氧化物酶體增殖物激活受體γ基因(PPARγ)、解偶聯(lián)蛋白基因(UCP)、脂肪細胞決定和分化因子1基因(ADD1)、CCAAT增強子結(jié)合蛋白基因(C/EBP)、脂肪酸結(jié)合蛋白基因(FABPs)、脂肪酸合成酶基因(FAS)及激素敏感脂酶基因(HSL)等;2)參與肌肉形成及代謝相關(guān)因子,如肌肉生長抑制素基因(MSTN)、鈣蛋白酶抑制蛋白基因(CAST)、MRFs等;3)其他基因,如黑色素皮質(zhì)素受體基因(MCR)、胰島素樣生長因子2基因(IGF2)等。
目前Six1在畜禽肉質(zhì)性狀和生產(chǎn)性能相關(guān)的研究還未見報道,但Six1調(diào)控骨骼肌細胞分化、肌纖維類型轉(zhuǎn)化等已在小鼠上得到充分的研究。由此可以推測Six1在畜禽肉質(zhì)性狀方面可能有著重要的調(diào)控作用,如通過調(diào)控生肌調(diào)節(jié)因子家族(MRFs)調(diào)控肌細胞分化方向直接影響畜禽肉質(zhì)性狀,或通過調(diào)控Myh2/4/7及相關(guān)快肌基因和慢肌基因影響肌纖維類型的決定及轉(zhuǎn)化間接影響畜禽肉品質(zhì)。但Six1基因能否作為畜禽肉質(zhì)性狀相關(guān)候選基因以及其具體的作用機制還有待于進一步深入研究。
綜上所述,無論是在胚胎期還是動物出生后Six1對骨骼肌的調(diào)控作用都伴隨始終,其調(diào)控著骨骼肌發(fā)育、肌肉損傷修復、肌纖維類型轉(zhuǎn)化。同時,Six1還可能是畜禽肉質(zhì)性狀的候選基因。因此,深入研究該基因?qū)∪獍l(fā)育、肌纖維類型轉(zhuǎn)化的可能調(diào)控機制以及是否可作為畜禽肉質(zhì)性狀的候選基因,將為今后改善畜禽肉品質(zhì)提供新的思路。
參考文獻:
[1] HU S Y,MAMEDOVA A,HEGDE R S.DNA?bind?ing and regulation mechanisms of the SIX family of retinal determination proteins[J].Biochemistry,2008,47(11):3586-3594.
[2] LACLEF C,HAMARD G,DEMIGNON J,et al.Al?tered myogenesis in Six1?deficient mice[J].Develop?ment,2003,130(10):2239-2252.
[3] GRIFONE R,LACLEF C,SPITZ F,et al.Six1 and Eya1 expression can reprogram adult muscle from the slow?twitch phenotype into the fast?twitch phenotype [J].Molecular and Cellular Biology,2004,24(14):6253-6267.
[4] CHEYETTE B N R,GREEN P J,MARTIN K,et al.The Drosophila sine oculis locus encodes a home?odomain?containing protein required for the develop?ment of the entire visual system[J].Neuron,1994,12 (5):977-996.
[5] WU W J,HUANG R H,WU Q H,et al.The role of Six1 in the genesis of muscle cell and skeletal muscle development[J].International Journal of Biological Sciences,2014,10(9):983-989.
[6] STIERWALD M,YANZE N,BAMERT R P,et al.The Sine oculis/Six class family of homeobox genes in jellyfish with and without eyes:development and eye regeneration[J].Developmental Biology,2004,274 (1):70-81.
[7] GORDON B S,ELGADO DíAZ D C,WHITE J P,et al.Six1 and Six1 cofactor expression is altered during early skeletal muscle overload in mice[J].The Journal of Physiological Sciences,2012,62(5):393-401.
[8] NONOMURA K,TAKAHASHI M,WAKAMATSU Y,et al.Dynamic expression of Six family genes in the dental mesenchyme and the epithelial ameloblast stem/progenitor cells during murine tooth develop?ment[J].Journal of Anatomy,2010,216(1):80-91.
[9] SATO S,IKEDA K,SHIOI G,et al.Regulation of Six1 expression by evolutionarily conserved enhancers in tetrapods[J].Developmental Biology,2012,368 (1):95-108.
[10] XU P X,ZHENG W M,HUANG L,et al.Six1 is re?quired for the early organogenesis of mammalian kid?ney[J].Development,2003,130(14):3085-3094.
[11] KAWAKAMI K,OHTO H,TAKIZAWA T,et al.I? dentification and expression of six family genes in mouse retina[J].FEBS Letters,1996,393(2/3):259-263.
[12] WEASNER B,SALZER C,KUMAR J P.Sine oculis,a member of the SIX family of transcription factors,di?rects eye formation[J].Developmental Biology,2007,303(2):756-771.
[13] CHRISTENSEN K L,BRENNAN J D G,AL?DRIDGE C S,et al.Cell cycle regulation of the human Six1 homeoprotein is mediated by APCCdh1[J].On?cogene,2006,26(23):3406-3414.
[14] BOUCHER C A,CAREY N,EDWARDS Y H,et al.Cloning of the human SIX1 gene and its assignment to chromosome 14[J].Genomics,1996,33(1):140-142.
[15] WANG H H,JINT H B,LIU H H,et al.Molecular cloning and expression pattern of duck Six1 and its preliminary functional analysis in myoblasts transfect?ed with eukaryotic expression vector[J].Indian Jour?nal of Biochemistry&Biophysics,2014,51(4):271-281.
[16] WU W J,REN Z Q,WANG Y,et al.Molecular char?acterization,expression patterns and polymorphism a?nalysis of porcine Six1 gene[J].Molecular Biology Reports,2011,38(4):2619-2632.
[17] XU M,CHEN X L,HUANG Z Q,et al.Prokaryotic expression,purification,and polyclonal antibody prep?aration,and tissue distribution of porcine Six1[J].Turkish Journal of Biology,2015,doi:10.3906/biy-1408-1466.
[18] BUCKINGHAM M,RIGBY P W J.Gene regulatory networks and transcriptional mechanisms that control myogenesis[J].Developmental Cell,2014,28(3):225-238.
[19] O’BRIEN J H,HERNANDEZ?LAGUNAS L,AR?TINGER K B,et al.MicroRNA?30a regulates zebrafish myogenesis through targeting the transcription factor Six1[J].Journal of Cell Science,2014,127(10):2291-2301.
[20] BONNIN M A,LACLEF C,BLAISE R,et al.Six1 is not involved in limb tendon development,but is ex?pressed in limb connective tissue under Shh regulation [J].Mechanisms of Development,2005,122(4):573-585.
[21] DELFINI M?C,DUPREZ D.Ectopic Myf5 or MyoD prevents the neuronal differentiation program in addi?tion to inducing skeletal muscle differentiation,in thechick neural tube[J].Development,2004,131(4):713-723.
[22] FOUGEROUSSE F,DURAND M,LOPEZ S,et al.Six and Eya expression during human somitogenesis and MyoD gene family activation[J].Journal of Mus?cle Research&Cell Motility,2002,23(3):255-264.
[23] OLIVER G,MAILHOS A,WEHR R,et al.Six3,a murine homologue of the sine oculis gene,demarcates the most anterior border of the developing neural plate and is expressed during eye development[J].Develop?ment,1995,121(12):4045-4055.
[24] GRIFONE R,DEMIGNON J,GIORDANI J,et al.Eya1 and Eya2 proteins are required for hypaxial so?mitic myogenesis in the mouse embryo[J].Develop?mental Biology,2007,302(2):602-616.
[25] TREMBLAY P,DIETRICH S,MERICSKAY M,et al.A crucial role for Pax3 in the development of the hypaxial musculature and the long?range migration of muscle precursors[J].Developmental Biology,1998,203(1):49-61.
[26] GRIFONE R,DEMIGNON J,HOUBRON C,et al.Six1 and Six4 homeoproteins are required for Pax3 and Mrf expression during myogenesis in the mouse embryo[J].Development,2005,132(9):2235-2249.
[27] OZAKI H,WATANABE Y,TAKAHASHI K,et al.Six4,a putative myogenin gene regulator,is not essen?tial for mouse embryonal development[J].Molecular and Cellular Biology,2001,21(10):3343-3350.
[28] KIRBY R,HAMILTON G M,F(xiàn)INNEGAN D J,et al.Drosophila homolog of the myotonic dystrophy?asso?ciated gene,SIX5,is required for muscle and gonad development[J].Current Biology,2001,11(13):1044-1049.
[29] KLESERT T R,CHO D H,CLARK J I,et al.Mice deficient in Six5 develop cataracts:implications for myotonic dystrophy[J].Nature Genetics,2000,25 (1):105-109.
[30] PARKER M H,SEALE P,RUDNICKI M A.Looking back to the embryo:defining transcriptional networks in adult myogenesis[J].Nature Reviews Genetics,2003,4(7):497-507.
[31] GIORDANI J,BAJARD L,DEMIGNON J,et al.Six proteins regulate the activation of Myf5 expression in embryonic mouse limbs[J].Proceedings of the Na?tional Academy of Sciences,2007,104(27):11310-11315.
[32] SAKAKIBARA I,SANTOLINI M,F(xiàn)ERRY A,et al. Six homeoproteins and a linc?RNA at the fast MYH locus lock fast myofiber terminal phenotype[J].PLoS Genetics,2014,10(7):e1004538.
[33] WYZYKOWSKI J C,WINATA T I,MITIN N,et al.Identification of novel MyoD gene targets in prolifera?ting myogenic stem cells[J].Molecular and Cellular Biology,2002,22(17):6199-6208.
[34] LE GRAND F,GRIFONE R,MOURIKIS P,et al.Six1 regulates stem cell repair potential and self?re?newal during skeletal muscle regeneration[J].The Journal of Cell Biology,2012,198(5):815-832.
[35] DAUBAS P,BUCKINGHAM M E.Direct molecular regulation of the myogenic determination gene Myf5 by Pax3,with modulation by Six1/4 factors,is exem?plified by the?111 kb?Myf5 enhancer[J].Developmen?tal Biology,2013,376(2):236-244.
[36] WU W J,REN Z Q,CHEN C,et al.Subcellular locali?zation of different regions of porcine Six1 gene and its expression analysis in C2C12myoblasts[J].Molecular Biology Reports,2012,39(12):9995-10002.
[37] LI Z X,DENG D M,HUANG H C,et al.Overexpres?sion of Six1 leads to retardation of myogenic differen?tiation in C2C12myoblasts[J].Molecular Biology Re?ports,2013,40(1):217-223.
[38] WU W J,REN Z Q,ZHANG L,et al.Overexpression of Six1 gene suppresses proliferation and enhances ex?pression of fast?type muscle genes in C2C12myoblasts [J].Molecular and Cellular Biochemistry,2013,380 (1/2):23-32.
[39] WU W J,REN Z Q,LIU H L,et al.Core promoter a?nalysis of porcine Six1 gene and its regulation of the promoter activity by CpG methylation[J].Gene,2013,529(2):238-244.
[40] LIU Y B,CHAKROUN I,YANG D B,et al.Six1 Regulates MyoD expression in adult muscle progenitor cells[J].PloS One,2013,8(6):e67762.
[41] ZHANG H,STAVNEZER E.Ski regulates muscle ter?minal differentiation by transcriptional activation of Myog in a complex with Six1 and Eya3[J].Journal of Biological Chemistry,2009,284(5):2867-2879.
[42] BESSARAB D A,CHONG S W,SRINIVAS B P,et al.Six1a is required for the onset of fast muscle differ?entiation in zebrafish[J].Developmental Biology,2008,323(2):216-228.
[43] YAJIMA H,MOTOHASHI N,ONO Y,et al.Six fam?ily genes control the proliferation and differentiation of muscle satellite cells[J].Experimental Cell Research,2010,316(17):2932-2944.
[44] RELAIX F,DEMIGNON J,LACLEF C,et al.Six ho?meoproteins directly activate Myod expression in the gene regulatory networks that control early myogenesis [J].PLoS Genetics,2013,9(4):e1003425.
[45] FU X,WANG H T,HU P.Stem cell activation in skeletal muscle regeneration[J].Cellular and Molecu?lar Life Sciences,2015:1-15.
[46] NORD H,SKALMAN L N,VON HOFSTEN J.Six1 regulates proliferation of Pax7?positive muscle progen?itors in zebrafish[J].Journal of Cell Science,2013,126(8):1868-1880.
[47] NORD H,BURGUIERE A C,MUCK J,et al.Differ?ential regulation of myosin heavy chains defines new muscle domains in zebrafish[J].Molecular Biology of the Cell,2014,25(8):1384-1395.
[48] KOSTEK M C,CHEN Y W,CUTHBERTSON D J,et al.Gene expression responses over 24 h to lengthening and shortening contractions in human muscle:major changes in CSRP3,MUSTN1,SIX1,and FBXO32[J].Physiological Genomics,2007,31(1):42-52.
[49] NIRO C,DEMIGNON J,VINCENT S,et al.Six1 and Six4 gene expression is necessary to activate the fast? type muscle gene program in the mouse primary myo?tome[J].Developmental Biology,2010,338(2):168-182.
[50] HETZLER K L,COLLINS B C,SHANELY R A,et al.The homoeobox gene Six1 alters myosin heavy chain isoform expression in mouse skeletal muscle [J].Acta Physiologica,2014,210(2):415-428.
[51] QUIAT D,VOELKER K A,PEI J M,et al.Concerted regulation of myofiber?specific gene expression and muscle performance by the transcriptional repressor Sox6[J].Proceedings of the National Academy of Sciences of the United States of America,2011,108 (25):10196-10201.
[52] AN C I,GANIO E,HAGIWARA N.Trip12,a HECT domain E3 ubiquitin ligase,targets Sox6 for proteaso?mal degradation and affects fiber type?specific gene expression in muscle cells[J].Skeletal Muscle,2013,3(1):11.
[53] RICHARD A F,DEMIGNON J,SAKAKIBARA I,et al.Genesis of muscle fiber?type diversity during mouse embryogenesis relies on Six1 and Six4 gene expression [J].Developmental Biology,2011,359(2):303-320.
Regulation of Skeletal Muscle Development and Muscle Fiber?Type Transition by Six1
XU Meng CHEN Xiaoling CHEN Daiwen YU Bing LUO Junqiu HE Jun MAO Xiangbing YU Jie ZHENG Ping HUANG Zhiqing
?
(責任編輯 陳 燕)
(Key Laboratory for Animal Disease?Resistance Nutrition of China Ministry of Education,Institute of Animal Nutrition,Sichuan Agricultural University,Chengdu 611130,China)
Abstract:Six1 is a recently discovered key regulator of skeletal muscle development and muscle fiber?type transition.Six1 gene is widely expressed in a variety of different tissues.Notably,expression is most abundant in skeletal muscle.Six1 regulates skeletal muscle development,muscle injury repair,and muscle fiber?type transition from embryonic period to entire process of postnatal life of animals.This paper reviewed the discover?y of Six1 gene,structure of Six1 protein,expression profiling of Six1 gene in different kinds of animals,and role of Six1 in skeletal muscle development,muscle injury repair and muscle fiber?type transition.[Chinese Journal of Animal Nutrition,2015,27(7):2005?2011]
Key words:Six1;skeletal muscle development;muscle fiber?type transition;expression profiling
Corresponding author?,professor,E?mail:zqhuang@sicau.edu.cn
通信作者:?黃志清,研究員,博士生導師,E?mail:zqhuang@sicau.edu.cn
作者簡介:徐 孟(1991—),男,四川丹棱人,碩士研究生,從事動物營養(yǎng)與飼料科學研究。E?mail:youhunyoulu@163.com
基金項目:國家自然科學基金面上項目(31472110)
收稿日期:2015-02-07
doi:10.3969/j.issn.1006?267x.2015.07.004
文章編號:1006?267X(2015)07?2005?07
文獻標識碼:A
中圖分類號:S852.2