馮文梁,陳 斌,呂凌英
(成都飛機(jī)工業(yè)(集團(tuán))有限責(zé)任公司技術(shù)中心,四川成都 610092)
超臨界層流復(fù)合翼飛機(jī)Re數(shù)效應(yīng)修正方法研究
馮文梁*,陳 斌,呂凌英
(成都飛機(jī)工業(yè)(集團(tuán))有限責(zé)任公司技術(shù)中心,四川成都 610092)
基于γ-Reθ轉(zhuǎn)捩預(yù)測(cè)模型,對(duì)使用超臨界層流復(fù)合翼的飛機(jī)進(jìn)行轉(zhuǎn)捩預(yù)測(cè)數(shù)值模擬。獲得機(jī)翼在不同Re數(shù)下的自由轉(zhuǎn)捩位置,計(jì)算轉(zhuǎn)捩位置與試驗(yàn)數(shù)據(jù)吻合。結(jié)合轉(zhuǎn)捩預(yù)測(cè)結(jié)果和強(qiáng)制轉(zhuǎn)捩試驗(yàn)數(shù)據(jù),對(duì)全機(jī)風(fēng)洞試驗(yàn)數(shù)據(jù)進(jìn)行不同高度的Re數(shù)效應(yīng)修正。改變了戰(zhàn)斗機(jī)只對(duì)阻力進(jìn)行Re數(shù)效應(yīng)修正的傳統(tǒng)方法,分別對(duì)飛機(jī)的升力、阻力及縱向力矩進(jìn)行Re數(shù)效應(yīng)修正。
Re數(shù)效應(yīng);轉(zhuǎn)捩;γ-Reθ模型
風(fēng)洞試驗(yàn)一般使用縮比模型,風(fēng)洞模型的縮小以及風(fēng)洞固有特性的限制,使得風(fēng)洞試驗(yàn)的Re數(shù)與飛機(jī)真實(shí)飛行Re數(shù)存在較大的差異。因此必須對(duì)風(fēng)洞試驗(yàn)數(shù)據(jù)進(jìn)行Re數(shù)效應(yīng)修正。
對(duì)戰(zhàn)斗機(jī)的Re數(shù)效應(yīng)研究表明,由于戰(zhàn)斗機(jī)多采用較薄的翼型,在大氣中飛行時(shí),機(jī)翼附面層近似于全湍流。Re數(shù)對(duì)全機(jī)的升力特性和縱向力矩特性影響很小,而對(duì)表面磨擦阻力有較大的影響。因此,在試驗(yàn)數(shù)據(jù)修正中,只對(duì)阻力做Re數(shù)修正,包括最小阻力和升致阻力。
現(xiàn)今民機(jī)和高空、高速無人機(jī)等,為追求高的巡航效率,一般采用高升阻比翼型,如超臨界翼型和超臨界層流復(fù)合翼型。這些翼型在設(shè)計(jì)點(diǎn)(巡航狀態(tài))均能保持不小于50%弦長(zhǎng)的自然層流區(qū)。研究表明,在設(shè)計(jì)狀態(tài)下層流翼型的阻力比普通紊流翼型的阻力可以減小一倍以上。但當(dāng)偏離設(shè)計(jì)點(diǎn)較多時(shí),自然層流區(qū)趨于消失。翼型的阻力會(huì)迅速增大。同時(shí)試驗(yàn)研究也表明,雷諾數(shù)通過影響超臨界翼型的流場(chǎng)結(jié)構(gòu)和壓力分布,進(jìn)而影響超臨界翼型的宏觀氣動(dòng)力特性,包括升力、阻力及縱向力矩[1]。雷諾數(shù)對(duì)超臨界翼型流動(dòng)影響同時(shí)反應(yīng)在轉(zhuǎn)捩位置上。轉(zhuǎn)捩是邊界層理論中非常重要的概念,表示由層流流動(dòng)向湍流流動(dòng)的轉(zhuǎn)變[2-5]。
戰(zhàn)斗機(jī)的Re數(shù)效應(yīng)修正方法是通過變Re數(shù)試驗(yàn),得到最小阻力隨Re數(shù)變化的線性曲線,采用外插的方法把試驗(yàn)Re數(shù)的最小阻力修正到飛行Re數(shù)。
本文通過基于γ-Reθ的轉(zhuǎn)捩預(yù)測(cè)模型對(duì)飛機(jī)機(jī)翼進(jìn)行數(shù)值模擬,得到不同Re數(shù)下機(jī)翼的自由轉(zhuǎn)捩位置。同時(shí)在風(fēng)洞試驗(yàn)中對(duì)飛機(jī)機(jī)翼進(jìn)行強(qiáng)制轉(zhuǎn)捩試驗(yàn),得到機(jī)翼不同轉(zhuǎn)捩位置的氣動(dòng)數(shù)據(jù)。利用CFD計(jì)算得到的轉(zhuǎn)捩位置結(jié)合強(qiáng)制轉(zhuǎn)捩試驗(yàn)數(shù)據(jù),對(duì)風(fēng)洞試驗(yàn)數(shù)據(jù)的升力、阻力和縱向力矩進(jìn)行Re數(shù)效應(yīng)修正[6-11]。
圖1 零迎角升力系數(shù)與轉(zhuǎn)捩位置關(guān)系Fig.1 The relationship between lift coefficient (α=0)and transition positions
圖2 升力線斜率與轉(zhuǎn)捩位置關(guān)系Fig.2 The relationship between lift slope and transition positions
本文采用在航空航天行業(yè)使用較多的商用CFD軟件ANSYS CFX,該軟件采用基于有限元的有限體積法,使用全隱式多網(wǎng)格耦合求解,對(duì)六面體網(wǎng)格采用24點(diǎn)插值,本文計(jì)算模型采用六面體網(wǎng)格,網(wǎng)格數(shù)約為1 000萬左右。
本文中物體表面設(shè)置為無滑移物面邊界條件,遠(yuǎn)場(chǎng)設(shè)置為開放邊界條件,選取SST湍流模型。轉(zhuǎn)捩模型采用γ-Reθ轉(zhuǎn)捩預(yù)測(cè)模型,由于該模型得到較為成熟的應(yīng)用,本文在此不再贅述,見文獻(xiàn)[12-15]。
圖3 最小阻力與轉(zhuǎn)捩位置關(guān)系Fig.3 The relationship between minimum drag and transition positions
為研究機(jī)翼不同轉(zhuǎn)捩位置對(duì)氣動(dòng)特性的影響,在機(jī)翼表面不同位置粘貼金剛砂膠帶進(jìn)行強(qiáng)制轉(zhuǎn)捩風(fēng)洞試驗(yàn)。根據(jù)試驗(yàn)結(jié)果顯示,最小阻力、零迎角升力、升力線斜率、零升力矩以及縱向安定導(dǎo)數(shù)隨著轉(zhuǎn)捩位置的變化基本呈線性變化。
M=0.4、0.5、0.6的試驗(yàn)Re數(shù)分別1.21×106、1.45×106、1.77×106。從圖1~圖5可以看出,不同馬赫數(shù)(Re也不同),在相同強(qiáng)制轉(zhuǎn)捩位置,氣動(dòng)特性略有差異。因此在進(jìn)行Re數(shù)效應(yīng)修正時(shí),首先通過CFD計(jì)算得到某馬赫數(shù)下不同高度的機(jī)翼 轉(zhuǎn)捩位置,再根據(jù)計(jì)算轉(zhuǎn)捩位置,在圖1~圖5中找到相應(yīng)馬赫數(shù)和轉(zhuǎn)捩位置的縱向?qū)?shù)值來進(jìn)行Re數(shù)效應(yīng)修正。
圖4 零升力矩與轉(zhuǎn)捩位置關(guān)系Fig.4 The relationship between zero lift pitching moment and transition positions
圖5 縱向力矩導(dǎo)數(shù)與轉(zhuǎn)捩位置關(guān)系Fig.5 The relationship between pitching moment derivative and transition positions
機(jī)翼初期設(shè)計(jì)考慮到高升阻比以及高臨界馬赫數(shù)的要求,選取了超臨界層流復(fù)合的翼型。后期由于飛機(jī)指標(biāo)改變,飛行速度降低,沒有使用到機(jī)翼的超臨界特性,因此風(fēng)洞試驗(yàn)沒有完全驗(yàn)證其超臨界特性(臨界馬赫數(shù))。
圖6 機(jī)翼最小阻力隨馬赫數(shù)變化曲線Fig.6 The curves for minimum drag of wing and Mach number
圖7 M=0.65,α=0°機(jī)翼截面壓力分布Fig.7 The pressure distribution of some wing section (M=0.65,α=0°)
圖8 M=0.65,α=3°機(jī)翼截面壓力分布Fig.8 The pressure distribution of some wing section (M=0.65,α=3°)
機(jī)翼自由轉(zhuǎn)捩位置較難通過試驗(yàn)直接得到,本文在風(fēng)洞試驗(yàn)中進(jìn)行機(jī)翼不同位置的強(qiáng)制轉(zhuǎn)捩試驗(yàn),得到不同轉(zhuǎn)捩位置與縱向?qū)?shù)關(guān)系曲線(圖1~圖5),并將自由轉(zhuǎn)捩試驗(yàn)得到的縱向?qū)?shù)在圖1~圖3中進(jìn)行線性外插,從而得到機(jī)翼自由轉(zhuǎn)捩位置。
由于風(fēng)洞Re數(shù)變化范圍較小,因此只有Re低于2.5×106的試驗(yàn)數(shù)據(jù)。計(jì)算大氣條件與試驗(yàn)相同,從圖9可以看出,機(jī)翼計(jì)算自由轉(zhuǎn)捩位置較試驗(yàn)靠后約2%當(dāng)?shù)叵议L(zhǎng),計(jì)算轉(zhuǎn)捩位置與試驗(yàn)結(jié)果隨Re變化的趨勢(shì)相同,計(jì)算結(jié)果與試驗(yàn)數(shù)據(jù)基本吻合。
圖10~圖12為不同Re數(shù)的機(jī)翼上表面間歇因子云圖,從圖中可以看出間歇因子在層流段幾乎為零,達(dá)到轉(zhuǎn)捩位置后間歇因子瞬間增大。從圖中可以看出,機(jī)翼內(nèi)段由于受到機(jī)身繞流的影響層流段較外翼短,轉(zhuǎn)捩位置沿展向分布也不均勻。
圖9 試驗(yàn)與計(jì)算轉(zhuǎn)捩位置對(duì)比Fig.9 The transition positions comparing for calculation and experiment
圖10 Re=2.0×106間歇因子云圖Fig.10 The intermittent factor contour for Re=2.0×106
圖11 Re=5.0×106間歇因子云圖Fig.11 The intermittent factor contour for Re=5.0×106
圖12 Re=8.0×106間歇因子云圖Fig.12 The intermittent factor contour for Re=8.0×106
根據(jù)飛機(jī)飛行包線,確定飛機(jī)的飛行Re數(shù)范圍,并對(duì)該范圍的Re數(shù)進(jìn)行數(shù)值模擬,計(jì)算出不同高度、速度下的轉(zhuǎn)捩位置。由于計(jì)算轉(zhuǎn)捩位置較試驗(yàn)有約2%當(dāng)?shù)叵议L(zhǎng)的誤差,對(duì)計(jì)算轉(zhuǎn)捩位置進(jìn)行一定的修正。
由CFD計(jì)算得到的不同Re數(shù)的機(jī)翼轉(zhuǎn)捩位置,并根據(jù)各縱向?qū)?shù)與轉(zhuǎn)捩位置的線性關(guān)系(圖1~圖5),使用計(jì)算得到的轉(zhuǎn)捩位置進(jìn)行線性插值得到對(duì)應(yīng)Re數(shù)的縱向?qū)?shù)。用插值縱向?qū)?shù)減去試驗(yàn)值,得到Re數(shù)效應(yīng)修正的縱向?qū)?shù)增量,并通過計(jì)算得到Re數(shù)修正量。
具體修正公式如下:
不同馬赫數(shù)和Re數(shù)下的計(jì)算自由轉(zhuǎn)捩位置如圖13。從圖中可以看出,在Re數(shù)小于7×106時(shí),轉(zhuǎn)捩位置基本不變,超過該Re數(shù)后,轉(zhuǎn)捩位置急劇前移,層流段變短。
風(fēng)洞試驗(yàn)僅能做到試驗(yàn)?zāi)P秃退俣扰c飛機(jī)真實(shí)飛行相似,而無法得到飛機(jī)在不同高度下的氣動(dòng)數(shù)據(jù)。飛機(jī)不同的飛行高度反應(yīng)了飛機(jī)Re數(shù)的變化。為獲取飛機(jī)在不同高度下的氣動(dòng)數(shù)據(jù),必須對(duì)風(fēng)洞試驗(yàn)數(shù)據(jù)進(jìn)行Re數(shù)效應(yīng)修正。
圖14~圖15為不同高度進(jìn)行Re數(shù)修正后的極曲線和俯仰力矩曲線。圖16為經(jīng)過Re數(shù)修正后的風(fēng)洞試驗(yàn)數(shù)據(jù)與飛行試驗(yàn)氣動(dòng)數(shù)據(jù)的對(duì)比。飛行試驗(yàn)的升阻力通過飛機(jī)飛行過程中的重量以及發(fā)動(dòng)機(jī)推力進(jìn)行反算得到,從圖中可以看出,飛行試驗(yàn)數(shù)據(jù)與風(fēng)洞試驗(yàn)Re數(shù)修正數(shù)據(jù)基本吻合,試驗(yàn)數(shù)據(jù)與修正數(shù)據(jù)的差異是由于發(fā)動(dòng)機(jī)推力損失無法準(zhǔn)確獲取等因素造成。
圖13 CFD計(jì)算轉(zhuǎn)捩位置隨Re變化曲線(M=0.5)Fig.13 The curves of CFD transition positions and Re(M=0.5)
圖14 進(jìn)行Re數(shù)修正后的升阻極曲線Fig.14 The lift-drag polar curves after Reynolds number effect correction
圖15 進(jìn)行Re數(shù)修正后的力矩曲線Fig.15 The pitching moment curves after Reynolds number effect correction
圖16 Re數(shù)修正數(shù)據(jù)與飛行試驗(yàn)數(shù)據(jù)升阻極曲線對(duì)比Fig.16 The comparing for the data after Reynolds number effect correction and flight tests
通過轉(zhuǎn)捩位置預(yù)測(cè)結(jié)合強(qiáng)制轉(zhuǎn)捩風(fēng)洞試驗(yàn)的Re數(shù)效應(yīng)修正方法,使得風(fēng)洞試驗(yàn)數(shù)據(jù)更加準(zhǔn)確、可靠。修正方法已應(yīng)用于超臨界層流復(fù)合翼飛機(jī)的Re數(shù)效應(yīng)修正中,并得到飛行試驗(yàn)的驗(yàn)證,可為同類飛機(jī)的風(fēng)洞試驗(yàn)數(shù)據(jù)Re數(shù)效應(yīng)修正提供可靠的修正方法。
[1] Xu Xin,Liu Dawei,Chen Dehua,et al.Analysis of llow over supercritical airfoil for Reynolds numbers effects[R].CSTAM 2012-B03-0140,2012.(in Chinese)
許新,劉大偉,陳德華,等.超臨界翼型雷諾數(shù)影響流動(dòng)分析[R].CSTAM 2012-B03-0140,2012.
[2] Chen Yinchun,Si Jiangtao,Han Xianli,et al.Investigation of transition effect on the pressure distribution of supercritical wing[J].Acta Aerodynamica Sinica,2003,21(4):470-475.(in Chinese)
陳迎春,司江濤,韓先鋰,等.轉(zhuǎn)捩對(duì)超臨界機(jī)翼壓力分布的影響分析[J].空氣動(dòng)力學(xué)學(xué)報(bào),2003,21(4):470-475.
[3] Yang Qingzhen,Zhang Zhongyin.Analysis of the boundary layer and aerodynamic characteristics of a supercritical laminar wing[J].Acta Aeronautica et Astronautica Sinica,2004,25(5):439-442.(in Chinese)
楊青真,張仲寅.超臨界層流機(jī)翼邊界層及氣動(dòng)特性分析[J].航空學(xué)報(bào),2004,25(5):439-442.
[4] Chen Yi,Gao Zhenghong.Application of gamma-theta transition model to flows around airfoils[J].Acta Aerodynamica Sinica,2009,27(4):411-418.(in Chinese)
陳奕,高正紅.Gamma-Theta轉(zhuǎn)捩模型在繞翼型流動(dòng)問題中的應(yīng)用[J].空氣動(dòng)力學(xué)學(xué)報(bào),2009,27(4):411-418.
[5] David B DeGraff,Donald R Webster,John K Eaton.The effect of Reynolds number on boundary layer turbulence[J].Experimental Thermal and Fluid Science,1999,18:341-346.
[6] Suzen Y,Huang P.Modeling of flow transition using an intermittency transport equation[J].Journal of Fluids and Engineering,2000,122(2):273-284.
[7] Suzen Y B,Xiong G,Huang P G.Prediction of transition flows in a low-pressure turbine using an intermittency transport equation[R].AIAA 2000-2645.
[8] Zhang Yulun,Wang Guangxue,Meng Dehong,et al.Calibration of γ-Reθtransition model[J].Acta Aerodynamica Sinica,2011,29 (3):295-301.(in Chinese)
張玉輪,王光學(xué),孟德宏,等.γ-Reθ轉(zhuǎn)捩模型的標(biāo)定研究[J].空氣動(dòng)力學(xué)學(xué)報(bào),2011,29(3):295-301.
[9] Langtry R B,Menter F R.Transition modeling for general CFD applications in aeronautics[R].AIAA 2005-522.
[10]Mayle R E.The role of laminar-turbulent transition in gas turbine engines[J].ASME Journal of Turbo Machinery,1991,113:509-537.
[11]Langtry R B,Menter F R,Likki S R,et al.A correlation based transition model using local variables:part II-test case and industrial application[R].ASME-GT 2004-53454,ASME Turbo Expo 2004 Vienna Austria,2004.
[12]Menter F R,Langtry R B,Likki S R,et al.A correlation based transition model using local variables:part I-model formulation[R].ASME-GT 2004-53452.ASME Turbo Expo 2004 Vienna Austria,2004.
[13]Langtry R B.A correction-based transition model using local variables for unstructured parallelized CFD codes[D].[PhD Thesis].Stuttgart,2006.
[14] Poll D I A.Laminar to turbulent transition[C]//IUTAM SYM.1979:253-260.
[15] Erik J,Ponnampalam B.On the stability of three-dimensional boundary layers,Part 1:Linear and non-linear instiblity[R].I2-CASE Report 99219.1999.
Research Reynolds number effect correction for air supercritical laminar complex wing
Feng Wenliang*,Chen Bin,Lyu Lingying
(Technical Center of Chengdu Aircraft Industrial(Group)Co.Ltd,Chengdu 610092,China)
Transition significantly affects aerodynamic characteristics of an airplane,such as the drag,lift and pitching moment,and the transition position of supercritical laminar complex wings is greatly influenced by Reynolds number effect.The traditional methods of Reynolds number effect correction are not suitable anymore for those aircraft with supercritical laminar complex wings.A γ-Reθmodel for the transition prediction of an airplane with supercritical laminar complex wings is introduced.The transition point could be obtained by this way according to its Reynolds number,and the computational transition points are accord with the wind tunnel tests.The wind tunnel experiment data are corrected and modified by the combination of CFD results and experiment data.The traditional Reynolds number effect correction methods correct the drag only,while this new proposed method corrects the lift,drag and pitching moment respectively and simultaneously.More accurate data for real flight could be obtained from wind tunnel experiment data by this method,and makes the flight safer.
Reynolds number effect;transition;γ-Reθmodel
V211.3
A
10.7638/kqdlxxb-2013.0086
0258-1825(2015)04-0470-05
2013-09-04;
2014-01-24
馮文梁*(1981-),男,重慶人,工程師,研究方向:氣動(dòng)布局設(shè)計(jì),計(jì)算流體力學(xué).E-mail:78456365@qq.com
馮文梁,陳斌,呂凌英.超臨界層流復(fù)合翼飛機(jī)Re數(shù)效應(yīng)修正方法研究[J].空氣動(dòng)力學(xué)學(xué)報(bào),2015,33(4):470-474.
10.7638/kqdlxxb-2013.0086 Feng W L,Chen B,Lyu L Y.Research Reynolds number effect correction for air supercritical laminar complex wing[J].Acta Aerodynamica Sinica,2015,33(4):470-474.