譚啟杏,韋長(zhǎng)元,宋倫
1.廣西醫(yī)科大學(xué)附屬腫瘤醫(yī)院 乳腺外科,廣西 南寧 530021;2.軍事醫(yī)學(xué)科學(xué)院 基礎(chǔ)醫(yī)學(xué)研究所應(yīng)激醫(yī)學(xué)研究室,北京 100850
血紅素加氧酶-1(heme oxygenase-1,HO-1)是一種廣泛存在于哺乳動(dòng)物體內(nèi)的抗氧化防御酶,是降解游離血紅素重要的限速酶,可將血紅素分解產(chǎn)生膽綠素、一氧化碳(CO)、亞鐵離子(Fe2+),所分解產(chǎn)生的這3 種代謝終產(chǎn)物具有抗炎、抗細(xì)胞凋亡和保護(hù)細(xì)胞等特性。在各種應(yīng)激條件下,HO-1可出現(xiàn)表達(dá)上調(diào),抵御各種刺激因素和病理過(guò)程的傷害,起到保護(hù)器官、組織和細(xì)胞的作用。近年來(lái)許多研究都證實(shí),HO-1在多種常見(jiàn)的人體惡性腫瘤組織中都出現(xiàn)異常高表達(dá),如乳腺癌、肺癌、肝癌、胰腺癌、結(jié)直腸癌、前列腺癌等。HO-1及其代謝終產(chǎn)物對(duì)細(xì)胞的保護(hù)作用與腫瘤細(xì)胞增殖、侵襲、轉(zhuǎn)移等生物學(xué)行為密切相關(guān),參與腫瘤的形成和發(fā)展,同時(shí)也是腫瘤產(chǎn)生對(duì)放化療等治療抵抗的重要因素。研究表明,使用HO-1 抑制劑鋅原卟啉抑制HO-1 的表達(dá)可以導(dǎo)致腫瘤細(xì)胞對(duì)化療和放療更敏感。HO-1 對(duì)于腫瘤細(xì)胞的作用復(fù)雜,需要進(jìn)一步研究闡明。
血紅素加氧酶是具有多種功能的微粒體酶,現(xiàn)已發(fā)現(xiàn)其具有3 種單體類型,分別被命名為HO-1、HO-2 和HO-3。這3 種酶主要分布的組織、發(fā)揮的生物學(xué)功能各異。HO-1 又被稱為熱激蛋白32(HSP32),是相對(duì)分子質(zhì)量為32 000的單體,屬于誘導(dǎo)型酶,其表達(dá)具有組織及種屬依賴性,主要分布于心、肝、脾、腎、骨髓等組織細(xì)胞內(nèi),除了在肝、脾內(nèi)表達(dá)水平較高外,通常在大部分組織中低表達(dá),在重金屬、紫外線照射、缺氧等應(yīng)激條件,及H2O2、NO、炎癥細(xì)胞因子(TNF-α、IL-1β、IL-6、TGF-β、IL-8等)、前列腺素(PG)、血紅素及其衍生物等生物化學(xué)因子的刺激誘導(dǎo)下均可表達(dá)上調(diào),在維持細(xì)胞穩(wěn)態(tài)、降低氧化損傷、減輕炎性反應(yīng)、抑制細(xì)胞凋亡和調(diào)節(jié)細(xì)胞增殖等方面發(fā)揮重要作用[2-3]。HO-2 和HO-3 在多種組織細(xì)胞中呈構(gòu)成型表達(dá)。HO-2主要分布于大腦、視網(wǎng)膜和睪丸等器官組織,參與血紅蛋白的降解[4]。HO-3 主要分布于脾臟、肝臟等組織,具有較低的酶活性,其功能尚未明確,目前有研究認(rèn)為它可能參與調(diào)控血紅素基因的表達(dá),具有促進(jìn)血紅素和HO 結(jié)合的功能[5]。
近年研究表明,HO-1 與腫瘤的發(fā)生、發(fā)展密切相關(guān)。與周圍正常組織相比,HO-1在大多數(shù)腫瘤組織中表達(dá)增強(qiáng),包括前列腺癌[6]、乳腺癌[7]、胃癌[8]、肺癌[9]、結(jié)腸癌[10]、胰腺癌[11]、腎癌[12]、膠質(zhì)細(xì)胞瘤[13]、慢性髓細(xì)胞性白血病[14]等。相關(guān)臨床研究表明,HO-1的表達(dá)與腫瘤分化程度、分期及預(yù)后密切相關(guān)[15-19]。腫瘤分化程度越低,HO-1 的表達(dá)越高,提示HO-1表達(dá)高者,腫瘤惡性度相對(duì)較高,預(yù)后欠佳。大部分實(shí)體腫瘤中HO-1 的陽(yáng)性表達(dá)與腫瘤浸潤(rùn)程度、淋巴結(jié)轉(zhuǎn)移呈正相關(guān),表明HO-1 在腫瘤浸潤(rùn)轉(zhuǎn)移過(guò)程中扮演重要角色,其高表達(dá)有利于腫瘤細(xì)胞的增殖、轉(zhuǎn)移等。提示其可作為新的標(biāo)志物以及評(píng)估腫瘤進(jìn)展程度的客觀指標(biāo)。研究還發(fā)現(xiàn),HO-1在腫瘤細(xì)胞的表達(dá)可隨著化療、放療等被強(qiáng)烈誘導(dǎo),可能是腫瘤細(xì)胞獲得性抵抗的重要機(jī)制[20-21]。雖然HO-1在腫瘤組織中表達(dá)增加,但關(guān)于它在腫瘤組織中的確切定位仍然要進(jìn)一步研究,HO-1可能在腫瘤細(xì)胞和血管周圍的巨噬細(xì)胞中有選擇性地表達(dá),不排除組織來(lái)源不同的差異。HO-1 的表達(dá)受多種轉(zhuǎn)錄因子的調(diào)控,各類刺激因子可激活上游信號(hào)激酶,如絲裂素活化蛋白激酶(MAPK)、蛋白激酶A(PKA)、蛋白激酶c(PKC)和磷脂酰肌醇3-激酶(P13K),然后促使Nrf-2、AP-1、NF-κB等轉(zhuǎn)錄因子和DNA啟動(dòng)子的相應(yīng)結(jié)合位點(diǎn)結(jié)合,使其轉(zhuǎn)錄活性增強(qiáng),誘導(dǎo)HO-1 高表達(dá)[22]。目前研究認(rèn)為Nrf2(nuclea factor erythroid-2-related factor 2)是調(diào)控HO-1 表達(dá)的主要轉(zhuǎn)錄因子,它的轉(zhuǎn)錄活性與氧化應(yīng)激的誘導(dǎo)密切相關(guān)[23]。在正常細(xì)胞中,Nrf2 的活性被Keap1 蛋白(Kelch-like erythroid-derived cap-n-collar homology-associated protein 1)所抑制。Keap1蛋白主要分布于細(xì)胞質(zhì)中,能夠與Nrf2 蛋白結(jié)合,形成Keap1-Nrf2復(fù)合物,進(jìn)而被泛素蛋白酶體降解,使Nrf2蛋白維持在較低水平,導(dǎo)致Nrf2 不能進(jìn)入細(xì)胞核發(fā)揮其轉(zhuǎn)錄活性。在氧化應(yīng)激條件下,Keap1-Nrf2 復(fù)合物被破壞,Nrf2 可進(jìn)入細(xì)胞核,并與抗氧化反應(yīng)元件(ARE)結(jié)合,從而啟動(dòng)包括HO-1 在內(nèi)的多種抗氧化保護(hù)性基因的表達(dá),進(jìn)而保護(hù)細(xì)胞免受氧化應(yīng)激的損傷[24]。在一些腫瘤細(xì)胞中,Nrf2 基因發(fā)生突變使活性增強(qiáng),或Keap1失活突變或構(gòu)象發(fā)生改變,都可導(dǎo)致Nrf2轉(zhuǎn)錄活性增強(qiáng),從而促進(jìn)腫瘤細(xì)胞增殖、轉(zhuǎn)移[25-26]。也有報(bào)道認(rèn)為其他轉(zhuǎn)錄因子如STAT3、AP-1、HIF-1、ATF2 和PI3K/Akt 等信號(hào)通路參與HO-1的表達(dá)調(diào)控[27-32]。HO-1的調(diào)控機(jī)制及其信號(hào)通路目前尚未完全闡明,還需要進(jìn)一步研究。
抗凋亡能力增強(qiáng)是腫瘤持續(xù)增殖的重要機(jī)制之一。研究表明,HO-1具有保護(hù)細(xì)胞、抗細(xì)胞凋亡的雙重作用,并因此被稱為“保護(hù)性基因”。HO-1抗凋亡的確切機(jī)制目前尚未闡明,但有較多的證據(jù)表明,其主要與調(diào)節(jié)細(xì)胞內(nèi)活性氧(ROS)的濃度有關(guān)。Poss 等學(xué)者研究發(fā)現(xiàn),與野生型細(xì)胞相比,HO-1 缺失的細(xì)胞中ROS 含量大幅上調(diào)[33],而中、高濃度的ROS 能通過(guò)細(xì)胞氧化應(yīng)激反應(yīng)誘導(dǎo)細(xì)胞凋亡,因此HO-1 缺失的細(xì)胞防御氧化應(yīng)激的能力顯著下降。ROS是細(xì)胞線粒體在有氧代謝過(guò)程產(chǎn)生的電子排泄物,包括氧離子、過(guò)氧化物和含氧自由基等。這些粒子相當(dāng)微小,由于存在未配對(duì)的自由電子,而十分活躍。過(guò)高的ROS 水平會(huì)對(duì)細(xì)胞和基因結(jié)構(gòu)造成損壞。一般情況下,大部分ROS可被過(guò)氧化物歧化酶、過(guò)氧化氫酶、谷胱甘肽還原酶等抗氧化酶清除[34],這過(guò)程需要HO-1 等酶的輔助。因此,這些抗氧化酶的穩(wěn)定表達(dá)及激活能有效清除ROS 對(duì)細(xì)胞DNA 的損傷,減少基因突變,被認(rèn)為是抑制腫瘤發(fā)生的重要機(jī)制[23]。另有研究認(rèn)為,HO-1通過(guò)上調(diào)Bcl-2、下調(diào)Bax 蛋白,進(jìn)而抑制caspase 誘導(dǎo)的細(xì)胞凋亡[35]。HO-1 保護(hù)細(xì)胞的作用機(jī)制與其分解產(chǎn)物CO、膽綠素、亞鐵離子等密切相關(guān)。研究表明,CO 可以抑制ROS 的形成,并通過(guò)抑制細(xì)胞色素C 及caspase 蛋白的激活來(lái)抑制細(xì)胞凋亡信號(hào)通路的激活[36]。而膽綠素亦具有強(qiáng)大的抗氧化能力,可起到保護(hù)細(xì)胞的效應(yīng)。Nuhn 等學(xué)者將膽綠素添加到胰腺癌細(xì)胞的培養(yǎng)基中,發(fā)現(xiàn)其能顯著促進(jìn)腫瘤細(xì)胞的生存[37]。此外,亞鐵離子也對(duì)細(xì)胞起到保護(hù)作用,因?yàn)殍F蛋白有細(xì)胞保護(hù)的效應(yīng),而亞鐵離子恰恰又是鐵蛋白生成不可缺少的原料。最近有一些研究認(rèn)為,HO-1可介導(dǎo)細(xì)胞自噬的產(chǎn)生,降解并清除衰老、損傷的細(xì)胞器,維持細(xì)胞穩(wěn)態(tài),可能是其保護(hù)細(xì)胞、抑制凋亡的重要機(jī)制之一[38]。因此,HO-1 的抗凋亡、保護(hù)細(xì)胞作用在腫瘤發(fā)生發(fā)展的不同階段可能扮演不同的角色:在腫瘤形成之前,HO-1可通過(guò)清除ROS對(duì)細(xì)胞的損傷,減少基因突變來(lái)抑制腫瘤的發(fā)生;而在腫瘤形成后,HO-1 使腫瘤細(xì)胞對(duì)凋亡的抵抗力增強(qiáng),可促進(jìn)腫瘤發(fā)展。因此,闡明HO-1 與腫瘤細(xì)胞凋亡的相關(guān)性,及其在腫瘤發(fā)生發(fā)展的不同階段所起的作用,對(duì)于發(fā)展有針對(duì)性的治療策略,預(yù)防和治療腫瘤極為重要。
研究表明,HO-1在增殖性較強(qiáng)的癌組織中表達(dá)常常上調(diào),且與周圍正常組織相比,大部分腫瘤組織中都能檢測(cè)到HO-1 高表達(dá)。大量證據(jù)表明,在大部分腫瘤中,HO-1可促進(jìn)腫瘤增殖。Was等[39]在黑色素瘤細(xì)胞中采用細(xì)胞轉(zhuǎn)染技術(shù)增加HO-1 的表達(dá),發(fā)現(xiàn)其明顯促進(jìn)黑色素瘤細(xì)胞的增殖,并在動(dòng)物體內(nèi)實(shí)驗(yàn)中得到驗(yàn)證。另有研究者將肝癌、肺癌、胰腺癌、前列腺癌、腎細(xì)胞癌等惡性腫瘤細(xì)胞敲除HO-1后,可觀察到腫瘤細(xì)胞的增殖能力減弱,動(dòng)物實(shí)驗(yàn)顯示瘤體的生長(zhǎng)受到抑制,說(shuō)明HO-1 在這些腫瘤中能促進(jìn)腫瘤增殖[40-42]。在乳腺癌中,HO-1的作用有較大爭(zhēng)議,一些研究認(rèn)為其有抑制細(xì)胞增殖的作用[43],而也有研究發(fā)現(xiàn)HO-1同樣可促進(jìn)乳腺癌細(xì)胞的增殖分化[44]。HO-1 促進(jìn)腫瘤細(xì)胞增殖的分子機(jī)制目前仍不清楚,有研究認(rèn)為可能與下調(diào)p21 的表達(dá)有關(guān)[45]。作為細(xì)胞周期調(diào)控蛋白,p21在調(diào)節(jié)細(xì)胞周期、抑制腫瘤增殖等生物學(xué)過(guò)程中發(fā)揮重要作用,是抑癌基因p53 發(fā)揮抗腫瘤作用的重要下游因子。HO-1 的活化可能抑制了p21 在多種腫瘤組織中的表達(dá),從而促進(jìn)腫瘤細(xì)胞增殖。除了參與腫瘤細(xì)胞增殖的調(diào)控外,HO-1 還被認(rèn)為與腫瘤的浸潤(rùn)、轉(zhuǎn)移惡性生物學(xué)行為密切相關(guān)。我們知道,腫瘤的浸潤(rùn)、轉(zhuǎn)移是一個(gè)涉及多步驟的高度復(fù)雜過(guò)程,包括腫瘤細(xì)胞自身黏附能力減弱、腫瘤新生血管生成、腫瘤微環(huán)境發(fā)生改變等,參與調(diào)控某一步驟過(guò)程都可能影響腫瘤的浸潤(rùn)、轉(zhuǎn)移。實(shí)驗(yàn)研究表明,HO-1可上調(diào)血管內(nèi)皮生長(zhǎng)因子(VEGF)的表達(dá)[46],而VEGF 被認(rèn)為是最重要的血管生成誘導(dǎo)物。動(dòng)物實(shí)驗(yàn)也證實(shí),HO-1 通過(guò)提高大鼠腫瘤新生血管的生長(zhǎng)加速了胰腺癌、黑素細(xì)胞瘤、肺癌的生長(zhǎng)[39,42,47];通過(guò)特異性小干擾RNA(siRNA)或HO-1 抑制劑抑制HO-1 表達(dá)后,肺癌致癌活性下降,同時(shí)伴隨VECF蛋白表達(dá)水平降低[47]。此外,HO-1 亦可增強(qiáng)腫瘤的侵襲、轉(zhuǎn)移能力。在肺癌細(xì)胞中抑制了HO-1 表達(dá)后,基質(zhì)金屬蛋白酶MMP2 和MMP9 的表達(dá)出現(xiàn)明顯下調(diào),并伴隨著細(xì)胞侵襲性的降低[48]?;|(zhì)金屬蛋白酶(MMP)是參與破壞細(xì)胞外基質(zhì)最重要的蛋白水解酶,尤其是MMP2、MMP9,它們的表達(dá)產(chǎn)物除了可以酶解細(xì)胞間基質(zhì)成分,還能酶解基底膜的主要成分Ⅳ型膠原[49],極大地促進(jìn)了腫瘤細(xì)胞的侵襲轉(zhuǎn)移。同樣地,在胃癌細(xì)胞中也發(fā)現(xiàn),當(dāng)HO-1 過(guò)表達(dá)時(shí),MMP9 的表達(dá)明顯上調(diào)[8]。然而,令人奇怪的是,研究人員發(fā)現(xiàn),在HO-1陽(yáng)性表達(dá)的胃癌組織中,淋巴結(jié)轉(zhuǎn)移率卻較低[8],這提示在體內(nèi)腫瘤的轉(zhuǎn)移是一個(gè)多因素影響的復(fù)雜過(guò)程,并非單個(gè)因子可起到?jīng)Q定性的作用,可能涉及復(fù)雜的調(diào)控網(wǎng)絡(luò)。進(jìn)一步深入探討HO-1在腫瘤發(fā)生、侵襲和轉(zhuǎn)移過(guò)程中的作用,并可能通過(guò)降低HO-1 表達(dá)水平,進(jìn)而抑制腫瘤細(xì)胞的增殖、轉(zhuǎn)移,為臨床尋找有效的治療方案提供新思路。
腫瘤細(xì)胞對(duì)化療藥物敏感性降低,甚至出現(xiàn)多藥耐藥,是臨床中腫瘤治療失敗的重要原因。多種實(shí)體腫瘤細(xì)胞中均可見(jiàn)HO-1 的高表達(dá),而尤為引人注目的是相關(guān)癌細(xì)胞在缺氧條件下和放化療后HO-1 表達(dá)明顯增加。越來(lái)越多的實(shí)驗(yàn)證據(jù)顯示,HO-1 的過(guò)量表達(dá)可能是腫瘤細(xì)胞適應(yīng)較惡劣生長(zhǎng)條件和產(chǎn)生放化療抗性的主要原因之一。在對(duì)肝癌、肺癌、膀胱癌、結(jié)腸癌、神經(jīng)細(xì)胞瘤等多種常見(jiàn)腫瘤的實(shí)驗(yàn)研究中均觀察到,抑制HO-1 的表達(dá)可顯著增加腫瘤細(xì)胞對(duì)化療藥物的敏感性[50-54]。HO-1參與影響腫瘤耐藥的機(jī)制來(lái)自多方面。一些研究發(fā)現(xiàn),HO-1 的過(guò)表達(dá)常常伴隨多藥耐藥(MDR)蛋白及多藥耐藥相關(guān)蛋白(Mrp)的表達(dá)升高,從而降低癌細(xì)胞對(duì)化療的敏感性[55]。許多抗腫瘤藥物,包括鉑類、阿霉素等,都可誘導(dǎo)腫瘤細(xì)胞產(chǎn)生大量的ROS,從而殺傷癌細(xì)胞,與此同時(shí)誘導(dǎo)產(chǎn)生的HO-1起到清除ROS 的作用,亦被認(rèn)為是細(xì)胞獲得性耐藥的重要原因[56]。此外,如前所述,HO-1 可激活多種抗凋亡信號(hào)通路,也是腫瘤細(xì)胞耐藥的重要機(jī)制之一。由于HO-1 對(duì)化療藥物的拮抗作用,一些學(xué)者在體外實(shí)驗(yàn)應(yīng)用HO-1 抑制劑鋅原卟啉(zinc protoporphyrin,ZnPP)聯(lián)合化療藥物作用于腫瘤細(xì)胞,觀察腫瘤細(xì)胞對(duì)化療藥物的反應(yīng)變化,結(jié)果發(fā)現(xiàn)腫瘤細(xì)胞對(duì)化療藥物敏感性顯著增加,相同的藥物濃度下細(xì)胞凋亡明顯增加[7,57]。這為HO-1抑制劑作為化療增敏劑應(yīng)用于臨床治療提供了理論依據(jù)。
綜上所述,HO-1 與腫瘤關(guān)系密切,除了在腫瘤組織中高表達(dá)外,其還能在重金屬、過(guò)氧化氫、缺氧、放化療等氧化應(yīng)激反應(yīng)中進(jìn)一步誘導(dǎo)上調(diào)。HO-1及其代謝終產(chǎn)物對(duì)細(xì)胞的保護(hù)作用與腫瘤細(xì)胞增殖、侵襲、轉(zhuǎn)移等生物學(xué)行為密切相關(guān),同時(shí)也是腫瘤對(duì)放化療產(chǎn)生抵抗的重要因素,但具體的作用機(jī)制尚未完全闡明,且HO-1 在不同腫瘤中的作用不完全一致。因此,我們除了進(jìn)一步深入探索HO-1在腫瘤中的作用機(jī)制,還需要對(duì)不同類型腫瘤中HO-1的變化對(duì)于腫瘤發(fā)生發(fā)展的影響進(jìn)行研究,為HO-1作為潛在的抗腫瘤治療靶點(diǎn)提供依據(jù)。
[1]Shekhawat G,Verma K.Haem oxygenase(HO):an overlooked enzyme of plant metabolism and defence[J].J Exp Bot,2010,61(9):2255-2270.
[2]Keyse S M,Tyrrell R M.Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation,hydrogen peroxide,and sodium arsenite[J].Proc Natl Acad Sci USA,1989,86(1):99-103.
[3]Ferrandiz M,Devesa I.Inducers of heme oxygenase-1[J].Curr Pharm Des,2008,14(5):473-486.
[4]Maines M D,Trakshel G M,Kutty R K.Characterization of two constitutive forms of rat liver microsomal heme oxygenase[J].J Biol Chem,1986,261(1):411-419.
[5]Hayashi S,Omata Y,Sakamoto H,et al.Characterization of rat heme oxygenase-3 gene.Implication of processed pseudogenes derived from heme oxygenase-2 gene[J].Gene,2004,336(2):241-250.
[6]Maines M D,Abrahamsson P A.Expression of heme oxygenase-1(HSP32) in human prostate:normal,hyperplastic,and tumor tissue distribution[J].Urology,1996,47(5):727-733.
[7]Gleixner K V,Mayerhofer M,Vales A,et al.Targeting of Hsp32 in solid tumors and leukemias:a novel approach to optimize anticancer therapy[J].Curr Cancer Drug Targets,2009,9(5):675-689.
[8]Yin Y,Liu Q,Wang B,et al.Expression and function of heme oxygenase-1 in human gastric cancer[J].Exp Biol Med,2012,237(4):362-371.
[9]Degese M S,Mendizabal J E,Gandini N A,et al.Expression of heme oxygenase-1 in non-small cell lung cancer(NSCLC)and its correlation with clinical data[J].Lung Cancer,2012,77(1):168-175.
[10]Becker J C,Fukui H,Imai Y,et al.Colonic expression of heme oxygenase-1 is associated with a better long-term survival in patients with colorectal cancer[J].Scand J Gastroenterol,2007,42(7):852-858.
[11]Berberat P O,Dambrauskas Z,Gulbinas A,et al.Inhibition of heme oxygenase-1 increases responsiveness of pancreatic cancer cells to anticancer treatment[J].Clin Cancer Res,2005,11(10):3790-3798.
[12]Flad T,Mueller L,Dihazi H,et al.T cell epitope definition by differential mass spectrometry:identification of a novel,immunogenic HLA-B8 ligand directly from renal cancer tissue[J].Proteomics,2006,6(1):364-374.
[13]Gandini N A,Fermento M E,Salomón D G,et al.Heme oxygenase-1 expression in human gliomas and its correlation with poor prognosis in patients with astrocytoma[J].Tumour Biol,2014,35(3):2803-2815.
[14]Tibullo D,Barbagallo I,Giallongo C,et al.Nuclear translocation of heme oxygenase-1 confers resistance to Imatinib in chronic myeloid leukemia cells[J].Curr Pharm Des,2013,19(15):2765-2770.
[15]Tsai J R,Wang H M,Liu P L,et al.High expression of heme oxygenase-1 is associated with tumor invasiveness and poor clinical outcome in non-small cell lung cancer patients[J].Cell Oncol,2012,35(6):461-471.
[16]Miyata Y,Kanda S,Mitsunari K,et al.Heme oxygenase-1 expression is associated with tumor aggressiveness and outcomes in patients with bladder cancer:a correlation with smoking intensity[J].Transl Res,2014,164(6):468-476.
[17]Li Y,Su J,DingZhang X,et al.PTEN deletion and heme oxygenase-1 overexpression cooperate in prostate cancer progression and are associated with adverse clinical outcome[J].J Pathol,2011,224(1):90-100.
[18]Wang T Y,Liu C L,Chen M J,et al.Expression of haem oxygenase-1 correlates with tumour aggressiveness and BRAF V600E expression in thyroid cancer[J].Histopathology,2015,66(3):447-456.
[19]Noh S J,Bae J S,Jamiyandorj U,et al.Expression of nerve growth factor and heme oxygenase-1 predict poor survival of breast carcinoma patients[J].BMC Cancer,2013,13:516.
[20]Kongpetch S,Kukongviriyapan V,Prawan A,et al.Crucial role of heme oxygenase-1 on the sensitivity of cholangiocarcinoma cells to chemotherapeutic agents[J].PloS One,2012,7(4):e34994.
[21]Zhang W,Qiao T,Zha L.Inhibition of heme oxygenase-1 enhances the radiosensitivity in human nonsmall cell lung cancer a549 cells[J].Cancer Biother Radiopharm,2011,26(5):639-645.
[22]Morse D,Choi A M.Heme oxygenase.1:the "emerging molecule" has arrived[J].Am J Respir Cell Mol Biol,2002,27(1):8-16.
[23]Su Z Y,Shu L,Khor T O,et al.A perspective on dietary phytochemicals and cancer chemoprevention:oxidative stress,nrf2,and epigenomics[J].Top Curr Chem,2013,329:133-162.
[24]Jian Z,Li K,Liu L,et al.Heme oxygenase-1 protects human melanocytes from H2O2-induced oxidative stress via the Nrf2-ARE pathway[J].J Invest Dermatol,2011,131(7):1420-1427.
[25]Zhang D D,Hannink M.Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress[J].Mol Cell Biol,2003,23(22):8137-8151.
[26]Shibata T,Ohta T,Tong K I,et al.Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy[J].Proc Natl Acad Sci,USA,2008,105(36):13568-13573.
[27]Elguero B,Gueron G,Giudice J,et al.Unveiling the association of STAT3 and HO-1 in prostate cancer:role beyond heme degradation[J].Neoplasia,2012,14(11):1043-1056.
[28]Aodengqimuge,Liu S,Mai S,et al.AP-1 activation attenuates the arsenite-induced apoptotic response in human bronchial epithelial cells by up-regulating HO-1 expression[J].Biotechnol Lett,2014,36(10):1927-1936.
[29]Lee P J,Jiang B H,Chin B Y,et al.Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia[J].J Biol Chem,1997,272(9):5375-5381.
[30]Kravets A,Hu Z,Miralem T,et al.Biliverdin reductase,a novel regulator for induction of activating transcription factor-2 and heme oxygenase-1[J].J Biol Chem,2004,279(19):19916-19923.
[31]Lee J,Kim S.Upregulation of heme oxygenase-1 expression by dehydrodiconiferyl alcohol(DHCA) through the AMPK-Nrf2 dependent pathway[J].Toxicol Appl Pharmacol,2014,281(1):87-100.
[32]Jeong Y H,Park J S,Kim D H,et al.Arctigenin increases hemeoxygenase-1 gene expression by modulating PI3K/AKT signaling pathway in rat primary astrocytes[J].Biomol Ther,2014,22(6):497-502.
[33]Poss K D,Tonegawa S.Reduced stress defense in heme oxygenase 1-deficient cells[J].Proc Natl Acad Sci,USA,1997,94(20):10925-10930.
[34]Kobayashi A,Ohta T,Yamamoto M.Unique function of the Nrf2-Keap1 pathway in the inducible expression of antioxidant and detoxifying enzymes[J].Methods Enzymol,2004,378:273-286.
[35]Singh N P,Singh U P,Nagarkatti P S,et al.Prenatal exposure of mice to diethylstilbestrol disrupts T-cell differentiation by regulating Fas/Fas ligand expression through estrogen receptor element and nuclear factor-kappaB motifs[J].J Pharmacol Exp Ther,2012,343(2):351-361.
[36]Wang X,Wang Y,Kim H P,et al.Carbon monoxide protects against hyperoxia-induced endothelial cell apoptosis by inhibiting reactive oxygen species formation[J].J Biol Chem,2007,282(3):1718-1726.
[37]Nuhn P,Kunzli B M,Hennig R,et al.Heme oxygenase-1 and its metabolites affect pancreatic tumor growth in vivo[J].Mol Cancer,2009,8:37.
[38]Banerjee P,Basu A,Wegiel B,et al.Heme oxygenase-1 promotes survival of renal cancer cells through modulation of apoptosis-and autophagy-regulating molecules[J].J Biol Chem,2012,287(38):32113-32123.
[39]Was H,Cichon T,Smolarczyk R,et al.Overexpression of heme oxygenase-1 in murine melanoma:increased proliferation and viability of tumor cells,decreased survival of mice[J].Am J Pathol,2006,169(6):2181-2198.
[40]Doi K,Akaike T,Fujii S,et al.Induction of haem oxygenase-1 nitric oxide and ischaemia in experimental solid tumours and implications for tumour growth[J].Br J Cancer,1999,80(12):1945-1954.
[41]Chen G G,Liu Z M,Vlantis A C,et al.Heme oxygenase-1 protects against apoptosis induced by tumor necrosis factor-alpha and cycloheximide in papillary thyroid carcinoma cells[J].J Cell Biochem,2004,92:1246-1256.
[42]Hirai K,Sasahira T,Ohmori H,et al.Inhibition of heme oxygenase-1 by zinc protoporphyrin IX reduces tumor growth of LL/2 lung cancer in C57BL mice[J].Int J Cancer,2007,120(3):500-505.
[43]Hill M,Pereira V,Chauveau C,et al.Heme oxygenase-1 in-hibits rat and human breast cancer cell proliferation:mutual cross inhibition with indoleamine 2,3-dioxygenase[J].FASEB J,2005,19(14):1957-1968.
[44]Deng R,Wang S M,Yin T,et al.Inhibition of tumor growth and alteration of associated macrophage cell type by an HO-1 inhibitor in breast carcinoma-bearing mice[J].Oncol Res,2013,20(10):473-482.
[45]Kumar D,Bhaskaran M,Alagappan L,et al.Heme oxygenase-1 modulates mesangial cell proliferation by p21 Waf1 upregulation[J].Ren Fail,2010,32(2):254-258.
[46]Cisowski J,Loboda A,Jozkowicz A,et al.Role of heme oxygenase-1 in hydrogen peroxide-induced VEGF synthesis:effect of HO-1 knockout[J].Biochem Biophys Res Commun,2005,326(3):670-676.
[47]Sunamura M,Duda D G,Ghattas M H,et al.Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer[J].Angiogenesis,2003,6(1):15-24.
[48]Liu P L,Tsai J R,Charles A L,et al.Resveratrol inhibits human lung adenocarcinoma cell metastasis by suppressing heme oxygenase 1-mediated nuclear factor-kappaB pathway and subsequently downregulating expression of matrix metalloproteinases[J].Mol Nutr Food Res,2010,54(2):196-204.
[49]Sternlicht M D,Werb Z.How matrix metalloproteinases regulate cell behavior[J].Annu Rev Cell Dev Biol,2001,17:463-516.
[50]Kongpetch S,Kukongviriyapan V,Prawan A,et al.Crucial role of heme oxygenase-1 on the sensitivity of cholangiocarcinoma cells to chemotherapeutic agents[J].PLoS One,2012,7(4):e34994.
[51]Jeon W K,Hong H Y,Seo W C,et al.Smad7 sensitizes A549 lung cancer cells to cisplatin-induced apoptosis through heme oxygenase-1 inhibition[J].Biochem Biophys Res Commun,2012,420(2):288-292.
[52]Miyake M,Fujimoto K,Anai S,et al.Inhibition of heme oxygenase-1 enhances the cytotoxic effect of gemcitabine in urothelial cancer cells[J].Anticancer Res,2010,30(6):2145-2152.
[53]Yin H,Fang J,Liao L,et al.Upregulation of heme oxygenase-1 in colorectal cancer patients with increased circulation carbon monoxide levels,potentially affects chemotherapeutic sensitivity[J].BMC Cancer,2014,14:436.
[54]Furfaro A L,Piras S,Passalacqua M,et al.HO-1 up-regulation:a key point in high-risk neuroblastoma resistance to bortezomib[J].Biochim Biophys Acta,2014,1842(4):613-622.
[55]Nishiya T,Kataoka H,Mori K,et al.Tienilic acid enhances hyperbilirubinemia in Eisai hyperbilirubinuria rats through hepatic multidrug resistance-associated protein 3 and heme oxygenase-1 induction[J].Toxicol Sci,2006,91(2):651-659.
[56]Fang J,Seki T,Maeda H.Therapeutic strategies by modulating oxygen stress in cancer and inflammation[J].Adv Drug Deliv Rev,2009,61(4):290-302.
[57]Nowis D,Bugajski M,Winiarska M,et al.Zinc protoporphyrin IX,a heme oxygenase-1 inhibitor,demonstrates potent antitumor effects but is unable to potentiate antitumor effects of chemotherapeutics in mice[J].BMC cancer,2008,8:197.