田守嶒, 陳立強(qiáng), 盛 茂, 李根生, 劉慶嶺
(1.油氣資源與探測國家重點(diǎn)實(shí)驗(yàn)室(中國石油大學(xué)(北京)),北京 102249;2.中海油能源發(fā)展股份有限公司工程技術(shù)分公司,天津 300450)
水力噴射分段壓裂裂縫起裂模型研究
田守嶒1, 陳立強(qiáng)2, 盛 茂1, 李根生1, 劉慶嶺1
(1.油氣資源與探測國家重點(diǎn)實(shí)驗(yàn)室(中國石油大學(xué)(北京)),北京 102249;2.中海油能源發(fā)展股份有限公司工程技術(shù)分公司,天津 300450)
優(yōu)化設(shè)計(jì)水力噴射分段壓裂施工方案時,需要較為準(zhǔn)確地預(yù)測不同位置的起裂壓力。基于Westergaard理論,建立了考慮裂縫誘導(dǎo)應(yīng)力場的水力噴射分段壓裂起裂模型,分析了受第一條裂縫誘導(dǎo)應(yīng)力影響的后續(xù)裂縫起裂壓力,并與現(xiàn)場實(shí)際壓裂數(shù)據(jù)進(jìn)行對比;同時,分析了不同裂縫高度、裂縫凈壓力、原地最小水平主應(yīng)力和與第一條裂縫的距離對第二條裂縫起裂壓力的影響。計(jì)算結(jié)果顯示,模型計(jì)算值與壓裂試驗(yàn)數(shù)據(jù)吻合較好。在實(shí)際施工參數(shù)條件下,裂縫面凈壓力每增大5 MPa,后續(xù)壓裂起裂壓力增大3 MPa;第一條裂縫高度每增加10 m,后續(xù)裂縫起裂壓力增加2 MPa,誘導(dǎo)應(yīng)力場影響范圍增加30 m;與第一條裂縫距離越近,后續(xù)裂縫起裂壓力越高,最大增幅可達(dá)21%;原地最小水平主應(yīng)力增大,誘導(dǎo)應(yīng)力場的影響范圍并不會增大。研究結(jié)果對優(yōu)化設(shè)計(jì)水力噴射分段壓裂施工方案具有一定的指導(dǎo)作用。
水力噴射壓裂 起裂模型 起裂壓力 誘導(dǎo)應(yīng)力
水力噴射壓裂技術(shù)具有一趟管柱多段壓裂、能夠有效提高壓裂效率等優(yōu)勢,在直井、定向井和水平井的套管完井、篩管完井與裸眼完井等不同完井方式中得到了廣泛應(yīng)用,且效果顯著[1-6]。準(zhǔn)確地預(yù)測起裂壓力,可以提前預(yù)測地面泵壓,并配備相應(yīng)的設(shè)備。
目前,國內(nèi)外學(xué)者在對常規(guī)射孔壓裂破裂壓力進(jìn)行理論分析和實(shí)驗(yàn)研究時,假設(shè)射孔孔眼為圓柱形,發(fā)現(xiàn)裂縫從孔眼根部起裂,而進(jìn)行水力噴射壓裂的起裂機(jī)理的實(shí)驗(yàn)研究及現(xiàn)場應(yīng)用發(fā)現(xiàn),起裂壓力比常規(guī)射孔壓裂低。大部分學(xué)者認(rèn)為在強(qiáng)大的水力沖擊載荷下,沖擊點(diǎn)附近的塑性變形會引起徑向裂紋,故在射孔孔眼端部沿微裂紋破裂的起裂壓力較低[7-14]。但是,其研究內(nèi)容多集中在單一裂縫的起裂壓裂,而第一條裂縫周圍的誘導(dǎo)應(yīng)力場對后續(xù)壓裂起裂壓力的影響不容忽視[15-19]。因此,筆者建立了誘導(dǎo)應(yīng)力場影響下的水力噴射壓裂起裂壓力模型,以便對第一條裂縫周圍誘導(dǎo)應(yīng)力場如何影響后續(xù)壓裂起裂壓力進(jìn)行準(zhǔn)確預(yù)測。
第一條裂縫會導(dǎo)致儲層地應(yīng)力場的改變,根據(jù)Westergaard理論,對初始裂縫的誘導(dǎo)應(yīng)力場模型做如下假設(shè):儲層為均質(zhì)各向同性;裂縫為垂直裂縫,裂縫縱剖面為橢圓形,建立了誘導(dǎo)應(yīng)力場模型(見圖1)[20]。
初始裂縫誘導(dǎo)應(yīng)力場屬于平面應(yīng)變問題,根據(jù)應(yīng)力分量和位移分量的傅里葉積分變換,二維垂直裂縫誘導(dǎo)應(yīng)力場中任意一點(diǎn)(x,y,z)處的誘導(dǎo)應(yīng)力為:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
如果θ,θ1和θ2為負(fù)值,則應(yīng)加上180°。
根據(jù)迭加原理,誘導(dǎo)應(yīng)力與原地應(yīng)力的合地應(yīng)力產(chǎn)生的效果等同于誘導(dǎo)應(yīng)力與原地應(yīng)力單獨(dú)作用效果的累加,因此地層三向主應(yīng)力為:
(9)
第一條裂縫周圍的誘導(dǎo)應(yīng)力場改變了原地應(yīng)力狀態(tài),距離第一條裂縫越近,原地應(yīng)力受第一條裂縫誘導(dǎo)應(yīng)力場的影響越大,如圖2所示。在設(shè)計(jì)第二段壓裂起裂壓力時,應(yīng)充分考慮第一條裂縫誘導(dǎo)應(yīng)力場的影響。
假設(shè)水力噴砂射孔孔眼為圓柱形,由井筒附近應(yīng)力分布可以得到作用在射孔孔眼附近的地應(yīng)力,假設(shè)射孔孔眼為水平井筒,按照水平井筒周圍應(yīng)力分布模型即可得到射孔孔眼附近應(yīng)力分布[8],這里不再詳細(xì)闡述。
目前,有學(xué)者在研究常規(guī)射孔孔眼內(nèi)壓力分布時,假設(shè)孔內(nèi)流體與井筒溝通良好,流體壓力相等;也有學(xué)者認(rèn)為孔眼內(nèi)部壓力低于井筒壓力,主要考慮流體向孔眼內(nèi)流動時會產(chǎn)生流動摩阻[14,21]。水力噴射壓裂油管與套管同時泵注壓裂液,油管壓裂液通過噴嘴高速射向地層的孔眼,在孔眼內(nèi)產(chǎn)生高于環(huán)空的壓力,所以孔眼內(nèi)的壓力為:
ppf=pw+Δp
(10)
這里選用李根生等人[15]對孔內(nèi)增壓的研究結(jié)果:
(11)
式中:ppf為孔眼內(nèi)壓力,MPa;pw為靜水壓力,MPa;Δp為孔內(nèi)增壓,MPa;λ為與噴嘴直徑相關(guān)的孔內(nèi)增壓系數(shù),不同直徑的噴嘴對應(yīng)不同的孔內(nèi)增壓系數(shù),具體取值為:噴嘴直徑4.5,5.0,5.5,6.0,6.5和7.0 mm對應(yīng)的該系數(shù)分別是1.104 7,0.825 8,0.275 9,0.246 4,0.101 0和0.083 9;ρ為流體密度,g/cm3;Q為流量,L/s;C為噴嘴流量系數(shù)。
由于水力噴射壓裂射流沖擊巖石過程中,在垂直沖擊表面會產(chǎn)生徑向微裂紋[15],假設(shè)由高壓水射流沖擊產(chǎn)生的微裂紋為天然裂縫,故裂縫起裂為沿天然裂縫的張性起裂,由天然裂縫地層中水力裂縫起裂壓力模型[22-23],可得裂縫面上的正應(yīng)力為:
(12)
式中:σn為裂縫面上的正應(yīng)力,MPa;σz,σθ和σr分別為垂向、裂縫面切向和裂縫面徑向應(yīng)力,MPa;l1,l2和l3為σz,σθ和σr與天然裂縫面法向的方向余弦。
則裂縫沿天然裂縫張性破壞的準(zhǔn)則為:
pf=pw≥σn
(13)
式中:pw為起裂前井底流體壓力,MPa;pf為裂縫破裂壓力,MPa。
吉林油田A井為直井,井斜角和方位角均為0°,套管外徑為177.8 mm;壓裂層段地層三向主應(yīng)力分別為44,40和32 MPa,彈性模量為51.5 GPa,泊松比為0.25,地層壓力為32 MPa。A井巖石抗拉強(qiáng)度為5 MPa,采用水力噴射分段壓裂工藝,噴嘴直徑為6.0 mm,壓裂液密度為1.05 kg/L,油管排量為3.5 m3/min,流量系數(shù)為0.95,孔眼半徑為5.0 mm。該井水力噴射分段壓裂的第一段和第二段現(xiàn)場施工曲線如圖3所示。
從圖3可以看出,第一段裂縫起裂對應(yīng)的地面油壓為48 MPa,第二段裂縫起裂對應(yīng)的地面油壓為56 MPa。
假設(shè)地層均質(zhì)各向同性[24],將A井地層裂縫數(shù)據(jù)代入所建立的誘導(dǎo)應(yīng)力場水力噴射分段壓裂起裂模型,假設(shè)第二條裂縫與第一條裂縫距離分別為5,10,15,20,25,30,35,40,45,50,55和60 m,計(jì)算得到了各自的裂縫起裂壓力,結(jié)果見圖4。
由圖4可知,與初始裂縫距離越近,裂縫起裂壓力越大,增幅可達(dá)21%;在與初始裂縫距離30 m以內(nèi)時,受裂縫誘導(dǎo)應(yīng)力場影響較為嚴(yán)重,起裂壓力增加3 MPa以上。A井第二段噴射點(diǎn)距初始裂縫18 m,預(yù)測起裂壓力約為45 MPa,而距離第一段噴射點(diǎn)無窮遠(yuǎn)處裂縫的起裂壓力可近似為單一裂縫即第一段裂縫的起裂壓力,約為37.5 MPa,從圖4可以看到預(yù)測起裂壓力升高了7.5 MPa,而從水力噴射壓裂施工曲線(見圖3)可以看到2條裂縫起裂時對應(yīng)的地面油壓分別為48 MPa及56 MPa,即起裂壓力增大8 MPa(忽略2條裂縫之間的摩阻壓降,地面油壓的差值即為起裂壓力的差值),預(yù)測結(jié)果與實(shí)際結(jié)果誤差為6.25%,在工程誤差允許范圍內(nèi)。
根據(jù)上述水力噴射分段壓裂的裂縫起裂模型,分別計(jì)算不同裂縫高度、裂縫凈壓力、原地最小水平主應(yīng)力對第二條裂縫起裂壓力的影響。
4.1 裂縫高度的影響
根據(jù)水力噴射分段壓裂裂縫起裂模型以及A井地層參數(shù),在第一條裂縫高度為10,20,30和40 m條件下,分別假設(shè)第二條裂縫與第一條裂縫距離為5,10,15,20,25,30,35,40,45,50,55和60 m,計(jì)算第二條裂縫的起裂壓力,結(jié)果如圖5所示。
從圖5可以看出,與第一條裂縫距離越近,第二條裂縫起裂壓力越高,在距初始裂縫30 m范圍內(nèi),其對后續(xù)壓裂起裂壓力影響顯著,最大增幅可達(dá)21%;第一條裂縫縫高越高,后續(xù)壓裂段起裂壓力越大,縫高每增加10 m,起裂壓力增大2 MPa;第一條裂縫縫高越高,其對第二條裂縫起裂壓力的影響范圍越大。
縫高越高,縫寬也較寬,則裂縫體積越大,形成的誘導(dǎo)應(yīng)力場的范圍也越大,裂縫起裂壓力越大??p高增高和裂縫間距縮短造成起裂壓力升高,影響壓裂效果,因此合理優(yōu)化縫高和裂縫間距,能有效提高壓裂效果[25-28]。
4.2 裂縫凈壓力的影響
根據(jù)水力噴射分段壓裂裂縫起裂模型以及A井地層參數(shù),在第一條裂縫凈壓力為20,25,30,35和40 MPa條件下,分別假設(shè)第二條裂縫與第一條裂縫距離為5,10,15,20,25,30,35,40,45,50,55和60 m,計(jì)算第二條裂縫的起裂壓力,結(jié)果如圖6所示。
由圖6可知,第一條裂縫的凈壓力對第二條裂縫起裂壓力影響顯著;裂縫凈壓力越大,第二條裂縫起裂壓力也越大,凈壓力每增加5 MPa,起裂壓力增大3 MPa。分析認(rèn)為,裂縫凈壓力越大,其對裂縫周圍誘導(dǎo)應(yīng)力場的貢獻(xiàn)越大,故造成起裂壓力升高。
4.3 原地最小水平主應(yīng)力的影響
根據(jù)水力噴射分段壓裂的裂縫起裂模型以及A井地層參數(shù),原地最小水平主應(yīng)力分別為20,23,26,29和32 MPa條件下,分別假設(shè)第二條裂縫與第一條裂縫距離為5,10,15,20,25,30,35,40,45,50,55和60 m,計(jì)算第二條裂縫的起裂壓力,結(jié)果如圖7所示。
由圖7可知,原地最小水平主應(yīng)力對第二條裂縫起裂壓力沒有影響。原地最小水平主應(yīng)力越小,裂縫起裂壓力越小,但是后續(xù)壓裂的裂縫起裂壓力沒有增大,說明原地應(yīng)力狀態(tài)對誘導(dǎo)應(yīng)力沒有影響。
由以上敏感性分析可知,壓裂形成的第一條裂縫的縫高和裂縫凈壓力對后續(xù)壓裂裂縫起裂壓力影響較大。第一條裂縫縫高越高,后續(xù)壓裂段起裂壓力越大,對第二條裂縫起裂壓力的影響范圍增大;裂縫凈壓力對第二條裂縫起裂壓力影響顯著,裂縫凈壓力越大,第二條裂縫起裂壓力隨之增加。
1) 建立了裂縫誘導(dǎo)應(yīng)力場下水力噴射分段壓裂的裂縫起裂模型,為預(yù)測受第一條裂縫干擾的后續(xù)裂縫起裂壓力提供了依據(jù)。計(jì)算條件下,裂縫間距大于50 m,能有效減小第一條裂縫誘導(dǎo)應(yīng)力場的影響,裂縫凈壓力及縫高對后續(xù)裂縫起裂壓力影響比較顯著,后續(xù)起裂壓力最大增幅可達(dá)21%,原地應(yīng)力狀態(tài)對誘導(dǎo)應(yīng)力場影響較小。
2) 該起裂模型做出了一定簡化,只考慮了壓裂第一條裂縫對于后續(xù)壓裂段起裂壓力的影響。建議在后續(xù)研究中,考慮多條裂縫和儲層非均質(zhì)條件下裂縫的形態(tài)、方位對后續(xù)裂縫起裂壓力的影響。
References
[1] Surjaatmadja J B,Grundmann S R,McDaniel B W,et al.Hydrajet fracturing:an effective method for placing many fractures in openhole horizontal wells[R].SPE 48856,1998.
[2] Surjaatmadja J B,McDaniel B W,Sutherland R L.Unconventional multiple fracture treatments using dynamic diversion and downhole mixing[R].SPE 77905,2002.
[3] Surjaatmadja J B.Subterranean formation fracturing methods:US,5765642[P].1998-06-16.
[4] Wolny S F,Schiffner G,Schmelzl E G,et al.Coiled-tubing fracturing increases deliverability,recoverable reserves,and NPV of infill development wells in a mature shallow gas field[R].SPE 77679,2002.
[5] 田守嶒,李根生,黃中偉,等.水力噴射壓裂機(jī)理與技術(shù)研究進(jìn)展[J].石油鉆采工藝,2008,30(1):58-62. Tian Shouzeng,Li Gensheng,Huang Zhongwei,et al.Research on hydrajet fracturing mechanisms and technologies[J].Oil Drilling & Production Technology,2008,30(1):58-62.
[6] 盛茂,李根生,黃中偉,等.水力噴射孔內(nèi)射流增壓規(guī)律數(shù)值模擬研究[J].鉆采工藝,2011,34(2):42-45. Sheng Mao,Li Gensheng,Huang Zhongwei,et al.Numerical simulation of pressure boosting effect in jet hole during hydrajet fracturing[J].Drilling & Production Technology,2011,34(2):42-45.
[7] Fallahzadeh S H,Shadizadeh S R,Pourafshary P,et al.Modeling the perforation stress profile for analyzing hydraulic fracture initiation in a cased hole[R].SPE 136990,2010.
[8] Fallahzadeh S H,Shadizadeh S R,Pourafshary P.Dealing with the challenges of hydraulic fracture initiation in deviated-cased perforated boreholes[R].SPE 132797,2010.
[9] 郭建春,鄧燕,趙金洲.射孔完井方式下大位移井壓裂裂縫起裂壓力研究[J].天然氣工業(yè),2006,26(6):105-107. Guo Jianchun,Deng Yan,Zhao Jinzhou.Study on breakdown pressure of hydraulic fracturing for extended reach wells with perforation completion[J].Natural Gas Industry,2006,26(6):105-107.
[10] 黃中偉,李根生.水力射孔參數(shù)對起裂壓力影響的實(shí)驗(yàn)研究[J].中國石油大學(xué)學(xué)報:自然科學(xué)版,2007,31(6):48-54. Huang Zhongwei,Li Gensheng.Experimental study on effects of hydrau-perforation parameters on initial fracturing pressure[J].Journal of China University of Petroleum:Edition of Natural Science,2007,31(6):48-54.
[11] 姜滸,陳勉,張廣清,等.定向射孔對水力裂縫起裂與延伸的影響[J].巖石力學(xué)與工程學(xué)報,2009,28(7):1321-1326. Jiang Hu,Chen Mian,Zhang Guangqing,et al.Impact of oriented perforation on hydraulic fracture initiation and propagation[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(7):1321-1326.
[12] 劉欣,劉從箐,劉同斌,等.相位對斜井射孔破裂壓力的影響[J].天然氣工業(yè),2010,30(3):55-56. Liu Xin,Liu Congjing,Liu Tongbin,et al.Impact of phase angle on the breakdown pressure of deviated wellbore in perforating[J].Natural Gas Industry,2010,30(3):55-56.
[13] 羅天雨,郭建春,趙金洲,等.斜井套管射孔破裂壓力及起裂位置研究[J].石油學(xué)報,2007,28(1):139-142. Luo Tianyu,Guo Jianchun,Zhao Jinzhou,et al.Study on fracture initiation pressure and fracture starting point in deviated wellbore with perforations[J].Acta Petrolei Sinica,2007,28(1):139-142.
[14] 劉翔.垂直射孔井地應(yīng)力及破裂壓力研究[J].鉆采工藝,2008,31(2):36-38. Liu Xiang.Study on earth stress and fracturing pressure in vertical perforated wells[J].Drilling & Production Technology,2008,31(2):36-38.
[15] 李根生,黃中偉,田守嶒,等.水力噴射壓裂理論與應(yīng)用[M].北京:科學(xué)出版社,2011. Li Gensheng,Huang Zhongwei,Tian Shouceng,et al.Theory and application of hydra-jet fracturing[M].Beijing:Science Press,2011.
[16] Palmer I D.Induced stresses due to propped hydraulic fracture in coalbed methane wells[R].SPE 25861,1993.
[17] Hossain M M,Rahman M K,Rahman S S.A comprehensive monograph for hydraulic fracture initiation from deviated wellbores under arbitrary stress regimes[R].SPE 54360,1999.
[18] Lv Zhikai,He Shunli,Gu Daihong,et al.Hydraulic Fracture Initiation While Staged Fracturing for Horizontal Wells[R].IPTC 16508,2013.
[19] 劉洪,胡永全,趙金洲,等.重復(fù)壓裂氣井誘導(dǎo)應(yīng)力場模擬研究[J].巖石力學(xué)與工程學(xué)報,2004,23(23):4022-4027. Liu Hong,Hu Yongquan,Zhao Jinzhou,et al.Simulation study of induced stress field in refracturing gas well[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(23):4022-4027.
[20] Green A E,Sneddon I N.The distribution of stress in the neighbourhood of a crack in an elastic solid[J].Mathematical Proceedings of the Cambridge Philosophical Society,1950,46(1):159-163.
[21] 彪仿俊,劉合,張勁,等.螺旋射孔條件下地層破裂壓力的數(shù)值模擬研究[J].中國科學(xué)技術(shù)大學(xué)學(xué)報,2011,41(3):219-226. Biao Fangjun,Liu He,Zhang Jin,et al.A numerical study of fracturing initiation pressure under helical perforation conditions[J].Journal of University of Science and Technology of China,2011,41(3):219-226.
[22] 金衍,張旭東,陳勉.天然裂縫地層中垂直井水力裂縫起裂壓力模型研究[J].石油學(xué)報,2005,26(6):113-118. Jin Yan,Zhang Xudong,Chen Mian.Initiation pressure models for hydraulic fracturing of vertical wells in naturally fractured formation[J].Acta Petrolei Sinica,2005,26(6):113-118.
[23] 金衍,陳勉,張旭東.天然裂縫地層斜井水力裂縫起裂壓力模型研究[J].石油學(xué)報,2006,27(5):124-126. Jin Yan,Chen Mian,Zhang Xudong.Initiation pressure models for hydraulic fracturing of vertical wells in naturally fractured formation[J].Acta Petrolei Sinica,2006,27(5):124-126.
[24] 陳崢嶸,鄧金根,朱海燕,等.定向射孔壓裂起裂與射孔優(yōu)化設(shè)計(jì)方法研究[J].巖土力學(xué),2013,34(8):2309-2315. Chen Zhengrong,Deng Jingen,Zhu Haiyan,et al.Research on initiation of oriented perforation fracturing and perforation optimization design method[J].Rock and Soil Mechanics,2013,34(8):2309-2315.
[25] 邵尚奇,田守嶒,李根生,等.水平井縫網(wǎng)壓裂裂縫間距的優(yōu)化[J].石油鉆探技術(shù),2014,42(1):86-90. Shao Shangqi,Tian Shouceng,Li Gensheng,et al.Fracture spacing optimization for fracure-network fracturing in horizontal wells[J].Petroleum Drilling Techniques,2014,42(1):86-90.
[26] 黃中偉,李根生,汪永章,等.水力噴射壓裂技術(shù)在3層套管井中的應(yīng)用[J].石油鉆采工藝,2012,34(5):122-124. Huang Zhongwei,Li Gensheng,Wang Yongzhang,et al.Hydra-jet fracturing applied in a well with three-layer casings[J].Oil Drilling & Production Technology,2012,34(5):122-124.
[27] 陳作,何青,王寶峰,等.大牛地氣田長水平段水平井分段壓裂優(yōu)化設(shè)計(jì)技術(shù)[J].石油鉆探技術(shù),2013,41(6):82-85. Chen Zuo,He Qing,Wang Baofeng,et al.Design optimization of staged fracturing for long lateral horizontal wells in Daniudi Gas Field[J].Petroleum Drilling Techniques,2013,41(6):82-85.
[28] 王建麾,王成旺,余興國,等.PSK多級滑套水力噴射分段壓裂技術(shù)的應(yīng)用:以鎮(zhèn)北油田水平井為例[J].斷塊油氣田,2014,21(1):107-109. Wang Jianhui,Wang Chengwang,Yu Xingguo,et al.Application of staged fracturing technology with PSK multistage sliding sleeve jet:taking horizontal well in Zhenbei Oilfield as an example[J].Fault-Block Oil & Gas Field,2014,21(1):107-109.
[編輯 滕春鳴]
Modeling of Fracture Initiation for Staged Hydraulic Jetting Fracturing
Tian Shouceng1, Chen Liqiang2, Sheng Mao1, Li Gensheng1, Liu Qingling1
(1.TheStateKeyLaboratoryofPetroleumResourcesandProspecting,ChinaUniversityofPetroleum(Beijing),Beijing, 102249,China; 2.CNOOCEnerTech-Drilling&ProductionCo.,Tianjin, 300450,China)
It is necessary to accurately predict the fracture initiation pressure at different positions when a staged hydraulic jet fracturing program is designed and optimized. In this paper,therefore, a fracture initiation model which takes the induced stress field into consideration is established for the staged hydraulic jet fracturing on the basis of Westergaard theory. The effect of the induced stress of the first fracture on the following initiation fracture was investigated and compared with the actual fracturing data. In addition, an analysis was conducted to determine the effect of fracture height, net fracture pressure, minimum horizontal in-situ principal stress and fracture spacing from the first to the second one on the initiation pressure of the second fracture.The calculated results showed that the model calculations and the test values were maintained identical. In situations with practical parameters, the following initiation pressure increased by 3 MPa if the net pressure at the fracture plane increased by 5 MPa. It increased by 2 MPa, and the influential range of induced stress field enlarged by 30 m if the height of first fracture increased by 10 m. The following initiation pressure increased with the shortening of the spacing to the first fracture, with maximum increase ratio 21%. The minimum horizontal in-situ principal stress had no effect on the influential range of induced stress field. It was shown that the fracture initiation model established in this paper was better accordant with the field testing data. The following fracture initiation pressure was significantly affected by the net fracture pressure, the fracture height and the spacing to the first fracture, but was hardly affected by the minimum horizontal in-situ principal stress. The research results in this paper played an instructive role for the design and optimization of staged hydraulic jet fracturing programs.
hydraulic jet fracturing; fracture initiation model; fracture initiation pressure; induced stress
2015-07-15;改回日期:2015-09-11。
田守嶒(1974—),男,山東青島人,1997年畢業(yè)于燕山大學(xué)塑性成形專業(yè),2008年獲中國石油大學(xué)(北京)油氣井工程專業(yè)博士學(xué)位,副研究員,主要從事高壓水射流技術(shù)在石油工程中的理論與應(yīng)用研究工作。
國家自然科學(xué)基金重大項(xiàng)目“多重耦合下的頁巖油氣安全優(yōu)質(zhì)鉆井理論”(編號:51490652)資助。
?頁巖油氣高效開發(fā)專題?
10.11911/syztjs.201505006
TE357.1+1
A
1001-0890(2015)05-0031-06
聯(lián)系方式:(010)89733379,tscsydx@163.com。